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Consistent, Asymptotically Efficient Survey Strategies

1. Introduction.

Consider a finite popu]atioh U with units labeled by 1,2,...,N. We
shall write U = {1,...,N} without ambiguity. Associated with unit i,

1 <1 <N, is a value y, ;or the y characteristic. To estimate the unknown
population mean Y = N'].Z y;» we are allowed to take a sample s < U either
purposively or accordin;-lo some random scheme. Let P(s) denote the proba-
bility of selecting s. A probability measure P is called a sampling design.
An estimate of V is a function of s and {yiz i€ s}. By a strategy we mean
a design-estimate pair. One problem in survey sampling is how to construct
a strategy to estimate Y in a suitable way.

Quite often, associated with unit i, 1 < i 5_N, there may exist a known
p-dimensional vector X; = (X11""’x1p)' that is correlated with Ys in some
sense. The information provided by these auxiliary vectors should be useful
in obtaining a good strategy. To incorporate these X vectors, a superpopu-

lation regression model of the following form is often considered.
(1.7) Yi = 4B tegs 17 12,0000,

where g = (B],...,sp)' is an unknown p-vector and Eils are assumed to be
uncorrelated random variables with means 0 and variances o?.

However, strictly depending on this superpopulation model, one is
often led to the purposive sampling which may result a huge bias in estimation
when (1.1) is inappropriate. One way to guard against this possible model
violation is to impose the condition of the design-unbiasedness. But this

rather severe principle is often more than necessary. In many cases allowing

a small amount of bias, we may obtain a more useful estimate (see, e.g.,



Sarndal (1980)). The idea of unbiasedness is useful only to the extent that

greatly biased estimates are poor no matter what other propertiés they have

(Hajek 1971). This concept naturally evolves into the conditions of the
asymptotic design-unbiasedness and the asymptotic consistency with respect
to the design-measure (e.g., Brewer 1979, Sarndal 1980, Robinson and Tsui
1981, Isaki and Fuller 1982). As pointed out by Robinson and Tsui (1981), the
asymptotic framework has to be carefully stated to avoid the obvious unreality
implied by that in Brewer (1979) or Sdrndal (1980). The setup to be des-
cribed below is in line with this viewpoint and that of Isaki and Fuller
(1982).

Consider a sequence of populations U(t), t =1,2,..., such that the

population size N(t) tends to » as t tends to ». At t, the Y values asso-

ciated with the units in U'Y) will be denoted by y§t), i=1,...88),
similarly we define 5(t), Q(t), mst)_ R(t), s(t), etc.. However, these

superscripts will be suppressed when the content is clear. Let P(t)
be the set of all survey designs E(t) with expected sample size n(t);

e., P(t) = {R(t): #(s )P( )( ) = n(t)}, where #(s) denotes the cardinality
(t

~ OT

of s. We assume that n > as t > «., A linear estimate ?(t) of V(t)
is of the form 1% Sai(s)yi + bs’ where ai(s) and bs are real numbers. In
this paper we shall consider the linear estimates only. -Now, given a sequence

(t) A
N , t =1,2,..., a sequence of strategies'{(ﬁ(t),Y(t))}

t=1
)}:=] if for any x(t) = (yyseeeny (t))GB( )

[oo]

of sets B(t)c R
is asymptotically consistent on {B(t

the mean squared error (MSE)

(1.2) g7 SN2 L6 s t 5w,

where "E" denotes the expectation with respect to the design R(t). Let

C({B(t)}t ]) be the c]ass of all such strategies. A reasonable choice of

{B(t)}t=] may be, for example, L_ balls, B p(t) = y: ly;l < i=],---,N(t)}

’



where ¢ is a constant. Of course, other norms (like the Lz-nopm) should
also be studied. In addition, the centers of these balls need not be the
origin. In view of the possible linear association between X and i

one may want to take

(8)) ¢ c (0, gt

(1.3) p(t) - Bét) = {y: y(t) = 5$t)' (t) 4 egt), les™'| < cyo;

1 < iN(t)},

with o being a fixed positive number. In a non-asymptotic setting, this

(t)

type of B was considered in Cheng and Li (1983) where an approximate
minimaxity was established for the well-known Rao-Hartley-Cochran and Hansen-
Hurwitz strategies for p = 1.

