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Summary
Let X = (X],...
t satisfies some conditions given in Section 2. It is desired to estimate
t
)

X )t have density f( = eti']x

Xy y f(x]8) = g(6,1)t(x)e , where
o = (e],...,ep)t under the quadratic loss L(8,8) = (6-8) Q(e-6), where %,

Q are positive definite matrices. First, we obtain an identity and using
this, we show that the M.L.E. and unbiased estimator, Go(x) = -3 v log t(x),
is inadmissible (p > 3) and we obtain a class of better estimators. This
result is applied to the multivariate normal situation, where § is known or
partially unknown (§ = ozio with $, known and o2 unknown). A broad class of

minimax estimators for 6 is developed.

*Research supported by the National Science Foundation under Grant MCS-8101670
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1. Introduction.

Llet X = (X1,...,Xp)t represent a vector valued random variable taking
values x in a sample space % = x] XuwoX xp, where the Z; are (possible

infinite) intervals (ai’bi)‘ Assume X has density

te-1
(1.1) f(x]8) = (e, 1)t(x)e® ¥ X, xex

where I is a given positive definite matrix, and let @ represent the natural
parameter space, i.e.
t,-1
@ = {6 = (e],...,e )t: / t(x)ee 1 Xdx < o).
P
z
It is desired to estimate 6 using an estimator §: X - ® under
quadratic loss
t
)

(1.2) L{e,8) = (6-06)"Q(s-0),

where Q is a given positive definite matrix. An estimator will be evaluated

by its risk function

R(6,8) = E[L(6,8(x))] = [L(0,6(x))f(x[e)dx.
x

Here E stands for expectation, with subscripts denoting parameter value
at which the expectation is to be taken and superscripts denoting random
variable over which the expectation is to be taken.

An estimator 6] is defined to be as good as 62 if

(1.3) R(6,8;) < R(e,s,)

for all 6 € @. The estimator 6] is said to dominate 62 (or is better than

62) if, in addition to (1.3)

R(e,a]) < R(e,sz)



for some 6 € @. The estimator & is admissible if there exists no better
estimator, and is inadmissible otherwise.
The following notations will be used throughout the paper. First, let

h: RP > R be a differentiable function. Then

;&;h(x), a3 (x) = 2 (),

whix) = (01 (x),. .. .h P et veh(x) = g hls1) (y),

and h is superharmonic if V2h(x)_5 0 for all x ¢ RP. Second, if

v(x) = (y](x),...,vp(x))t then div y(x) = .E]ygi)(x). Finally, if A is
=

trace of A, ChmaxA = the maximum

a pxp positive definite matrix then trA
characteristic root of A, and A% denotes the unique positive definite square
root of A.

For the multivariate normal case, Stein (1955) proved the surprising
result (for § = Q = Ip) that the standard estimator Go(x) = x s inadmissible

J-S

when p > 3. A better estimator, ¢ ~, was found in James and Stein (1960),

which has the form

Since then, a considerab]e amount of work by a number of authors has gone
into finding significant improvements upon the usual 'standard' estimators
in more general settings. Berger (1980a) also obtained Stein type results
for the gamma distribution.

In section 2, we use integration by parts (first so used by Stein -
see Stein (1981)) to establish a powerful identity for continuous exponential
families, which will be useful for establishing the subsequent general

dominance results.



In section 3, generalizing Hudson (1978), we consider a class of

estimators of the form
(1.4) 8(x) = -fvlogt(x) + 240+% U}
. hiy)?

1
where Q* = $Qf and y = Q* 2x. If h is superharmonic and satisfies some
regularity conditions, then § dominates the unbiased estimator

Go(x) = -fvlog t(x). Specifically, when p > 3 the estimator

(1.5) 6(x) = ~fviog t(x) - LE=2) g 7Ty,

where r = xtQ*']

x and 0 < 1 < 1, dominates 60.

In section 4, we consider the nonsymmetric multivariate normal case.
Estimators having uniformly smaller risk than Go(x) = x for this situation
have been found by Berger (1976a, 1976b, 1979, 1980b, 1982b), Bhattacharya
(1966), Bock (1975), Efron and Morris (1976), Hudson (1974), Lin and
Tsai (1973), Strawderman (1978), and many others. Here we consider
X~ Np(e,czi), f is a given positive definite matrix, and o is unknown
but a variable 52 (independent of X) is observed with 52/02 having a chi-

square distribution with n degree of freedom. A class of more simple form

of minimax estimators is given by

2
(1.6) §(x) = x + —niz 1Q %h(y),

, N
where y = Q* #x and h is a superharmonic function satisfying the reqularity
conditions.

