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I. Introduction

Let X],..., Xn’ n >2, be a random sample from a normal population with
unknown mean & and unknown variance 02. We shall be concerned with the
statistical estimation of the parametric function 6 = ¢ + po where b is
a given constant. Clearly & is a p-quantile of the normal distribution if
p= o(b). We assume that (s—e)2 0'2 is taken to be the loss function, so
that the loss is invariant under Tocation and scale transformations.

The problem of estimating 6 is invariant under the affine group and
there exists the best equivariant estimator 8 which is minimax. If b =0,
(i.e. median ¢ is to be estimated) then 8 clearly coincides with the
sample mean and is admissible. (The latter fact follows from the admissi-
bility of ) for each fixed value of ¢ and the independence of 60 of this
value). Moreover the admissibility of the sample mean in this problem is
a characteristic property of the normal law (cf. Kagan and Zinger, 1973).
The situation is different when b # 0. Zidek (1971) had established the
inadmissibility of So for b # 0 by exhibiting an estimator which improves
upon  §,. However Zidek's procedure coincides with_ 8 outside of a com-
pact subset of the sample space and its relative improvement over 8o is
small.

The inadmissibility of the "standard" estimator 8o of some quantiles
of exponential distribution has been demonstrated by Rukhin and Strawder-
man {1982). Their minimax procedures also coincide with 8o with positive
probability, and the general conditions on minimax estimators which would

guarantee that they are generalized Bayes rules or are admissible remain
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unknown in quantile estimation probiem.

In this paper for b # 0 we construct a class of minimax procedures each
of which improves upon the best equivariant estimator 8 of the normal
quantile g + bo. These estimators are different from 60 with probability
one, and some of them possibly are generalized Bayes rules and could be ad-

missible.
2. Minimax Estimators of a Quantile

Let X = $ Xj/n and Y2 = g (XJ.-X)2 be sufficient statistics for & and o .
If 6(X,Y) is an estimator which depends only on X and Y and is equivariant
under the affine group then &(pX + r, pY) = ps(X,Y) + r for all positive p
and all real r. Therefore § must be of the form, &(X,Y) = X + YY for some

real constant Y. The examination of the risk of & (which is independent of

£ and o) reveals that the best choice of Y is Y = € where

¢ = b r(n/2)/(2"%r((n+1)/2)) = ba.
Thus the pest equivariant estimator has the form ao(X,Y)=X+abY with
a = r(n/2)/(2"% r((n+1)/2)). (1)
It is easy to see that if §(X,Y) is a minimax procedure, then -&(-X,Y)
is a minimax estimator of £ - bo. Therefore it suffices to obtain minimax
estimators of guantiles ¢ + bo of order larger than 1/2, i.e. for positive b.
Thus throughout this paper without loss of geneka]ity we assume that b is a
positive constant.
Following Zidek (1971) we consider "shrinkage" estimators of the form
s(X,Y) = s(X,Y) - 2c¥h(n/2x/v). (2)
Here h is a bounded continuous nonnegétive function which is differentiable

almost everywhere.
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Theorem 1. Estimator § of the form (2) is minimax if there exists a
differentiable bounded function g such that for all z under condition
1 - g(z)/2>h(z) >0 the following differential inequality holds:
(2-9(z)-2h(2)) [ng(z)*+th(2)(2/(en'/?) - 2g(2))3'/h(2)] > a2, (3)

Here a is defined by (1) and ' denotes the differentiation with respect to z.
Proof. Because of the scale equivariance of procedures (2) it suffices

to compare their risk function with that of 8 for o =1 only. One has
b= Ey (XcY- £-b)? )2

= 4cEg y(X+cY~-cYh-g-b)h,

so that & is minimax if A > 0 for all £ . To evaluate EEY(X—g)h we inte-

- EE (X+cY-2cYh-¢ -b

grate by parts

]/zx/y) exp {- n(x-g)z/z } dx

x/y) exp {- n(x—€)2/2 }dx/(n]/zy)-

f(x-g)h(n
~ [ h'(n'/?2

Thus
b= 4cE, [V(cY-cth-b)h + hn /27,

A sufficient condition for the non-negativity of A is

o]

F "2 exp 1-y%/23 Tey®hlu/y) (1-h(u/y)) - byh(u/y)
+h'(u/y)n V%] gy >0 (4)
for all real u.
Since for any bounded differentiable function k
L;k(u/y)y" exp {-y°/2 }dy
=4: [(n-T)k(u/y) - (u/y)k'(u/y)ly

one can rewrite (4) in the following form

-2 axp { -y2/2 } dy

{jyn'z exp {—y2/2} [(c(1-h(u/y))h(u/y) - k(U/y))y2
- byh(u/y) + h'(u/y)n“]/2 + (n-T)k(u/y) - (ufy)k'(u/y)ldy > 0.