Our objective in this paper is to find a strategy in c({B(t)}:=])
that asymptotically minimizes the antiéipated mean squared error,
8E(V(t) - g(t))Z where € denotes the expectation with respect to the proba-
bility measure due to the superpopulation model (1.1). Such a strategy
possesses two desirable properties: (i) it is efficient when (1.1) is proper,
and (ii) it is robust against the model failure, at least asymptotically.

The robustness property is of course due to the consistency of (1.2). One

step further, we may want to require the convergent rate of (1.2) to be, say

n']. Let C'({B(t)}:=]) be the class all such strategies. The problem now is
to find a strategy in G'({B(t)}°° ) that minimizes 8E(Y(t) - Q(t))Z asymptoti-

t=1
) is typically a much smaller class than c({B(t)}

t=1 | t=1)
we may anticipate different solutions for these two different problems. However,

)

cally. Since ¢'((8(t)s

it turns out that this is not the case. For the reasonably-given {B(t }:=],

we can find a strategy that solves both problems.



In Section 2, we shall find an asymptotic Tower bound of E(Y - ?)2
for any strategy in C({B(t)}:=1). This bound turns out to be the same as that

given in Godambe (1955) and Godambe and Joshi (1965) for the class of design-
unbiased strategies. Under rather limited contents, the same bound was also
obtained by many authors (see Remark 5 of Section 2 ). The achievability

of this lower bound is rigorously demonstrated in Section 3. Write m, = 1ESR(S)'
Basically, the inclusion probabilities s i <1 <N, of the desired sampling
designs should be proportional to Gils (or approximately so), and the estimates
considered are the regression estimates of the form (3.2) of Section 3. This
type of estimate was studied by Sdrndal (1980) and Hajek (1981, page 193),
while the same condition on the inclusjon probabilities was obtained by Brewer,
Godambe, Hajek, Iasaki and Fuller, Robinson and Tsui and Sarndal under various
cases. It is clear that certain conditions on the 51IS are necessary to obtain
consistent and asymptotically efficient strategies. These conditions are
carefully derived to cover rather general céses. In addition, several sampling
methods including the rejective sampling, Sampford-Durbin's method, successive
sampling, and Rao—Hart]ey-Cochran'S method are studied. The common practice

of rejecting a bad or highly-unbalanced sample turns out necessary to achieve

both efficiency and consistency.

2. The lower bound.

Suppressing the superscript (t), for a linear strategy (R,?) we write

1
d, =~ -7
TN s:i€s
The following Lemma will be useful.

ai(s)R(s). Note that if (R,Y) is unbiased then di =0, i <i<N.

1

2 2
Looidi ojmy (g - d

1 'i:n_i#O

e~ 2

) N
Lemma 2.1, €E(V- )% > - N2 T of +an
BE— i£1



Proof. EE(V - )2 =T P(s) - &(V - T y. - b )2
—_— " 1 S
S i€s
N
-2 2 2 2 -1 2
p N + a \ - :
Z_g %(S) ( 121 ’ §Es i(s)"1 N iés a1(s)01)
N N N
-2 v 2 -1 ¢ 2 2 2
= N Y o5 - 2N y os( ) a P(s)) + } o:(}) as, \P(s))
N 151 1sties 1SV i1 siies 1S
N N
Z_-N_Z yooi + 2N_.I ) 01d1 + o ﬂ;](%'- d1)2.
i=1 i=1 1:ﬂ1#0
i

The equality in Lemma 2.1 is achieved when ai(s) ='(%—- di)/ﬂi’ whichbis
then reduced to the Horvitz-Thompson estimate if di = 0. Now, fixing these
di's, the right-nand term in this lemma will be minimized if
My = nl%~- d1|(.z I%-— dil)']. To verify this, the standard method of Lagrangian
muitiplier can g;1used. A Tinear constraint n = 1g]ni is involved here. Thus

we obtain
Lemma 2.2. Given di’ 1 < i< N, we have

o: + 2N—2
1 i

1
nNo
I B~12Z

N
2 2 -1 1 2
i ofdi +n (1 ogly - 4D

1 i

He~122

i
Next, we shall show that the consistency of_(1.2) implies that di's are

(t)

negligible. The following type of B will be considered first:

RN N P A I O P IR AL
it =9 - =
where égt)'s are specified positive numbers.