In section 5, it is shown that if X] ~ N(e],cz) and X, is independent

of X] with a gamma (a,ez) distribution where o > 2, then the standard estimator

(1.7) sp(x) = (x7, £5)*



is inadmissible under the sum of squared error loss function. We develop a
class of improved estimators which exhibits the same phenomenon as that in
Berger (1980a) (Berger considered a simultaneous estimation of a two --
instead of one -- dimensional normal mean and a gamma scale parameter), that
the improved estimator treats the coordinates quite differently; one is

shrunk towards zero, while the other is shifted towards infinity.

2. An Identity.

Let X have density f(x|e), given by (1.1), in this paper we will assume
that t(x) satisfies the following conditions:
(i) The function t is differentiable and Eg||v1_ogt(x)[|2 < w;
(ii) for i = 1,...,p and all n, where n = in]e,

ns X, NsX.

Tim t(x)e ' "= 1im t(x)e ' ' = 0.
X;7a, x1+b1
Let
(2.1) Go(x) = }vlog mO(x)-iv]og t(x),

where my is a positive differentiable function, be thought of as the
"standard" estimator or estimator under investigation and § as a competing

estimator. Write & in the form

(2.2) §(x) = 85(x) - fv(x)

where Y; satisfies the following regularity conditions for i = 1,...,p:

(i) except possibly for (x],...,xi_],xi+],...,xp) in a set of probability

zero, yi(x) is a continuous piecewise differentiable function of Xs and

. Ns X,
lim . (x)t(x)e = Tlim y.(x)t(x)e ' ' =0

1
o> . X.—}b.

for all n, where n = i_]e.



(1) 2] < and E v} ()] < o,

Under the loss function L(6,8) defined in (1.2), the following identity
(which is a generalization of identities in Hudson (1978), Berger (1982),

and Stein (1981)) holds.

Theorem 1. Let 8o and § be defined as in (2.1) and (2.2), respectively.

If v satisfies the regularity conditions, then

(2.3) R(e,8) - R(e,85) = E[8 v(x)],

where

(2.4)  8v(x)] = vE(x)Q*y(x)-2v"(x)Q* 7 Tog my(x)-2tr(VQ*)

and Q* = §Qf, V = (Vij) with Vij 5

Proof. Let n = i']e and for any given pxp matrix A, let A(x) = Ay(x).
Clearly, A also satisfies the reqularity conditions. Using the regularity

conditions on A and the Cauchy-Schwartz inequality, it is easy to show that
E, [l == (0, (0E(x)}]] < =
ott(x) X i ’

Then, using integration by parts and regularity condition (i), we have

b. b.
1 Gotte  ax, = - f Tngg (0 (0 2128 03¢ 06" ay,
a_i a1. 1
Thus
L noxg b
n.X. b. ”
e D001 = [ (o) 7 ST A (otme T o] 1 ox,
S "
= - E Ingy (0 + 2y () 2100ty

Therefore



En[ntk(x)] - -En[xt(x) vlog t(x) + div A(x)]

and so

(2.8)  ELo"  Ay(x)] = -Eg[y*(x)A" v10g £(x) + div(Av(x))].
It is eaéy to show that

(2.5)  R(0,6)-R(8,8,) = E, [y ()0 (x)-28§(x)Qhv(x)]

+ 26 [o%(Qfv (%)) 1.
qu, let A = Q* in (2.4) we have

"

Eo Lot (Qfv(x))] = E [o%4 0%y (x)]

-E [y (x)Q* v Tog t(x)+div(Q*y(x))].
Inserting the result in (2.5) and noting that
div(Q*y(x)) = tr(Q*V) = tr(VvQ*),

we get the result.||

Remark 1. If (ai’bi) = (-»,») then Ee|y1(x)| < » implies

. R T "%
Tim v, (x)t(x)e = Tim v, (x)t(x)e = 0.

Remark 2. Proofs of inadmissibility of various estimators 60 using versions
of theorem 1 have been carried out in Hudson (1978) and Berger (1980a, 1982a).
A systematic approach to the problem is to solve the nonlinear differential
inequality

(2.6) 8y(x) <0

for some y satisfying the regularity conditions, where 8y(x) is defined as in (2.4).

Remark 3. If y satisfies (2.6), then Ay also satisfies the differential

inequality for any constant A with 0 < A < 1.



Remark 4. In solving the differential inequality (2.6), usually we will
consider y(x) = -2vlog g(x) for some positive differentiable function g

and (2.6) then becomes

(2.7) S [77a00x v Tog mo(x) + tr(6e#)] < o,

where G = (9(1’3)(x)). |
(2.7) is easier to handle than (2.6). Also, from the statistical view

point, we know that any admissible estimator must be of the form
fvlog g(x) - 1 viog t(x)

(see Berger and Srinivasan (1978)).

