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Abstract:
Using 3 general theorem on;decomposition of Mahalanobis distance, we
give first an integrated view of some Tz-tests. Then we expose the relation
between the linear discriminant function and a regression model which was
already introduced by Fisher (1936). We show that this relation can be

generalized to include the one-sample T2-test, 12

-tests when only the sample
mean is available in one group, and tests for redundancy of variables. Practical

and didactical advantages of the regression approach are outlined.
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redundant variables; conditional mean difference.



1. INTRODUCTION

Throughout this paper we w111 use the following abbreviations for books

that are to be quoted frequent]i:

A= Ahdefson (1958)
JW = Johnson and Wichern (1982)
K = Karson (1982) -
L = Lachenbruch (1975)
M = Morrison (1976)
MKB = Mardia, Kent and Bibby (1979)
R = Rao (1973) |
SC = Srivastava and Carter (1983)

For instance,(A 375) will stand for (Anderson 1958, p. 375).

Since Fisher (1936) introduced the concept of linear discriminant analysis
(DA), it is well known that the linear discriminant function of two samples
can be computed by means of multiple linear regression (LR). Fisher's method
consists of adding to the measgred va}iablés X],...,Xp a binary code variable w
indicating the group membership. Then the linear regression function of w on
,X_is (up to an additive constant) proportional to the linear discriminant

],..- p
function (A 140, K 170, L 17). Moreover, the significance of the discriminant

X

function (L 19) as well as‘significance of single variables in the discriminant
function can be tested by the regression solution.

This paper has two purposes: First, we show that the known relations
between LR and DA can easily be generalized to the situation where only the
mean is available in one sample. Second, we give some reasons why the stated

relations are actually more than "lucky coincidences", and try to outline how

2

they can be used to help practitioners to understand T“-tests and linear discriminant

functions.



To illustrate some parts of this paper which provide new material, we will

|
use data taken on two samples of adult male Tibetans. The variables are:

ST = stature

LH = length of the head

WH = width of the head

WZA = width of zygomatic arch

MFH = morphological facial height.

The first sample, measured by Mullis (1982), consists of ny = 44 individuals from
central Tibet. We will compare this sample with the mean vector of a sample
taken by Prince Peter of Greece and Denmark (1966). Unfortunately Prince

Peter, unaware of multivariate statisticians' needs, published only mean

vectors, and the raw data are no longer available. The sample to be compared
with the data of Mullis consists of n, = 51 individuals of the northeastern

race Amdo. Table 1 shows summary statistics for the two samples.

2. SOME MULTIVARIATE TESTS BASED ON CALCULATION OF MAHALANOBIS DISTANCE

2.1. Mahalanobis distance between mean vectors, and the linear discriminant function

Let X and Y denote independent p-dimensional random vectors with mean vectors
u and v, respectively, and with common covariance matrix  (assumed to be non-
singular). The coefficients of the linear discriminant function between X and Y

are defined as the elements of the vector

o = Z‘]G, (2.1)

with

<S=E-\) (2-2)



(A 134, JW 464, K 164, L 11, M 235, MKB 303, R 575, SC 232). The Mahalanobis

distance between the mean vectors u and v is defined as the quadratic form
. | ~ ~

-1 (2.3)
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(A 56, JW 467, K 166, L 12, M 235, MKB 31, SC 232). The index p in (2.3)

indicates that the calculation of Mahalanobis distance is based on p variables.

Using this terminology, the following three forms of the null hypothesis u = v

are equivalent:

0 § = 9; H: o = 9; Hg: A = 0. (2.4)

In applied multivariate anajysis it is often important not only to reject
an overall null hypothesis, but é]sq to identify variables which can be discarded
from the analysis without loss of information. In the context of discriminant
functions we may wish‘to know whether some coefficients of the linear discriminant
function are zero; To formalize this hypothesis, we introduce the following

notation: Partition s, o and ¥ as

o3
—
PR
—r
™

1 12
§ = s o T ; I o= . . (2.5)
~ ~ 21 %22
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where &, has q components (0 < q < p) and 8, has p-q components, and o and I

are partitioned analogously. The hypothesis of redundancy of the last p-q

variables (or sufficiency of the first q variables) can be written as

Hyt ap = 0. | (2.6)




