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I. Introduction.

Let p be a natural number and % be the closure of an open set in RP.
Consider the case that % is compact. Suppose n independent observations
Y10 Yos oees y, are made at Tevels X1o Xos eous X, € Z. Write Yy = (y],...,yn)'.

Without Toss of generality, assume that X; # x; for i # j. Consider the model

(1.1) Y5 = f(fi) te; o, i=1,2,...,n,

where f is continuous on % and 81'5 are independent random variables with

?, i=1, ..., n. To estimate the unknown function f,

means 0 and variances o
many classes of estimators have been proposed, including the kernel method
(Watson 1964, Nadaraya 1964, etc.), the nearest neighbor method (Fix and

Hodges 1951, Cover and Hart 1967, Cover 1968, Stone 1977, etc.), and the spline
method (particularly for P =1, Reinsch 1967, Wahba and Wold 1975, Agarwal

and Studden 1980, etc.). Basically, these estimates are linear in the yi's.

Also, each estimate is associated with an index h (e.g., the bandwidth

for the kernel estimate; the number of neighbors for the nearest neighbor
estimate; the smoothing parameter for the smoothing spline). The choice

of h turns out to be crucial in effectively estimating f. Most Titeratures
on the asymptotic aspect have been addressed to the case where h is
deterministically chosen. However, for practical use, it is often preferable
to have a data-driven h. One such practice is to select h by the cross-
validation technique, whdse consistency property will be ipvestigated here

for the nearest neighbor method.



Given Xq0e X Tet Xi(j) denote the jth nearest neighbor of Xs in
the sense that ]]xi - Xi(j)l' is the jth smallest number among the n values
'lff
Let Hn = {1,2,...,n}. For any h; € H » the h nearest neighbor estimate of

- xi.ll, i' =1,2,...,n (ties can be broken in any systematic manner).

f(x;) is defined by Z Wn h (3)y; i(3) with W h(-) being a non-negative weight

function satisfying certain conditions to be specified whenever needed. For
our development it is easier to represent the estimate of fn = (f(§]),
f(fz)""’f(fn))' by a matrix form of Mn(h)Xn where Mn(h) denotes a suitable
nxn matrix with rows being certain permutations of the vector (wn’h(l),
wn,h(z)""’wn,h(h)’ 0,...,0). Clearly Mn(h)xn can also be used to predict
the values of y observations to be made in the future at the same levels

Xys+++sX . To assess its prediction performance, a najve estimate seems to

~n
be lan - Mn(h)anlz- This quantity tends to underestimate the true error
since the same data have been used both to construct and to evaluate Mn(h)¥n'
Cross-validation circumvents this difficulty by removing each 7 from the data
set used in its own prediction.

Precisely, to predict a future y observation at level Xis 1 <i<n,we
h

use only the data y], Ypseees¥i_1s Yipoe-s¥,s namely Z W h(J)yi(j+]).
J— S5

To put it in matrix form, we write Mn(h)yn. Thus Mn(h) is an nxn matrix with

zero diagonals and the (i, i(j))th element, j#1, being wn h(j-]). Now the

cross-validated assessment of prediction error for Mn(h)yn is Hyn—Mn(h)ynH2

and the cross validated choice of h ¢ Hn,vdenoted by h;, is the minimizer of

(1.2) inf o [[(T,M (h)y |12

h-€ Hn

where In denotes the nxn identity matrix.



Although the motivation behind the cross-validation technique is easily
understood (see, Allen 1974, Stone 1974 and Geisser 1975), available theorems
with regards to its statistical properties seem to be sparse. In classification
problems, some interesting properties relating cross-validation with bootstrapping
were obtained by Efron (1982). In density estimation, Chow, Geman and Wu (1981)
and Hall (1982) establish some asymptotic results for the cross-validated
kernel estimates. In our nonparametric regression problem with kernel estimates,
Wong (1982) proved the consistency in the case that p = 1 with the §1's being
equi-spaced in a bounded interval. For the spline smoothing, generalized
cross-validation of Craven and Wahba (1979) was shown to possess a certain
asymptotic efficiency property by Speckman (1982).