Remark 5. In (2.1), if we choose v log mO(x) = 0, then ao(x) = -3 vlog t(x)

is M.L.E. and unbiased estimator of ©.

3. Improvements upon the Unbiased Estimator.

In this section, we use the identity in Theorem 1 to prove that the

'standard’ unbiased estimator
(3.1) Go(x) = -f vlog t(x)

is inadmissible under the quadratic Toss function L(6,8) defined in (1.2),
and a class of better estimators is proposed. Let § be defined as in (1.4),

: 1
where Q* = §Qf, and y = Q* 2x.

vh{y)

Theorem 2. If nly

satisfies the regularity conditions, then

R(6,8) - R(8,8,) = E’g[m“W v2h(Y) 1.

Furthermore, if h is superharmonic then & dominates 60.



Proof. For simplicity, let

vh(y)

= (b,.) and y(x) = -2B iy T

1J

Clearly y satisfies the regularity conditions. From Theorem 1 we have.

R(e,8) - R(e,55) = E [Y (x)Q*y(x)-2 tr(VQ*)],
d

. Y
where V = (Vij) with Vij = Siiu Then
) 5 P h (k)
Vij = -2 3xj (k 1 bik _FT§§Xl)
_ P 9 h(k)(y) %,
-2 e by = ( h(y) ) O
_ =2 (k,2) 2 b (k) oy (2)
ROT by ik Wyt g o b by (R Ey
So
_ =2 2 t
V= pryy BHB * 20 Bvh(y)v°h(y)B
where ' (h(i’j)(y))
Thus
-2 2 t
tr(vQ*) = tr(BHBQ*) + tr(Bvh(y)v-h{y)BQ*)
hly) h®(y)
= ﬁng-tr H + g tr(Vh(y)vth(y)).
Y h“(y)
But
t
()@ (x) = 4 V—'iz%—v—*;—(ﬂ
h™(y

2

and noting that tr H = v°h(y), it follows that

R(6,8) - R(6,8 ) 4E [——E%%%

If h is superharmonic, then vzh(y) < 0. Since h(y) > 0 it can be

concluded that ¢ dominates §. ||
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Corollary 1. Let C be a positive definite matrix and r = xth. Suppose ¢

is a positive twice differentiable real valued function and

v log ¢(r)( = 2 ¢(:) Cx) satisfies the regularity conditions. Let

(3.2) 5(x) = 55(x) + ﬁié%;% f Cx,

where 8, defined in (3.1). Then

S . u trns '
(3.3) R(6,8) - R(6,38,) Eot3 ey [4¢"(r)X CQ*CX + 24" (r)tr(Q*C)1s.
In particular, when C = Q*'], then

(3.4)  R(6,6)-R(0,6,) = Eg{axéﬁ-[4¢"(r)r+2p¢'(r)]}.

1ap-1

-1 S
Proof. let B =Q*2 and A=B 'CB '. Then

1 t

t CB'])Bx = y Ay,

r=x7=0Cx = xtB(B'

where y = Bx. Let h(y) = ¢(r). Clearly

vh(y) = 2¢'(r)Ay,
so that
s(x) = x + 218 Z%%%%.
But
p
vh(y) = P h(1’1)(y)
i=1
cem e em ) 2
i21 8 =1 oyl

= 44" (r)y*AtAy + 26" (r)tr A

8o" (r)xFCQ*Cx + 20" (r)tr(Q*C).

Hence, the result follows from Theorem 2.||

We can make any of the usual choices for ¢ which satisfy the regularity

conditions and the differential inequality

¢"(r)r + 2pg'(r) < 0,



11

and thus obtain a uniform improvement over 60. In particular, if

A
_ 5 (p-2)
o(r) = r 2 with 0 < x <1 and p > 3, we have the following corollary

which extends the result of Hudson (1974) (He dealt with x],...,xp indepen-

dent and Q = Ip).

Corollary 2. If p > 3, then the unbiased estimator 60 defined in (3.1) is

inadmissible and is dominated by the estimator
(3.5) 800 = gy(x) - 2L gl

1

where r = x°Q*"'x and 0 < A< 1.