Lemma 2.3. For any (R,?) € C({B(t)}z=1),

N
(2.2)  tim ) [a{t]slt) 0,
too =1

Proof. Clearly, (1.2) implies V - EY > 0. First, letting y = 0, we get



S

Zb(s)R(S) - 0. Now, taking i = Sgn(di)éi’ where Sgn(di) =1 if di > 0 and
sgn(d;) = -1 if d; <0, Lemma 2.3 follows easily. o

Now, we establish the following main theorem of this section.

Theorem 2.1. Assume that (2.1) holds and that

(2.3 lim N7

N
th) - 0, and TN ) ogt) < @,
too i ’ =

1 Tt i

ne~-1z==

and

((2.4) Sup{ogt)/égt): 1< 5_N(t), t=1,2,...} < =,

Then for any {(fls(t),'\\((t)}°°

Proof. In view of (2.3) and Lemma 2.2, it suffices to show that

N
(2.5) I o;l4y] » 0
i=1
and
N
(2.6) N T o%d, » 0.

(2.5) follows from Lemma 2.3 and (2.4). To show (2.6), we simply observe that

N N N
N T ot < (] o) LoslagD. o

i=1 i=1
Remark 1. Theorem 2.1 holds for the {Bét)}:=] defined by (1.3), because -
Bét) :)B(t). In addition, this theorem is translation invariant. More precisely,

(t) N(t) .
for any vector v < R , we have the same lower bound if

(t) ¢(t) = (t) (t) e
Remark 2. Suppose we take B(t) = {y: 1 g |y./6§t)|k < 1} with k > 0.
—_— N(ti & 't = =



Then this theorem holds with (2.4) replaced by the following weaker condition:
y(t)

(2.4') sup{ﬁi%j-.zl (ogt)/sgt))k: t=1,2,...} <
N

Remark 3. Suppose we consider C'({B(t)};=]) (see Section 1 for the definition).

Then the result of Theorem 2.1 holds with (2.4) being replaced by the weaker

(2.4")  supf( sl i ) e, <,

Remark 4. With all di's being 0 (i.e., the unbiasedness condition), Lemma 2.1
was obtained by Godambe (1955). Godambe and Joshi (1965) further obtained the
same bound for any estimate (measurable with respect to the superpopulation model).
Lemma 2.1 can be generalized simi]ar]y. For any estimate e(s;yi,iES), we
decompose::it into the linear and the non-linear parts by writing
e(ssy;,i€s) = 1gsa1(s)yi + f(s;yi,ies) with 3i(s) * 0;2. covariance of
e(s;yi,iES) and Yio where the covariance is taken with respect to the super-
population model. Since f(s;yi,ies) is now uncorrelated with any y., i <J <N,
our Lemma 2.1 follows easily, with di being defined as before. Godambe and
Joshi's result now follows from the following interesting fact:

"The design-unbiasedness of e(s;yi,ies) implies the design

unbiasedness of the Tinear component ) ai(s)yi.
i€s

Proof. The definition of design-unbiasedness implies that for any E

ne~1=

.yi'Z(

1 s i€s

a;(s)y;)R(s) = [ f(ssy;.ies)R(s) .
S

1
N i i i
Since each f(s;yi,iES) is uncorrelated with Yy 1 <j <N, a contradiction is
now derived unless the coefficients of yi's on the left hand side are all 0.

|

Remark 5. By restricting the consideration to be in certain subclasses of



consistent strategies, the asymptotic lower bound in Fheorem 2.1 has been obtained
by Brewer (1979), Sarndal (1980), Robinson and Tsui (1981), and Isaki and

Fuller (1982). Our Theorem strengthens and unifies these results by removing

many unnecessary restrictions on the strategies; for example, there is no

need to require {ni; 1 <1 < N} to be bounded away from 0 (thus we can handie

the realistic case that the sampling fraction n(t)/N(t) + 0); the estimates

need not be of any particular form. Also, it is interesting to see that the
structure of the éi's is irrelevant in deriving the asymptotic lower bound.

In contrast, all the previous literatures on this subject were tied with certain

properties of the X sequence.

Remark 6. We may have another interpretation about Theorem 2.1 by considering

the following p-regressors version of the model studied in Godambe (1982):

(2.7) ygt) - 5§t)'g(t) " egt) PG I R 12,

with random variables egt) defined as in (1.1) and (e%t),...,eét))'eB(t)
of (2.1). Let C"({B(t)ﬁz;]) be the collection of all strategies with linear
estimates such that the anticipated MSE (under (2.7)) tends to 0. Since
C"({B(t)};=]y: C'({B(t)}:=]) Theorem 2.1 holds for this class of consistent

estimates.