-4 -

The Tlatter integral is nonnegative for all u if the integrand quadratic
form in y is nonnegative, i.e. if for all real z
c(1-h(z))h(z) - k(z) >0
and
8(c(1-h(z))h(z) - k(2))(h' (2)n"V24(n-1)k(z) - 2k'(2)) > b%2(z). (5)
Now Tet k(z) = ch(z)g(z)/2 for some boundedvdifferentiab1e function g.
Then (5) takes the form with a defined by (1)
(2-2h-g) [ng + (h(2/(en'/?) - 2g))'/h] > a7
for all values of the argument z such that 1-g(z)/2 >h(z) >0, and Theorem 1

is proved.

Corollary. Let I denote the interval,

1/2 1/2

I={z:]z-2n""a/b | <2(na2-1) / b}.

1, so that I is non-

(Because of the properties of the gamma-function a2> n-
empty). Assume that h vanishes outside of I and within I
h(z) <1 - (cnl/zz)'] - cz/(4a2n]/2).
Then the corresponding estimator (2) is minimax. To prove this Corollary
just put in (3) g(z) = 2/(cn'/%2).
Notice that the minimaxity of Zidek's estimator which corresponds to
h(z) = (1 - (cn1/22)'] ~cz/(4a2n]/2))/2, z €1, follows from

our Corollary.

Theorem 1 shows that any positive solution h of the differential in-
equality (3) provides a minimax procedure ¢&. The use of similar differen-
tial inequalities in multiparameter estimation problems started by Stein (1973)
has been developed by many authors (see Brown, 1979 and Berger, 1980).

As was mentioned, strictly positive solutions h are of interest. To

find such solutions of (3) it is convenient to view g as independent variable
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91 <9 <9o> and let z be a one-to-one function of g. In this case (3) can

be rewritten in the following form

(2-g-2h) [ng + £h(2/(cn'/?) - 2g)1'/(z'h)1 > a2, (6)

Here h = h(g) and the differentiation is understood with respect to g.

To obtain strictly positive solutions h of (6) we need the following

notation.
Let
g = 1 - (1-1/(aN%, g, = 2 - g,
so that
-g” + 2g - 1/(na") = (g - g9;)(9, - 9).
Also denote by 99 the largest root of the equation
(1 - 9)(--‘92 + 29 - 1/(na%))
) [e? - 29 + 1/((n-1)a®)] (1/(na® g%) -1),

which does not exceed (na )']/2. Thus for g <9 <(na )'1/2
(1- g)(- 9 +2g - 1/na?))

> (n-1) Lg? - 2¢ + 1/((n-1)a%)1 (1/(na’¢®) - 1). (7)

I\)

Theorem 2. Let § be any number under condition 99 <g <(na2)']/2. Put
A= (1-8)3[n(1/(na") - 1)(3-9,) (9,017,
and let g = g(z), 91 <9 <Yy> be defined as the solution of the equation
z = (2/(en'2))(1/g - (g-0) [A(g-gl)(gz—g)]']).

Any estimator (2) with h of the form h = h(g) = (9-91)(95-9)f/(29),
Where f = f(g) is a positive unimodal differentiable function with the maxi-
mum at §,

£(8) <1 - (na®)7'/0(G-9)) (g,-8) (n-1 + (1-8) (1/na"8%) -1)7'1,

is minimax.



Proof. To prove Theorem 2 we verify inequality (6). One has
h(2/(cn’?) -zg) = (g-9)F/(cn' /).
and
z' = dz/dg
= ~(@/(en'/?)) [/ + (oP-289 + 28 -1/(na®))A" (g-g7) *(g,-9) 1.
Inequality (6) can be rewritten in the following form -
2
(29 - g7 - (9-97)(g,-9)f)

2

« 1+ 20(g-0)7)"/(en'/PA(g-0,)(9p-0)2' )] > (na®) ™. (8)

Now we replace z' by its expression above and obtain
2
[(g-91)(g,-9) + 1/(na”) - (g-g;)(g,-9)f]

x 11 - ((9-9)%)'(9-g,) (g,-0)/nf

2

x [A(9-91)2(92-929" + g% - 299 + 24 - 1/(na®)17'1 > 1/(na”).