Note that for q = O.Hq becoaes the overall null hypothesis H

0 Assuming
multivariate normality for both | random vectors, we denote by
2 = & - 7 -]
2.1 7 % T IInd (2.7)
and
. -1
2221 7 I22 T IinIyy (2.8)

the mean difference and covariance matrix of the conditional distribution of
the last p - q variables, given the first q ones (A 29, JW 135, K 57, M 92,
MKB 63, R 522, SC 30). The fact that §2.] does not depend on the values taken
by the first g variables is due to the assumption of identical covariance

matrices for both random vectors. Denote by
22 = 612_] S (2.9)

the Mahalanobis distance based on q variables. It can be shown that (MKB 78)

2 - ' —] _ 1 _] 1 -]
Ap T 07 78 T SISy * 85 42221829
2., ,2 2
= + - s 2.]
B (Ap Aq) (2.10)



and therefore the fol]dwing hypatheses are equivalent to Hq;

voos 2
H': =0; H" =
q ?27.] 0; Hq. Ap Aq (2.”)

(L 27, MKB 78). This equivalence is also given in Rao (1970), but it antedates
Rao’s earlier work. For q = 0 it is convenient to set 8, 4 = ¢ and AS = 0 by

~

definition.

2.2. Testing Hypotheses about the Linear Discriminant Function

In almost all practical situations fhe parameters § and % are unknown
and have to be estimated. Suppose we have measured a random vector d (typically
a difference of sample mean vectors), which has a multivariate normal distribution

with mean vector s and covariance matrix rz for some r > 0O:
dn Np(6,rz). (2.12)

Suppose furthermore that we have a realization of a positive definite symmetric
random matrix S, which is independent of d and has the Wishart-distribution
with m dégrees of freedom and parameter matrix z/m ( typically a sample covariance

matrix in the usual unbiased form):
S n W (mytz). (2.13)

The reason for this rather general setup is that we can construct one single
test for all hypotheses being treated in this paper, and then specify r and m

for the various situations. Let us now partition the statistics d and S

analogously to § and g as



S11 592

;S (2.14)
dz Sz S22

Then we define the sample Mahalanobis distance, based on p and q variables

respectively, as

Dﬁ = d's"lq (2.15)
and

2 ie-l

Dy = 4151194 (2.16)

We can also define the vector of coefficients of the sample linear

discriminant function as
a
a={-1) - sq. (2.17)

In order to construct a test for Hq, a theorem can be used which was given

by Rao (1970, p. 592; see also L 28) in a slightly less general form.

Theorem (MKB 78): With the above notation and under the hypothesis Hq: Ag = Ag,
the statistic
2 2
D--D
F(H ) = m-}_)ﬂ . _P g (2.18)
9 P=q mr+Dq

has the central F distribution with p - gandm - p + 1 degrees of freedom, and

F is stochastically independent of Dg
|
i
|
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If we put Dg = 0 by deffnition, this theorem holds also for the -ase q = 0.

It is through the statistic (2.18) that the interesting relations between
tests in LR and Tz-tests can most easf]y be established. The theorem shows
also the fmportant role of the notion of Mahalanobis distance, which is not
sufficiéntly recognized in most current texts on multivariate statistical

analysis  (exception: Ju).

2.3. Two Sample Discrimination/Two Sample T2-Test

The most frequent application of the above theory occurs in the two sample

case. It is assumed that samples of size n; and n, are taken from X ~ Np(u,Z) and

Y N Np(v,z), respectively. Then we have

s - M2
A (2:19)
12
and
- 1
S nFn,2 [(ng=1)S;+{np=1)S,1 » W (ny#ny-2, A2 L), (2.20)

where x and y are the sample mean vectors, and S] and 52 are the usual unbiased
'sample covariance matrices. Note that the assumptions of the theorem hold

with r = (n]+n2)/n]n2 and m = n]+n2-2, since S and d are independent (A 53,

~

JW 148, K 77, M 102, MKB 66, R 537, SC 33). For q = 0 the statistic (2.18)

reduces to

(n 1Hn,-p- l)n]n2 ¥, _ Nytny-p- 1 2
FlHg) = om 175) (=2 O _TE_IE———7 ! (2.21)
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where T2 is the well-known Hotelling Tz-statistic for the two sample :ase

(A 109, JW 239, K 95, M 137, MKB 76, SC 48).