3. Achieving the Tower bound.

The strategies to be considered here (to some extent) possess the following

two properties:

(3.1) The inclusion probabilities wj's are proportion to Gils’ i.e.,
-1
: 01) .

'ﬂ'_i = nG.i(

Hr~1=

.i

(3.2) The estimate Y is of the form



A _ _ll\ 'I_ _ IA
Y = ,>\(J %? + N 1és(y-i '%(JTQS)/'"'I,
N A
where X =1 } x. and g. is a linear model-unbiased. estimate of g based
Mo NG s
on the sample s.

Hereafter, we assume that
N
(3.3) nsupfog: 1<i <N < | oo,

to assure ﬂils to be no greater than 1.

Regression estimate of (3.2), studied in Sarndal (1980) and Hajek (1981),
are generalizations of difference estimates (Cassel, Sarndal and Wretman 1976;
1977). Of course, these estimates originate from the Horvitz-Thompson estimate

%— ) yi/“i‘ However, estimates of (3.2) are no longer design-unbiased. Some

i€s
conditions are needed to ensure that the bias is small and consistency of
(1.2) holds.

Write the mean squared error as

- B0 - Lyi/mi) o+ (- ¥ L kil By
i€s 1€8

Our strategies will be 1in C({B(t)}:=]), if for any xeB(t),

and



10

and
2112 = (t)
(3.6) E[[g[1™ = o(n), for yeB*"/,
- 1 N _
where X5 =N ) X33 and ||-|| is the Euclidean norm. In addition, our strate-
i=1 |

gies will be root-n consistent (i.e., in C'({B(t)}:=])) if instead of (3.6)

we have
(3.7 E[Iggl12 = 01), for yea't),

Next, consider the anticipated mean squared error

N
where ¢ = N ) e.. By straightforward computation, we have

N N
eE(E -y Jeg/nl=-1p 1 oheld o2
= 1=

o.
i

Thus the anticipated mean squared error will be as desired in Theorem 2.1 if

8E{(% - %‘ ) éi/ni)'(g - é;)}z = o(n']). To establish this, it suffices to
i€s
show that (3.5) holds and

(3.8)  Ee|lp - B || ~0.

Now, it remains to derive some conditions to assure (3.4) ~ (3.8). It is
clear that here the second order inclusion probabilities ﬂijls will play an
important role. By the well-known Yates and Grundy (1953) formula, the

desired conditions that involve “ij|s (and, of course, %-'s, Uils etc.) may

i
be obtained. However, they are bound to be either complicate (to gain gener-
ality) or restrictive (to gain simplicity). Thus this approach will not be

attempted here. Instead, we shall consider some well-known sampling methods

(with some mild modification to be specified later) and set up the desired



11

conditions accordingly. These conditions turn out relatively simple and
without much loss of generality. The first one to be considered is the rejec-
tive sampling. Then some other methods, Sampford-Durbin modification of
rejective sampling, successive sampling, and the Rao-Hartley-Cochran's
method, will also be discussed. The description of these methods and their
properties can be found in Hajek (1981) and its references; the details will
be omitted.

Consider the rejective sampling design P with probabilities of inclu-
sion specified by (3.1). Recall the following formula for the mean squared
error of theHorvitz-Thompson estimate from (6.3) of Hajek (1964, page 1512),
or from (17.21) of Hajek (1981, page 167) (the notations are changed):

. 2 _ 1 N
(3.9) E(Y - N ) y./ﬂ.) ='——(1 + o(1)) } (yi - om, ) [——'- 1]
i€s N i=1
N N N
where 6 = ) y ]-11 Z ]—1T1 , and o(1) »~ 0 if ) 1T_i(1 -Tr_i)—>°°.
i=1 i=1

To insure this, we s1mp1y assume that the sampling fraction is small;

precisely,

2
]01)(N'.
i

IIMZ

(3.10) %(

=|—
—)
It~z
Q
N
1
N
A
—l

i 1
will be assumed. (3.9) is however complicated for further development.
In order to obtain simpler conditions, we shall use the following cruder

formula to replace (3.9)