In this paper, we shall show that as n > o,

(1.3)

S|—

~ *
1, - Mn(hn)anlz >0

in probability for the nearest neighbor estimates (Section 2). Somewhat in
Tine with Wong (1982), our proofs will consist in establishing the following
focur statements (hereafter, unless otherwise specified, any convergence involving

random variables will be interpreted as the convergence in probability)

1 T MY e
(S.1) sup Y f< (I-Mn(h)) ,__fn, & > ] —.>O.

where e, = (a], Eps ens en)' and <+,-> denotes the inner product in R".

>|—>O.

(S.2) sup ﬁ-|<,=_ Mn(h) gh, €



(5.3) There exists a sequence {hn} such that
1 2
m Hfa M thgdyg 1170

(50 10 W1+ 0.

To see that the above four statements imply (1.3), observe that by (1.1),
1 2 1 2,2 (.
a1 (T M (h)y, € = ol fp=M (h)y 1€+ < < (InMn(h))fn,gn > -

2 <M (h)e

1 2
n n > Bp > ﬁ'llfnl,

n

Thus by (S.1) ~ (S.3) and (1.2) we obtain
1 * 2

(1.4) ﬁ+|fn'Mn(hn)¥nl| >0

which together with (S.4) implies (1.3) as desired.

The following two regularity conditions on the x sequence will be imposed:

(C.1) There exists a constant Ay such that for
any r > 0, there exists an integer Nr such
that for any n z_Nr and any closed ball

B(x,r) with center x€ 2 and radius r,

#x; [x; € B(x,r), 1<izn} > anrP .



(C.2) There exists a constant A2 such that
#x;[x; €S, T<i<n} < AnA(S)

for any n and Borel set S with Lebesque

measure A(S).

(C.1) and (C.2) imply that X sequence gets dense in x in a uniform
fashion. When §i's are the realizations of i.i.d. random vectors with a
common density bounded away from both 0 and » on %, (C.1) and (C.2) are
satisfied -with probability one. For such random X cases, note that the

consistency property (1.3) is conditioned on the x values.

We shall also assume the following moment condition on the random

errors:
(C.3) The fourth moments of ej's are no greater
than u4, with a finite constant u > 0, and
(1.5) Tim 02>02>O.

(1.5) is to avoid the trivia] case thatsof are eventually 0,
while the finite fourth moment assumption is made to obtain a simple proof

of (S.2).



2. Consistency results.

Assume the following conditions on the weight functions:

h
(C.4) 1§1wn,h(1) = 1, and wn,h(1) =0 for i > h.

(C.5) wn h(1') is nonincreasing in i.
(C.6) There exists a sequence {h,} such that

(c.6.1) h/n = 0,

and

(C.6.2) W (1) -~ 0

n,hn

as N - o |

We now show that under (C.1) ~ (C.6), (S.1) ~ (S.3) hold.

Proof of (S.1). Given 6 > 0, we shall show P {sup l-|<(I -M (h))f_,
hel ! non ~n
En>|>6}—>0, | n
First, since f is continuous on % (this implies the uniform continuity),
there exists b > 0 such that for any x and x'€ X with ||x - x'||< b,

llf(f) - f(f')][f_%—- 5-. Let k, be the largest integer in H_ such that

sup | |x: - x. < b. By (C.1), we have
5w 1153 = 5111 =

p
(2.1) . kn z_x]nb , for any n > Nb .



Then, we have

(2.2) sup —[ <(I-M (h)F e>|<.—-u§-—.2 le,

To see this, observe that for ]<h<k -1 the absolute value of each coordinate
of (I -M (h))f is no greater than 3—-because of the definition of M (h)
(C.4). and the definition of k Clearly, (2.2) implies that

P { sup %'l<(1n-Mn(h))fn, an>|>6} )

T<h<k -1

Thus it remains to show that

1
(2.3) P {k zﬁgn ﬁ', < (In—Mn(h))fn’fn > | >8}~>0
n—._.
Partition the space % -into Zqs x‘z, cees X for some fixed number m

such that the diameter of each ij is no greater than d, a number to be set
suitably later on (see (2.5) below). Define HJ {1lx €X. } for j =1, ..., m.
Denote the ith coordinate of M (h)f by [M (h)fn]1 We c1a1m that

(2.4) d can be chosen so that for any n>N,, any h with knfhjﬂ, and any i, i'eiHﬂ,