2.4. One Sample T2-Test

In the one sample case, the mean vector v (but not the covariance matrix
§) of the second model is assumed to be known and is most often denoted by o

rather than by v. The statistic d is

- 1
4= % - g v Nyl n). (2.22)

For S we take the sample covariance matrix from the X-sample,

=S W (n,-1,
S =Syl (ng-1, g ). (2.23)

1 n, 1

Though most authors do not speak of a discriminan® function in the one
sample case, it is well defined by (2.17). The notions of discriminant
function and Mahalanobis distance are very useful here to understand what
testing for redundant variables means.  To test Hq, (2.18) can be used with
r = l/n] and m = n]-l. For q = 0, we get

(n]'p)n] 2 n]'p

] _ 2
F(Hg) = p(ny-1) % " plnym) T (2.24)

where T2 is the well known one sample T-statistic (A 103, Ju 180, K 90, M 131,
MKB 125, SC 41). Note that the assumption of equality of covariance matrices

is void in the one sample case.
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2.5. Two Sample Tz-tests'when only the mean is available in one grouy
: I i

Suppose that we have a samb1e of size m from X ~ Np(u,z) and the sample

mean vector g of n, independent observations from Y ~ Np(v,z). In this case,
d is taken as

d < = n]+n2

4= X -y N85 ) (2.25)

172

as in the two sample case, but all information about variability comes from
the first sample:
(2.26)

= .1
S= Sy Wyl 2.

1

The test for Hq can therefore be used with r = (n]+n2)/n]n2 and m = n]-1.
The test statistic for the overall hypothesis u = v simplifies to

Mp(mp)

i) = Gt Op- (2.27)

This situation is not as artificial as it might seem at a first glance.
It might occur, for instance, when data obtained by a previous researcher
are no longer available except for the vector of sample means (as illustrated
by the example given in this paper). Moreover, it covers two important special
cases:

(i) The case n, = o. In this case, &zdegenerates to Vs and we are in
the same situation as in section 2.4. The one sample Tz-test can therefore

be viewed as a special case of "only the mean available in one group".
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(ii) the case n, = 1, whi%h can also be considered as a special case of
the two sample Qituation (sectién 2.3.), with one sample consisting of only
one observation. It has been described under the name "Identification Analysis"
by Riedwyl and Kreuter (1976) and by Flury and Riedwyl (1983a). Note that Dg is
asymptotically (n] > =) distributed as chi square with p degrees of freedom
if Ho: f = 9 holds. Thus, for large nys the Mahalanobis distance can be taken
as a convenient test statistic in this case.

Let us illustrate the method given in this section by the example introduced
- at the end of section 1. Suppose we wish to test whether the variables LH and
WH are redundant for discrimination between the two populations of Tibetans,
given the variab]es ST, WZA and MFH. The numerical results are as follows:

a) model with 5 variables:

discriminant function = -.13 ST -.38 LH -1.46 WH + 3.88 WZA + 1.23 MFH

Mahalanobis distance: Dg = 2.40
Overall test of significance (using (2.18) with p=5,q=0,
m = 43, r = 95/2244): F(HO) = 10.3 with 5 and 39 degrees of

freedom.

b) model with 3 variables (ST, WZA, MFH):

discriminant function = -.14 ST + 2.56 WZA + 1.11 MFH

Mahalanobis distance: D = 2.15
Overall test of significance (p = 3, q = 0, m and r as above):

F(Hg) = 16.2 with 3 and 41 degrees of freedom.
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¢) Comparison of so]utions (a) and (b): using (2.18) with p=~ht,q-=3,
m and r as above, gives F(H3) = 1.2 with 2 and 39 degrees of freedom.
At any usual level of significance we can conclude that the variables
LH and WH are redundant for discrimination (given the other three

variables).

It should be noted that in interpreting the above numerical results we tacitly
assumed that the'covarignce matrices are identical in both populations. However,
the fact that this assumption is void in the one sample situation suggests that
moderate differences between the two covariance matrices should not influence

the correctness of the F-statistic, provided that n, is large enough.