Proof. The estimator & in (3.5) corresponds to the estimator (3.2) with
(p-2)

noj>

-1

C = Q* and o(r) = r It is easy to show that

4g"(r)r + 2pg' (r) = -2 (1-2) (p-2)2 AL < o,

Thus the only thing we need to do is show that EL%{%«Q']i']x satisfies the

regularity conditions. But this is equivalent to showing that E{r']} < ®,

let z = $']x. By transforming to polar coordinates and noting that
p >3, it is easy to show that EC—%—) < o,
z°z
Since

~|—

<(ch

. 1
maxQ)(;f;)’

s0 we have E{r !} < =, and the conclusion follows. | |

4. Multivariate Normal Distribution with Unknown Variance.

In applications, it is important to consider the situation in which
the covariance matrix of X is partially unknown. Here, we will only consider
the case where the covariance matrix is of the form czi, I known but 02

unknown. (This is a common situation in regression problems).
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When 02 is unknown, assume a random variable 52 js observable (independent
of X), where Sz/o2 has a chi-square distribution with n degrees of freedom.
A suitable estimator for 02 is 52/(n+2). Let Go(x) = Xx. Then we have the

following theorem:

Theorem 3. Let

2
_ 25 -+ vh(y)
$(x) = x + G 10 Ty
* = - nx= vh(y) . s . -
where Q* = 1Qf and y = Q* 2x. If h(y satisfies the regularity conditions,
then
4 2
_4no’ xpv h(Y)

(4.1) R(e,8) - R(e,do) = Ee[ h(Y)]’

Furthermore, if h is superharmonic, then § dominates ao(x) = X (thus, & is
minimax).
Proof. Let

2
y(x) = 255 ¥

i

1

Then, as in Theorem 2, it can be shown that

AT T A N
) = 2 [l o Fugrh
g ™) h%(y)

where H = (h(i’j)(y)). Hence

2.2 t
tr(voro?) = 2223 [ﬁ?y? - Thlyleh(y)y,

h™(y)

Since 60(x) = X, V log mo(x) = 0. Using the identity in Theorem 1, we have



R(e,a)-R(e,aO)
- s ISy st o588 wtn(un(y o252 vn(Y)
8.0 (n+2)2 n+2 h2(Y) n+2 h(Y)
i 4ExE52|x[( st 0252) v*h(Y)vh(Y) , o°S° ¥h(Y)
0 02 (n+2)2 n+2 hZ(Y) n+2 h(Y)
Using the facts
2 2
e5,(s%) = o, E°5,(s%) = n(m2)o®,
o g

and noting that 52, X are independent, we have

4 2
_ S |x no_ v h(Y)
R(6,8) - R(G,SO) = 4E E [n+2 —h'('Y—)—
- 4no4 Ex[vzh(Y)]
n+2 h(Y)-"
If, in addition, h is superharmonic, then
R(8,8) < R(e,do) for all e.
So, & dominates 6, and § is also minimax. | |
In particular, let
r= xtr o= yly
and
A A
c -3 2 -3 (-2
(4.2) h(y) = (y"y) =r .

Then we have the following corollary:
Corollary 3. If p > 3, then the estimator

2
(4.3) s(x) = x - B{ERS 7Ty

dominates 85(x) = x when 0 < » <1 and r = xtQ*

—]x.

13
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Proof. Clearly, the function h defined in (4.2) is superharmonic. The

conclusion follows from Theorem 3.||

5. Improved Simultaneous Estimation of a Normal and a Gamma Parameter.

In this section, we consider an example in which two unrelated problems,
one jnvoiving a one dimensional normal mean and one a gamma scale parameter,
can be combined to obtain an estimator improving upon admissible estimators
in each separate problem.

Let X] be N(e],cz), where 02 known, and X2 (independent of X]) be a

gamma (a,ez) distribution with o > 2. (i.e. having density

a_o-1 _GZXZ
g(x2|92) = 85X, € /T{a), Xy > 0).

It is desired to estimate 6 = (6],62)t under the sum of squared error
Toss function L(6,6) = (6,-6,)% + (8,-8,)%. We know that the M.L.E.,
unbiased estimator gil of 92 is inadmissible and is dominated by the
2
admissible estimator gi—z—-under the squared error loss function. So, the
2
standard estimator of & consider here is

- a-2yt
§o(x) = (x{5 X2) :
We will show that 60 is dominated by the estimator ¢ = (6],62)t where
- 2\ 1
$100) = X > 7 X
X7/o +X, o
1 2
(5.1)
_a-2 2X
8o(%) = 5o g X

) X]/c +x2

for 0 < x < 1.

(o]

Corollary 4. & dominates



Proof. Let 2

1= (% _?) and t(x) = x37le 2

then X = (x],xz)t has density of the form as in (1.1).

Let
X2
- 1,4t _ 2
v log mO(x) = (0, X2) and r = — + Xo-
(o)
Then
ao(x) = v Tog mO(x) - 1v log t(x)
and

l

Noting that 1/r < , the regularity conditions hold. So, we can use

X
Theorem 1 (for Q =

— N N

2) to get
R(6,6) - R(8,5) = S (1-0E Yy <o,

for 0 < x < 1. The conclusion follows. ||
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