Blw

DMy (W)F 1 - DM (h)F 1] <

.8
~n4i’ M

Assuming the validity of (2.4) and letting %n(j) denote [Mn(h)fn]i with i

being the smallest integer in Hg, we then have

sup —ﬁ (I M (h))f , e >|

k <h<n n ~n".n
<3 l<fes| + su =M ()F L e
—-n n’E P > Zn

<h<
ns <N



1 mos 3 5
i'ﬁ|<f ’€n>l + oosup (= X ,fn(J)Z J-Eil}"'a"—'— z [e_il
~ k_<h<n J=1 1€Hn i=]
J
n #(H)
_<_r]]— |<f e >| + |f] + 2 n”‘ ]j z e |+
j=1 #(H) ieHd
3§ 11
T u'hn E]IEH

where |f|_ denotes the supremum of [f(f)] over x € x. In the last expression,

it is clear that the first and the second terms tend to O in probability, while

the third term is asymptotically no greater than %—6. Thus (2.3) is established.
Therefore to compiete the proof of (S.1), it remains to verify (2.4).

The following 1emma will be useful. Write 2[1]n = k when i(k) = 2; i.e., when

X, is the kth nearest neighbor of X; -

Lemma 2.1. There exists a constant a such that lz[i]n—z[j]n] g_a-n-llxi—xj||
for any 1<i,j,e<n.
The proof of this Temma will be given in the Appendix. Now observe that

for any k,<h<n and 1,1'6Hﬂ,

I[Mn(h)fn]i - [Mn(h)fn]i',

h h
- lk§1 Won (K (G ) - O Wy h(K) F (%5 )|
k-1
n

o p (LT 1) - [F(x ) | + ZG?Bh Wo n DI RO ) |+ QGECan’h(ﬁ[i']n)If(§g)!,
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where An = {i(k) : knfkjp} n{i'(k) : knfkfp}, Bn = {i(k) : kngkfn} -

A»and C = {i'(k) : kpsk<n} - A.. In the last expression the first term

will be no-greatér than %—- %-supposing than d < b. The second term is no

greater than

R 125An|wn,h(z[i]n) - Wy p(elit])]

| A

s 2 {00 GG - W T+ adn) + (4 (08T,

L€R
- Wy p(elit ]+ adn)} (by Lemma 2.1 and (C.5))
n
< 2fflae 2 Oy k) = Wy (ke adn))
n
k, * adn-1
= 2|f|_- I Wy p(K)

n

(A]bp+ad)n—T

<2ffl,. s (k) (by (2.1))
-k=A1nbp
< 2|, —2dn__ (by (c.5))

. (A1bp+ad)n

ad

p
A1b

< 2|f |-

(Note that in the above expressions, the term "adn" should be interpreted as
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the largest integer < adn, whenever necessary). Furthermore, by Lemma 2.1,

z n 2[1] [f(x |
L€ Bn
k
LW (K)
<
- k=k -adn nsh
< 1], 2 (by
Mb

We obtain the same bound for = W h(z[i']n))lf(

n,
L€ Cn

way. Therefore, we have

M (h)F 1o - [M (h)f ]

~n1|

ad

b p
A1b

18
<7t 4lf

Thus (2.4) holds for

(2.5) d = min

p
] x]b S
b, 16 °
au|f|

The proof of (S.1) is now complete. We turn to

Proof of (S.2). First, observe that

1L
< s M0y > 42 e ey )
i=1 =1
q b n ‘
— 3 .
h 422 Wy n(2-1) 1515181(2)

(2.1) and (C.5)).

x,)| in a similar



Therefore, by (

C.4) we have

: 1
P{sup —|<e_, M (h)e >|>8}
T<hen T | “n® "V En |
| 1 |
<P {sup I €.€ > né}
2<pen =1 1 1(2)
n n
< 3 P{{z e e.( )) > n464}
T o=z 41 T
n
4
o ECZ e )
< T
=2 n464
n 4n2u4
= I 47
2=2 n's
4
= 4L4 > 0
né

12

(by some combinatorial arguments)

Proof of (S.3). For the sequence'{hn} of (C.6), we have

sup | |x,
l<i<n

because of (C.1

1
T M

~1

'X'(hn)ll ~ 0, as n » =,

) and (C.6.1).

2
h)E 12 > 0.