3. Computation of Mahalanobis Distance and Discriminant Function using

Linear Regression

3.1. The Two Sample Case with Full Information in Both Groups

There are different ways to show the proportionality between the sample
discriminant function of two groups and the linear regression function of a
code variable w on the measured variables. Following Healy (1965), we
sketch here a proof which seems memorizable and avoids tricks. See also (A 140,
K170, L 17, Cramer 1967, Kendall 1957, p. 159).

Assume that the code variable w takes the value ¢y = n2/(n]+n2) for the
individuals in the first sample, and Cy = c]-l = -n]/(n]+n2) in the second
sample. (This is known as Fisher's code.) In order to avoid an intercept b0
in the regression equation, we use as regressors the centered variables, that
is, we minimize the sum

n
1 2
SSQ(b) = .z (C]'b'(xj'g))
~ J='l -~ ~ ~
n
2 2
* L] (cp-b' (v),-9)) (3.1)

|
i
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over b- € RP, where g = (n]% + 72¥)/("]+"2) is the vector of "grand mrans",
and X5, y, denote the data vectors of the j-th and h-th individual in the
first and second sample, respectively. Thus we wish to find a linear function
of the variables which approximates 9 in sample 1 and Cy in sample 2 as well
as possible in the sense of least squares. The first part of the proof

consists of establishing the normal equations:

Mhy MmN,
[(n]+n2-2) S+ ny+n, dd ] b = ny+n, d (3.2)

where § is the pooled covariance matrix of both samples, and d = g - y is the
sample mean difference. The key idea is, of course, to write the vector of
regression coefficients as a function of S and d. Now we can apply a formula
for inversion of sums of matrices (K 18, MKB 459, R 33) to the matrix
multiplying b in (3.2) and get, after some simplification, the least squares

solution

b = M2 : s
T (nping)(ng#ny-2) + yn, d'STd -

. | (3.3)

QA

With the notation of section 2, we have a = S™'d and Dg = d's"Yd, and the

constant of proportionality between b* and a is established as

"N
k = 5 . (3.4)
(n]+n2)(n]+n2-2) +nyn, Dp

Let Rs denote the coefficient of determination of the regression (where the

index p indicates again that we are using p variables). Then it is easy to
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show that
R = d'b | (3.5)

holds. Multiplication of (3.3) from the left by d' gives therefore the

important relations .

2
R2 - " Dp
0 5 (3.6)
(n]+n2)(n]+n2-2) + g, Dp
and
(ny+n,)(n,+n,-2) ‘RZ
p2 -2 1727 b (3.7)
P N2 1R

Using (3.7), the proportionality factor k can be expressed as a function of

2

and Rp, and all statistics used in the two sample problem (section 2.3)

nys N,
can therefore be written as functions of the redression quantities.

We can now switch back from the centered variables as used in (3.1) to
the usual form of the linear regression model, which includes an additional
coefficient b0 (intercept). The coefficients b* remain unaffected by this change.
Moreover, any choice of the code values < and ¢y (c]#cz) can be viewed as a
nonsingular linear transformation of Fisher's code, leaving 9* unaffected
except for multiplication by a proportionality constant. Most important of
all, the coefficient of determination RS remains invariant under all these
transformations. Therefore (3.7) and a = k*b* always hold, where k* is a

scalar constant, and b* is the vector of regression coefficients, ignoring the

intercept.
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- Though Fisher's code has the advantage of simplifying the proof, we can

|
as well choose the values 0 and'1 in practical applications. For higher

numerical accuracy in the regression coefficients it is often better to
choose a larger difference between o and Co-

As a marginal note, let us state that the regression vector b* and the
discriminant function vector a are identical (that is, the proportionality
factor is 1) precisely if |c2-c][ = Dg/Rs, but these two quantities are

of course not known prior to the numerical analysis.