=

(3.11) E(v-%_é yi/7)% < (04 o™ (o) (& 3 ¥¥/0,).
i€s i=

The above inequality is obtained from (3.9) by deleting om. and changing
E;% - 1] to ;%a
i i

Recall the definition of {B(t)} from (2.1). In yiew of (3.11),

(3.4) will hold if (2.3) and



12

t), (),

/o

Wi an® v 12,00 <

(3.12) sup{ag

Similarly, (3.5) holds under (2.3) and
(3.13) l'§x2/ =0(1), 1<j <P
. N Ly 370% > 1 2J 2 F

We now turn to (3.6) ~ (3.8). We shall only consider the case that

és is the best linear estimate under the superpopulation model; i.e.,

=Ty -2
XS) Xeg X

~ _ . _2
(3.14) B, = (Xg 9

SVS

where Xs is the nxp design matrix, Q;Z is the diagonal matrix with diagonal
elements being 0;2, i€s, and s is the vector of observations of Yio i€s.

We shall establish (3.8) first. Observe that

2, -1
X))

A 2 _ , -

ellg - Qs|[ = trace (ngs

Denote the minimum eigenvalue of a symmetric matrix A by A(A). és will be
inconsistent unless the (adjusted) information matrix.ng;Z

» in the sense that A(X;%;ZXS) + =, Thus it is clear that (3.8) follows

Xs tends to

from

(3.15) A(X'g_zx ) > » with (design-) probability 1,
sus s

and

(3.16) there exists a positive constant ¢ such that A(X;Q;ZXS) > ¢ for

any s such that R(s) > 0.

Whenp =1, (3.15) will hold if the expected value of the random varia-
ble X§9;2X5 tends to » and its coefficient of variation tends to 0. Generali-

zing this idea to p'> 1, it is clear that (3.15) follows from
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.
(3.17)  ME(Xlg "X )y

and
1

, =2 z , =2 |
(3.18) [Var{[XSgS Xs]jj'}] /ME(Xgoq X)1 >0 for 1<3,i' <p,

where [A]jj' denoted the j, j'th element of the matrix A and Var denotes the
variance with respect to the design measure.

N

. _ -1 .
Write ay = x{iz]oi éiéi}' Under (2.3), (3.17) follows from

(3.19) nAN/N > o,

Since Var{[X;g;ZX 1503 = var( ) 052), we may use (3.11) with

SN e I

y; = Xijxij'0;2W1 to obtain the following sufficient condition for (3.18):

N
-1.-2 2 2 -3 ..
(3.20) Ny N(izl X33%3319% ) -0, for 1 <j, j' <p.
By the Cauchy-Schwartz inequality, (3.20) holds if

4578

N .
-1 -2 ,
(3.21) N~y N(1§]x1j ;7)) >0, for 1 <j <p.

In summary, (3.19) and (3.21) imply (3.15). To obtain (3.16), we shall
slightly modify the rejective sampling design P. Our new sampling design
5' is derived from the rejective sampling R by conditioning on the set

Ay = {s: A(X;S;ZXS) > c} for a fixed positive constant c. Now, (3.15)
implies that R{se Ai}+ 1. Thus asymptotically all formulae involving R
still hold when P is replaced by R'. For example, (3.11) holds because

R(Ap -~ 1 and
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0f course, (3.1) is only asymptotically valid; but we still have

12 < (1 + o(1)) %— )23,

O'

1

IIL\/_IZ

- 1
6E |(€ = AT Z E./’IT.
R N jesg V1

HP%
?Lf

Therefore, we have established (3.4) , (3.5) and (3.8) for the sampling design
P'; it remains to derive conditions to verify (3.7).
1,-1

For this purpose, we consider &, = {s: A(X'o'ZX n" A

$%s Xs y V> chwith

0 <c <1 being fixed. Let R" be the conditional probability measure of
P on Ay . Then inview of (3.17) ~ (3.19), R(AZ) + 1 and all the results

obtained for R and R' also hold for R". In addition, we have
Lemma 3.1. Assume that
(3.22)  Tim AN > 0.

Then under (2.3), (3.12), (3.13) and (3.21), (3.7) holds for p".
The proof of this lemma will be given in the Appendix. We now summarize

our results by the following theorems.