Now by the continuity of f, we see that
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On the other hand, (C.4), (C.5) and (C.6.2) imply that
1 2
E HWIMn(hn)fnll > 0

1 2
Thus E ﬁ'llfn'Mn(hn)ynll -+ 0, which implies (S.3). O

To prove (S.4), we shall further assume the following condition:

(C.7) There exists fixed numbers A3, A4 > 0 such that
1

wn.h(J) < A3h'(2 * A4), for any n and any

hEHW

This condition is satisfied by most commonly-used weight functions including

(see Stone 1977):

(i) (uniform weight function) wn h(1') = l—for 1<i<h.
’ h
(ii)  (triangular weight function) wn h(1') = 2(h-i+1)/h(h+1) for 1<i<h.

(111) (quadratic weight function) W (i) = 6(h%(i-1)2)/n(h+1)(4n-1)

for 1<i<h.

In general, given a nonincreasing positive continuous function W(-) on [0,1],

we may construct weight functions satisfying (C.4) ~ (C.7) by letting wn h(1')
be proportional to W(i/h).

Now, we prove (S.4) by establishing

B T 2
(2.6) sup o [[M ()F - M (R)F [T > 0,

1<h<n

and



| 1. * ) * 2
(2.7) ﬁ4IMn(hn)fn Mn(hn)f'n|| > 0

Proof of (2.6). It suffices to show that given any & > 0, we have

h h
S st L M ) - W h (R )| 26

I<h<n  1<i<n  ¢=1 =] B
for large n.
First define b, kn as in the proof of (S.1) with u = 2/3.
Then,
h

12;2kn-1 12ien | L W ()P0t ()P0 (4q)))

< sup [F(xs, ) - (X, )|
e PR OURMCTER)

= 1iiinfl1‘225kn-1 PG (0)) = TP+ 105D = 05 (4]

= §/2.

o
o

<
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On the other hand,
sup - _sup W ()FOx 3y = L W (2)F(x;
Kp<h<n I<iz<n lzzl n.h i(2) QZ nh (X5 (a1) )|
kn-]

< knéﬁgn 1;?2n '121 Wy p(2) (FOG ) = FOxg ey ]+

h
sup sup W f )|+ Y (W 2)-W o (2+1))] f(x
1<izn kp<h<n nh{n)| kn) | zzk( nh ) p I FOG (4))|
< %—+ sup W, If |
k_<h<n i
§ -1
LB AL L

where the last inequality is due to (C.4) and (C.5). Now, by (2.1), k ==

and the proof is complete. O

Proof of (2.7). Observe that

] ~ * * 2
ﬁ1|Mn(hn)fn B Mn(hn)fn||

h+1
1", o N §'n . )
< 2w n(1)) 35-1§1e1$ + ﬁ-izl 252 ( ,hn(z) - W hn(£'1)ki(z)§
h+1
- 1", , nin . .
< 20, ) 33151 J TG gt -y D) [
h+1 , ‘
. 222 “i(x)
h'+1
. 1" o2 a2 f2 0o,
= 2(W n’hn(])) gﬁii]e-l % + ( n.h (1)) 3H E] 222 ET(JL)g s
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where the last inequality is due to (C.5). In view of (C.7), the proof of (2.7)

will be complete supposing that the following two statements hold:

*
(2.8) hn + © , in probability
(2.9) There exists a constant Ag such that
h+1
n 'n 5 £ N
T el < Az h T oes
j=1 =2 (8} = 75 Tnuny

Proof of (2.8). It suffices to show that for any natural number N,

P{h: = N} > 0. Given any 8§, §'>0, (1.4) implies that there exists an N’

such that
P{l1lf - M (h*)y IIZ > 8} < &' for any n > N' Thus for n > N'
n't.n nt n’Jn > y n>N-. > Ny

* 1 2 '
Phy = N} < P&f|f - M (N)y [[® <6} +s

2
g

Take 8§ < = . We shall show that as n tends to =, the first term on the right
2N
side of the above inequality tends to O.
First, due to the continuity of f, it is clear that %JIfn - Mn(N)an2 + 0

as n » o, Therefore, it suffices to show that

(2.10) P M, () TP
’ n! 1Mn\N/&y —-ZNZ
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Now, E LM (N)e | |? = 1) su (2
Coonnern i=1 {2

|v
N
[ =
n
~~
o
<
L
o
o1
S
S

1= %i(2)

n
By (1.5) and Lemma 2.2 below (taking h=1), we see that &

o > no
=1 1(2) =
. 1 ’ 2 02
for n sufficiently large. Thus we have 1im E —||M (N)e |[® > = . On the
e o TN

other hand, with the fourth moment condition of (C.3), one can easily verify

that {%+|Mn(N)en|12- £ L|m (N)e %350 in probability. Hence (2.11) holds.