3.2. The Case when only the Mean is Available in One Group

It can easily be checked that the derivations of section 3.1 hold also
if n, = 1, that is, the second sample consists of only one observation. By
(3.3), the regression vector b* is proportional to the vector of discriminant

function coefficients:
b* = k*s™ 1 (%-y) (3.8)

for some factor k*, where x is the mean vector of the first sample, y is the
single observation in the second sample, and S is based on the " observations

of the first sample only. From (3.7) we have therefore

2 2
- , _] - _ n]-] R
(x-y}'S" (x-y) = ——

- e e 1 1-R

2=
p

D (3.9)

2 -
p
Now note that (3.9) does not depend on the fact that y is the “mean vector"
of only one observation - in fact, if we replace y in the data matrix by

any vector v, we will get
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b* = k*s™ 1 (R-v] (3.10)

for some factor k*, and

2 2
ny-1 R
= o) (). (3.11)
[
p

This suggests the following procedure for the general case of "only the mean
available in one sample". Add the mean vector y from the second sample as the
(n]+1)—st observation to the " observations from the first sample. Code

the observations by

C ifl<j<n
W = ! - = (3.12)
c2 if js= n] + ]

Perform a LR of w on the measured variables, using all n]+1 observations.
Denote the vector of regression coefficients by b* (ignoring the intercept),

then
b* = k*s™1(%-y) (3.13)

for some factor k*, and

2 - _-I - - n-lz_] R2
D, = (x-y)'s™ ' (x-y) = —— --Jljf . (3.14)
SR 1-R)

Since S is based only on the first sample, (3.13) and (3.14) can be used to

compute discriminant function coefficients and Mahalanobis distan;es in all
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cases of section 2.5, including ;he one sample case! The test statistics
listed in sectioﬁ 2 can therefore all be computed using the regression
approach.

The practical application is very simple, since only one row and one

column must be added to the data matrix. The completed data matrix takes

the form

o * o1 €
12 %2 *p2 G
13 %23 3 9
X X . . . X c

1n]. 2n] pn] 1

e
<

2 e b ’ Co

The regression equation based on this matrix will in general include an
intercept which is not zero, but.which can be ignored.

In our example, we used the code cp = 0 (for the ny = 44 individuals of
the first sample) and Cy = 100 (for the mean vector of the second sample).
We computed an LR of this code variable on (a) all five variables, and‘(b)
variables ST, WZA and MFH. The results are summarized in table 2, where all
columns except those labeled as "coefficients" should be ignored for the moment.
The proportionality of the regression solution to the discriminant function
calculated in section 5 and the correctness of formula (3.14) for computing DS

can easily be checked.
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4. Tests of hypotheses about the linear discriminant function using the
‘ -ne

regression technique

4.1. Differences between LR and DA

When encoufaging the use of LR to perform DA and Tz—tests, it must be
stressed that there are important differences between the two models. In

LR it is assumed that

w=Xg+ ¢, (4.1)

~

where ¢ Nn(O,ozIn), and X is regarded as fixed. Then

~ ~

Fe 07N N (aoP ) ). (4.2

In the regression case, w is random and measured on an interval scale, and
all the standard errors and F-(ort-) tests presented for ? in the LR output
depend on these assumptions. In using the LR procedure for DA, W is a ffxed
dichotomy, and X is distributed as the mixture of two multivariate normal
distributions. It is therefore rather surprising that even the F-tests given

in LR are valid for the DA-case, as will be shown in the following paragraphs.

4.2. The two sample case with full information in both groups

Let us denote by F (Hq) the usual F-statistic used in LR to test

reg
whether p-q coefficients of the linear regression function are zero (Jw 306,
M 108, see also any text on linear regression). If Rg and Rg denote the

coefficients of determination from the regressions with p and q variables

respe;t1ve]y, then Freg(Hq) can be written as
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| 2 .2
+N.-D- -
F(H) = 12P T oRRg
reg'’q P-q 1-R2
p
2 2
Mgt ’p’ (4.3)
p-q _ : i
(n]+n2 2)(n]+n2) . 02
My q

where the second equality follows from (3.6). This is the same as formula
(2.18) withm = ny*n,-2 and r = (n]+n2)/n]n2. Thus , in this case, all
Freg-statistics (and particularly the F- or t-statistics) are correct also

in the DA-situation. Since even the degrees of freedom associated with (2.18)
and (4.3) are identical, tests can be performed directly without correcting

the regression output.