Theorem 3.1. Under (2.3), (3.3), (3.10), (3.13), (3.19), and (3.21), the

anticipated MSE of the modified version of the rejective sampling design,
P (or R"), together with the estimate specified by (3.2) and (3.14), achieves

the asymptotic lower bound given by Theorem 2.1.

Theorem 3.2. Under (2.3), (3.3), (3.10), (3.12), (3.13), (3.22), and

=1y~1
(3.23) n N Z x1J i >0,

the sampling design P", together with the estimate specified by (3.2) and
v

(3.14) belongs to the class C 1p(t)ye  ith g(t) being defined by (2.1).

b=
Note that (3.21) is implied by (3.22) and (3.23).
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Remark 7. Theorem 3.2 also holds for the case that B(t) = B(t) (see (1.3))

R
without the condition of (3.12). This is because our estimate is represen-
tative (Hajek 1981, page 157) in the sense that when X = (x1j’x2j""’xNj)’
for any 1 < j < p, we have Y = Y. In addition, the anticipated MSE of the

proposed strategy under (2.7) converges to 0 at rate n'].

Remark 8. When applying any probability sampling method, if the sample
drawn is highly-unbalanced in the sense that the information matrix x;ggzxs
is small or nearly degenerated in certain directions, a common practice is
to reject this sample and take another one by the same sampling method.
Our P' and P" are obtained exactly in this way. Without doing so, it seems

unlikely that (3.7) and (3.8) will hold.

Remark 9. In view of Hajek (1981, page 167 ~ 168), (3.11) also holds for
the successive sampling and the Samford-Durbin Sampling. Therefore Theorems

3.1 and 3.2 are also valid for these two methods.

Remark 10. Consider the Rao-Hartley-Cochran's sampling (Cochran 1977;
Rao, Hartley and Cochran 1962) with the selection probabilities proportional

to o;. We may replace (3.2) by using

~ _ _II\ 'I A
Y= X és Y

=

RHC

where QRHC is the Rao-Hartley-Cochran's estimate of the population total
when the population values are Vi - é%%s; i.e., in terms of Cochran 1977,
page 266,

Voo o=

RHC (.2 o) y; - %l’fﬁs)/"j‘

1 i€ group j

he~13

J
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Then in view of (9A.66) and (9A.67) of Cochran (1977), (3.11) is also valid
when the Horvitz-Thompson estimate is replaced by the Rao-Hartley-Cochran's

-1

estimate. Therefore, Theorem 3.2 holds. In addition, when nN ' - 0O,

Theorem 3.1 is also valid.

Remark 11. Isaki and Fuller (1982) obtained an interesting connection
between (3.2) and the best linear unbiased estimate. By assuming conditions
similar to (3.5) and (3.8) and others, (e.g., the inclusion probabilities
are bounded below), they obtained strategies achieving the asymptotic lower
bound of Theorem 2.1. In contrast our conditions involve only the structure
of the problem instead of the properties of the strategies studied. Also
our results do not require o, and 02 to be included in the coordinates of
the Xi- Finally, it is not difficult to extend our results to cover the

case that the independence of Eils is replaced by the assumption-that: € €i€5 = 003055
-1

1<i#3J<N,with -(N-1)7" <p <1,
- Appendix
% -2 1 "2 . 2
Proof of Lemma 3.1. By (3.14), |[6 || < [A( X;msz Ké)] llxs%s;géll,f Com-
puting E||X;c-2y [| by using (3.11), we have
S RS
P N N ) ’ -1
L2 112 2 142 A8+ (1 + o1l ) o)
el xgoglyg 1 Lt Lxygver (Lo ™+ e
N P N N N
2 2 -3 2 2 - 2 -1 2 1
X 0)} () x o.)(ZGc.)(ZG) + (1 +5(1))
(121 i3 “jz1 =1 T s T A
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It follows that

[A(Exs'g JT EIIXcrS Xs”
- zo el IXe Py 112

N
2 - 2 -1,.-2 1
{(iz]xijoi )(1216101 )AN + (1 + o(1))n (12

A
I~

=55

= 0(1) (by (3.22), (3.13), (3.12), and (2.3)).

Now by the dominating convergence Theorem, the proof will be complete

2 -2
SRS

dition is guaranteed by (3.18) which follows from (3.21).

if a(Xlo )/A(EX g X ) > 1 1in probability with respect to P". This con-

S
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