The proof of (2.8) is now complete. a

Proof of (2.9) . Recall the notation Q[i]n from the paragraphpreéedihg' Lemma 2.1.

Clearly, (2.9) follows from the following lemma.
Lemma 2.2 There exists a universal constant xs(depending only on the dimension p)
such that
#{1:25ﬁ[1]n5h+1} < Agh, for any 2, h, n.
The proof of this lemma will be given in the Appendix. We may take, for

instance, A5=2 for p=1 and x5=6 for p=2.

We summarize our results by the following.
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Theorem. Under (CJ]) ~ (C.5) and (C.7), (1.3) holds in probability.
Here note that (C.6) is implied by (C.7).

Remark 1. Suppose that instead of ﬁn(h:)Xn’ we Qse Mn(h:)Xn as our estimate,
then the consistency can be proved under (C.1) ~ (C.6) (see (1.4)). Now, is
the estimate Mn(h:)gn better than Mn(h:)Xn? Intuitively speaking, the answer
seems to be yes because it appears that the estimate Mn(h:)xn does not use the
full information. For instance, in estimating f(fi)’ the observation y; seems
to have been ignored. However, Mn(h:)Xn does use y; in estimating f(fi) since
h: depends partly on s Moreover, if Mn(h:)Xn is very much different from
Mn(h:)gn, then the cross-validation method may be questjonab]e for such cases.
To warrant the success of cross-validation, it is important that our prescription
about the class of estimates to be cross-validated should be appropriate
(Stone 1974). To assess the appropriateness of a prescription,‘one should at
least check whether or not &n(h:)xn and Mn(h:)}:n are close to each other.

The condition (C.7) (or any other similar condition) on the prescription about

the weight functions serves the purpose of diminishing the chance of the

* ~ *
possible drastic changes from Mn(hn)Xn to Mn(hn)xn.

Remark 2. It is clear that similar arguments apply to the case of cross-

validation by the Teaving-k-out method with k being a fixed integer.
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Appendix

Proof of Lemma 2.1. Recall the notation of A(-) and B(x,r) from (C.2) and

(C.1). Let o = sup{||v - u]|: v, u € Z}. Suppose olil 3_2[1]n. Then
by (C.2), |

L3l - 2Dily < g m (B0 T [T+ HIxgxg D) = A T - % 1D

fA

p p
AL Ixg=xg [T+ [xg=x5 117 = Hxg-x; 7]

(where € = A(B(0,1)))

| A

p P
aonCllot | [x4-x41 )7 - o]

P P-1

Therefore we may take a = zpap']xzc to complete the proof. O

P

Proof of Lemma 2.2. Denote S(x,r) = {v:v €R

{viv €R’ and |]v-x]] < r} for any x € R” and r > 0. Since $(0,1) is compact,

and ||v-x||=r} and O(x,r) =

we can find a finite number (EAS) of vectors Vis +ees V
A

r € S(0,1) such that
5 -

5
U 0(v,, 3) © S(0,1). Take C(x) = {ry+x: v > 0 and v €0(v,3) nS(0,1))
k=1 ~ ~ ~ ~KTL ~ - ~ e -

for 15k5)5. Let X0(33k,n) denote the jth nearest neighbor of X, among

{51, cees fn} n Ek(fz)' It suffices to show that

A
5

{i:2 < 2[1] < ht1} © y {e(dsksn) : 2<i<h+l}
k=1
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To see this, observe that for any T<i<n such that x. €C (Xz) for some k and

i
i ¢ {2(jsksn) : 2<j<h+1}, we have

%=1 = sup ] x;-x|| : xec,(x,) NBOXGs X=Xy (a1 5k,my 1D

> max | |x;-x,, .. ,
zijih"'] I '—- ~'Q'(J9kan) H

where the last inequality holds because for j, 2<j<h+1, xz(j;k,n) belongs to the set
Ek(fz) r13(§2, ,lfz'fn(h+];k,n)ll)' This implies that 2[i] »h+1.  Thus the proof

is complete. [
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