4.3. The case when only the mean is available in one group

Using the regression approach as described in section 3.2 leads to the

following Freg—statistic for testing redundancy of p-q variables:

nyp
F_ (M) = 1 .-P_9
regq’  p-q 4, _p2
p

2 .2
B I (4.4)
p-q nz_]
17!, 2
n] q

The degrees of freedom computed by the LR approach are p-q and Ny =P, which
is correct also for the Tz-situation. However, putting r = (n]+n2)/n]n2 and

m = n1r1 into (2.18) shows that the correct F-statistic for the discriminant
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function hypothesis would be

F( n.-p Dg-Dg
H)=—— \
q) -q (n]+n2)(n]-]) 5, (4.5)
+D
M2 a

This can be computed from the corresponding LR-statistic by

2 2
(n]-1)n2 + "]"2Dq

F(H) = H (4.6)
9 (n]-l)(n]+n2)+n]h202 reg( q)
or, using (3.7):
(n]fi)n2
F(Hq) = Freg(H ). (4.7)

2
n]+n2+n](n2-1)Rq

This shows that for given Rg, F is an increasing linear function of Fre

g
Moreover, F(Hq) can be computed from Rg and Rg according to
(nq+1)ny(ny-p) (RE-RE)
F(Hq) = (4.8)

[ty (np=1)RCT (p-a) (1-R2)

If a standard LR program is used, relation (4.7) is most useful. The Freg'

statistics computed by the regression program are simply multiplied by the

factor

. (n]+])n2
q

> (4.9)
n1+n2+n](n2-])Rq
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which can easily be done using a: pocket ca]cu]ator, If Rg is not available

from the regression output, it cén first be computed from Freg(Hq) and Rg by
2 2 _p-q 2
R = - -
q = Rp - (1 Rp) Freg(Hq). (4.10)
In addition, putting (4.10) into (4.7) shows that for given Rg, F(Hq) is a

monotonically increasing function of Freg(Hq)° Therefore the forward selection
and backward elimination procedures based on partial Freg-statistics, as used
in many LR-programs, yield a correct order of selection, wﬁen applied to this
situation. The stopping criterion, however, must in general be modified.

In practical applications, we recommend augmenting the list of partial
Freg-statistics by the factors €1 (formula 4.9) and the corrected partial
F-statistics (formula 4.7). If the LR program gives rather partial t- than
F-statistics, these should be multiplied with the square root of cp_].

In our example, the partial Freg statistics given by the standard LR
program were as displayed in the corresponding columns of table 2. Three
additional columns show the correction factors, the corrected partial F-statistics,
and the degrees of freedom. From the corrected partial F's it becomes clear
that some of the five variables are redundant for discrimination. The comparison
of models (a) and (b) yields Freng3) = .105 with 2 and 39 degrees of freedom.
Using the correction factor (4.9) €3 = 11.69, we get again the correct
statistic F(H3) = 1.2.

In some cases the correction factor cq turns out to be especially simple,
as shown in table 3. A remarkably memorizable correction factor is given in

2 in the one sample case). Clearly, no

the case n, == and q = 0 (Hotelling'sT
correction is needed if n, = 1, since this can also be considered as a special
case of the usual two group situation.

|
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5. Remarks and Conclusions

5.1. More about the relations between LR and DA

The relations between LR and DA as described in the previous sections seem
in a way Tike "lucky algebraic coincidences" - there is no obvious intuitive
reason why they should hold. The use of LR to perform DA and T2-tests has
therefore the fame of’é‘trick. However, some deeper reasons for the relations

between the two models can be found if we relate them both to a multivariate

regression model (A 178, JW 318, K 97, M 170, MKB 157, R 543, SC 139). To

explain this, let us change the notation used so far a little, and denote by

X
<§‘> the p-dimensional vector of random variables to be used for discrimination,

where { and Y have q and p-q components, respectively. (Here we do not distinguish
notationally between the variables of the first and those of the second group).
Suppose furthermore that a binary variable w is cnded such as to indicate the
group membership. Then we can study the multivariate regression of ! on the
set of q + 1 variables {X,w}. Since Y consists of p-q variables, this model can
be interpreted as p-q simultaneous multiple linear regressions on q+1 variables.
Alternatively, since w is binary, we can look at it as a multivariate regression
model for two groups, thus representing 2(p-q) multiple regressions on q
variables, the two regression hyperplanes associated with each Y-variable being
parallel.