This inequality can be reduced to the following form after cancelling
the (positive) factor (g-g])(gz-g)
2 2 -2 2 ~ ~ 2
(9,-9)"g = + g~ - 299 + 29 -1/(na")]
2
)

(1-f)n[A(g-g7)

> [(g-97)(9,-9) (1-F) + 1/(na")] ((g-g)f)" /.
Here ((g-@)f)' = d((géa)f)/dg < f because of the assumed unimodality of
the function f. Therefore it suffices to solve the inequality

(1-f)n[A(9-91)2(92-9)29'2 + of - 249 + 2 - 1/(na”)]

> (4-97)(9p-9) (1-F) + 1/(na®)
or

1-f i_(na)'2

X [A(9-91)2(92-9)29'2 + of - 239 + 2§ - 1/(na°) - (9-91)(92-9)n']] (9)



Notice that because of the choice of the constant A the function in the
right-hand side of (9) attains its maximum at g = g, which is also the point
of minimum of the function 1 - f. Therefore (9) holds for all 9591 <9 <9y, if

F(3) <1 - (na)™

2

x [Alg-07)%(9,-0)%57 - § + 25 - 1/(ndd) - (3-97)(g,-)n"'1

=1 - (na®)”!
- - . 242 -1y 1-1
x [(9-91)(g,-9) (n-1 + (1-9)(1/(na®g%) - 1)7)17".
Because of (7) f is a positive solution of (8) and Theorem 2 is proved.

3. Sufficient Condition for Inadmissibility
A slight modification of Theorem 1 givesa sufficient condition for the
inadmissibility of estimators (2). Indeed let now
8p(XsY) = X + Y= cthy(n/2xv) (10)
with some continuous function ho. If 6(X,Y) is defined by (2) then the com-
parison of fhe risk functions of 8 and § shows that the following is true.
Theorem 3. Estimator (10).is inadmissible if there exist a nonnegative
continuous bounded function h which is differentiable almost everywhere and
a bounded differentiable function g such that for all z under the condition
]-ho(z) - 9(z)/2>h(z) >0 the following differential inequality holds:
(2(1-hg-h)-g)[ng + ¢h(2/(en'/?) - zg)3'/n] > a2,
Notice that in this Theorem as well as in Theorem 1 it suffices to define

function g only on the set H = {z: h(z) >0}.
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Corollary 1. Estimator (9) is inadmissible if for any positive z
hg(2) <1 - 1/(en'/%2) - cz/(an'/%a%).

In particular procedure (9) is inadmissible if
hg(2/b) <1 = (an)71/2 .
To prove this Corollary put

h(z) max[O,]—hO(z) - 1/(cn1/22) - cz/(4n1/2a2)], z>0

It

h(z) = 0, z<0

and let g(z) = 2/(cn]/22), z €H. Then h is a nonnegative continuous
function which is differentiable almost everywhere and which does not vanish on
the set H of positive Lebesque measure. Thus the resulting estimator'j(10)

is strictly better that 8o

Corollary 2. Estimator (9) is inadmissible if for all z
ho(z) < 0.
This Corollary follows from Theorem 3 with functions h and g defined as
in Theorem 2. |
Corollary 1 of Theorem 3 can be used to establish the inadmissibility of
some generalized Bayes procedures which correspond to (improper) prior densities
Ag,0) = exp}{~52/(2T202)}5a .

These procedures are of the form

5o(X,Y) = X2/ (1+2%) + db¥[14nx2v~2/ (14+c2) 1172,
where
) 1/2
d = r((n+a)/2)/(2" °T((n+a+1)/2)).
Thus
ho(2) = [=p(142%/ (144)) /2 & 27(nV/2(14:%)) 172
with o = d/a.

According to Corollary 1, GO(X,Y) is inadmissible if
1 - o[1+4/ (b2 (1462)) 12 + 2/(6n"/2(1442))
<1- (na%)']/z. :
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