In this multivariate Tinear model we have (allowing for intercepts) a
total of (p-q)(q+2) regression parameters. Among these, p-q are associated with
the code-variable w, one for each of the Y-variables. The maximum likelihood

estimates of these p-q parameters turn out to be identical with the (sample)

conditional mean difference of Y, given X, if Fisher's code is used. However,

|
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in (2.11) of this paper we havé already seen that discriminant function coefficients
are strongly related to conditional mean differences. On the other hand, the
(univariate) linear regression of w on {X,Y} is also strongly related to the
above multivariate model (which is not very surprising).
Let us summarize the most important facts as follows. We are dealing
with three models:
(1) the Tinear discriminant analysis of two groups which are defined
by a binary variable w, using the set of variables {¥,X}.
(2) the linear "pseudo"-regression of w on {X,Y}
(3) the multivariate linear regressibn of Y'on {X,w}.
Although the re]ations_between models (1) and (2) are fairly easy to establish -
see sections 3 and 4 -; the deeper reasons for their existence can be seen in
the mutual relationship of (1) and (2) to (3). More specifically:
- The coefficients of the linear discriminant function (model 1) are
strongly re]ated to the coefficients associated with w in model 3, due
to the fact that the latter ones are actually conditional mean differences.
These coefficients are in turn closely related to the coefficients of

the "pseudo"-regression model 2.

+ Testing for redundancy of Y in the DA-model (1) is, by (2.11), the same
as testing for redundancy of w in model 3. This s, in turn, again the

same as testing for redundancy of Y in model 2.

For proofs and more details about the relationship between the three models
see Flury (1983).
In order to help the reader who is not familiar with the multivariate linear

model, we are now going to illustrate the above statements for p = 2 and q=1,
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in which case model 3 reduces to two parallel regression lines. Suppose the

random variables X and Y have the joint bivariate normal distribution
[} (3 ‘ » 0
NZ(E’§) in population 1 and Nz(v,z) in population 2,with u = 0/

2 2 1
v = <0> and §==<] ]>. These two normal distributions are visualized in

figure 1 by two ellipses of equal density. Also shown are the two (population)

regression lines of Y on X, which are parallel because the covariance matrices

-2
are identical. The vector of discriminant function coefficients is o« = < 2 >-

by (2.1), and the conditional mean difference of Y, given X, is Sy.x = ]

by (2.7). The condition for redundancy of Y in the DA-model is the same as
the condition that the two parallel regréssion lines coincide, and testing

for redundancy of Y in the DA-model is the same as testing for redundancy of w
in the regression of Y on {X,w}. This is, in turn, the same as testing for
redundancy of Y in the regression of w on {X,Y}.

In the situation of figure 1, if the mean vector of the second population

2 2
were V = <] > instead of <()> » then the two regression lines would coincide

and discrimination would be based on X only, as can easily be checked.

In practical applications, model 3 is less convenient than models 1 and 2,
since it is algebraically more complicated and involves in general more parameters
than just those we are interested in for the purpose of discrimination. However,

it has considerable theoretical advantages.

+ It shows that the relations between DA and LR (models 1 and 2) are more

than just a Tucky algebraic coincidence.
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- It has a straightforward generalization to the k-sample case by using

k - 1 indicator variables.

« It leads to an estimate for standard errors of discriminant function

coefficients.

+ Compared to the classical DA-model, it does not require p-dimensional
normality. The assumptions in the multivariate regression model are
rather (a) the mean of Y is a linear function of X and w; and (b) the
residuals have a joint (p-q)-dimensional normal distribution. This
is less restrictive than p-dimensidna] normality, and shows that it
is not necessariTy wrong‘to include non-normal or even discrete and
binary variables into a linear discriminant function. This fact is
often ignored when DA is being attacked (Breiman et al 1984, p. 16;
Rubin 1984)f Testing for redundancy of Y in the DA-model does not

X
require p-dimensional normality of (77) » but rather (p-q)-dimensional

normality of the conditional distribution of Y, given X. (For an
extensive discussion of discriminant models involving both continuous
and discrete variables, see the papers by Krzanowski (1975, 1977, 1980)
and their references.)

5.2. Standard errors of discriminant function coefficients

The problem of standard errors of discriminant function coefficients is
a controversial topic. Many authors do not mention it at all (A, JW, K, L, M,
MKB, SC). Others (R 569; Rao 1970, p. 587) take the point of view that
estimates of standard errors for discriminant function coefficients are not
meaningful, since every multiple of the linear discriminant function discriminates

the groups as well.

On the other hand, if we define the vector of sample discriminant function

coefficients by a = 571

d, then the coefficients are uniquely defined. This is
the point of view taken by Kendall and Stuart (1966, p. 331), who give a large

sample estimate for the variancg of discriminant function coefficients.
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The regression approach gives also an answer to this problem. Let us

denote by bj the j-th regression coefficient, and by F(aj=0) the partial F-value

for the j-th variable. Then the standard error of bj can be estimated by

s(b,) = —4——41L—— . (5.1) .

This estimate can be derived from standard errors of conditional mean differences -
that is, using again model 3 of section 5.1! It has recently been investigated
by Haggstrom (1983) and by Flury and Riedwyl (1983b). The latter paper gives
also a comparison between (5.1) and the estimate of Kendall and Stuart.

Of course it must be borne in mind that these estimates, as well as
the coefficients bj’ arenot absolute quantities. They are valid only in the
metric given by the regression approach, that is, for a given constant of
proportionality k (formula 3.4). This means in particular that standard errors
obtained from different analyses cannot be compared directly, but within the
same discriminant function such a comparison is correct.

It only remains to note that (5.1) is exactly the standard error given by
the LR-approach in the usual two sample case. In this form it has already been
used, although without sufficient theoretical motivation, in many practical
applications. In the case when only the mean 1is available in one sample,
formula (5.1) can be used to obtain the correct standard errors after having
computed F(aj=0) by the formulas of section 4.3.

In our example, the corrected standard errors have been computed and are

given in the corresponding columns of table 2.
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5.3. Advantages of the regression approach

Regression programs are probably the most used statistical software.
They are nowadays even available for home- and pocket computers. Using the
LR-approach makes it fherefore easy to calculate Tz-statistics and discriminant
functions when no special software for these techniques is available.

Besides this practical aspect, the regression approach has in our opinion

some distinct didactic advantages:

- First, many scientists in differenf fields have a good knowledge
of LR, but their mathematical background would not be strong enough
to understand the theory of Tz-tests. With a basic understanding
of the concept of discriminant function, they can be instructed to
transfer their knowledge about testing hypotheses in LR to the

DA-situation.

- Second, using the regression approach leads easily to the question of
redundancy of variables, which is usually not treated in connection with
Tz-tests. For practitioners, however, this problem is often as important
as an overall test of significance. 1In courses with practitioners we
found it particularly useful to stress the fundamental relations (3.7)

and (3.14) between R2 and 02

» after having introduced the notion of
Mahalanobis-distance for the two-dimensional case (JW 19, Flury and

Riedwyl 1983a, p. 100). We believe that the regression approach,

together with an introduction to DA from the point of view of classification,

is sufficient to evoke a correct understanding of the methods discussed

in this paper.
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- Third, knowing the relations between LR and DA, and particularly the
mutual relationship of both methods to the mu1tfvariate lTinear model
of section 5.1, is of some theoretical interest. Furthermore, this
multivariate model shows that the linear discriminant function, thanks
to its relation to conditional mean differences, is not necessarily

"wrong" for non-normal data.
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Table Titles

Table 1:

Table 2:

Table 3:

Summary statistics for anthropometric example

Computation of discriminant function and Tz-tests in the

anthropometric examplé by linear regression

Correction factor cq when only the mean is available in one group.

Freg-statistics (computed by the regression approach) for testing

sufficiency of q out of p variables should be multiplied by this

factor. n, is the size of the sample in which only the mean is

2

available. Rq is the coefficient of determination obtained with

q variables.

Figure Title

Figure 1:

Parallel regression lines of Y on X in two normal populations with

identical covariance matrices. The population means are

0\ 2 21
u = 0‘)and v = E the common covariance matrix is g = 11/

The linear discriminant function is proportional to X-Y, that is,
it is constant on straight lines parallel to the 45°-line. If the

2
second population is shifted to v = (1>, the two regression lines
TN

coincide, and the discriminant function coefficient of Y is zero.
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Table 3
n2 ]in2<m nzzm
(n]+1)n
2
q=0 S 4 ny+1
n]+n2 1
(n]+])n2 n]+1
l<a<p 2 2
n]+n2+n](n2—1)Rq n]Rq+1
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