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Summary
It is shown that if X(t), t > 0, is a symmetric stable process of index

-1/0

as, 0 < o < 2, then sup,, Tim infh+0 (X(t+h)-X(t))h =« a.s. This settles

a question of Fristedt about strictly stable subordinators.

1. INTRODUCTION. .This paper studies the paths of stable processes, that
is, processes with stable, stationary, and independent increments. We will
always work with the version of a process which has right continuous paths
with left limits, and rule out the trivial case that a process is identically
zero. Edwin Perkins has recentiy proved, in [7], that if Z(t), t > 0, is a
symmetric stable process of index o € (0,2), then there is a constant

¢y € (0,%) such that

e [Z(t+s)-2(s) |
(1.1) 1nfS Tim SUP4 .0 t]/“ c; a.s.

Here we show

C Z(t+s)-Z(s)
(1.2) Supg Tim 1nft+0 7

t/Ol- = «© 4a.S,

This contrasts with the o = 2 (Brownian motion) case. If W(t), t >0, is a

standard Wiener process then both

]Research supported by National Science Foundation Grant No. MCS 8201128.



, - [W(t+s)-W(s)| _
(1.3) 1nfs Tim sup o t]/g 1

and

L W(t+s)-W(s) _
(1.4) sup, 1im 1nft+0 t]/z =

-
[23)
[72]

Equality (1.3) was proved independently by Priscilla Greenwood and Perkins
([5]) and by the author ([1]), and is a refinement of results of
Dvoretsky ([3]) and Kahane ([6]). Equality (1.4) is proved in [1].

Let X(t), t > 0, be a strictly stable subordinator, that is, a stable

process satisfying

[0
Ee-xx(t) - o CtA

for a positive scale constant ¢, and an index constant o € (0,1). Strictly
stable subordinators have nondecreasing samp]e_paths which increase only by
jumps, and every increasing stable process Y(t), t > 0, can be decomposed
Y(t) = H(t) + kt, where H(t) is a strictly stable subordinator and

k > 0. Bert Fristedt has shown ([4]) that, if X(t) is a strictly stable

subordinator of index a, then there are constants Cos C35 Cy in (0,=) such

that

(1.5)  inf, Tim sup, g [X(tTiT;§§S)I =c, a.s.,
(1.6) inf, Tim SUP4,Q liiii%%é£§2-= c; a.s.,
and

(1.7) supg Timinf g IX(thigfés)l = ¢, a.s.

Fristedt did not decide whether the "natural" (1.8) holds. Equality (1.2)
shows it does not. Since the difference of two independent identically
distributed strictly stable subordinators is a symmetric stable process,

(1.2) implies



. X(t+s)-X(s) _
(1.8) Sup Tim 1nft+o Ty T s,

t

Even though (1.8) follows from (1.2), we prove it separately, and
first, in Section 2, since this proof has the ideas but not the technicalities
of the proof of (1.2). The proofs use techniques from [1].

The proof of (1.8) does not show there is almost surely a time s such
that Tim inf, o (X(t+s)-X(s))t™"/® = «, nor does the proof of (1.2) give this
information about Z(t). We can not decide whether there are such times, and
don't even have a guess. We do show, in Section 4, that the Hausdorff dimension

of these times is almost surely zero.

2. STRICTLY STABLE SUBORDINATORS. In this section X(t), t > 0, will be
a strictly stable subordinator of index o € (0,1), which is considered fixed.
For definiteness we take the scale constant c to be 1. Define 35 = Et, for
t > 0, to be the o-field o(X(s), 0 < s < t). Frequent use will be made of
the scaling property of stable processes, which is that, for any positive
constant k, the process k_]/“X(kt), t > 0, has the same distribution as the

process X(t), t > 0. We will also need the following estimate on the tail

of X(1). There is a positive constant u such that

(2.1) Tim in P(X(T)>y)y @ > .

fy+w
This follows from the fact that the Levy measure of X(1) is a constant e times

-(1+a)

t I(t > 0)dt, so that the probability that X(t), 0 <t < 1, makes a

(1+a)

jump of magnitude exceeding x is 1 - exp(f ot” dt) ~ uy~ %, where u = 6/a.
X

In this section we prove the following theorem.

THEOREM 2.1. Given A > 0 there is an r < « such that

(2.2) Plgt e [0,11: ah"/® < X(t+h)-(X(t) < rh'/® for a1l h € (0,11) > O.



Theorem 2.1 clearly implies (1.8). It also gives half of Fristedt's
result (1.6), the "< «" half.

PROOF. Given 0 < a < b and k a positive integer let

Ve ¢ k1,173,

E(a,b,k) = {zt € [0,1]: ah'/® < X(t+h)-X(t) < bh
If some sample point w is in E(a,b,k) for infinitely many k, that is, if
for a subsequence ki’ i > 1, there exist times t(ki) satisfying

(2.3)  ah'/® < X(t(k;)+h)-X(t(k;)) < bh 1/

for all h in [K31,11,
then if t(w) = ¢ is any cluster point of the t(ki), i> 1, it is not hard
to show that
1/a 1/a .
(2.4) ah'/® < X(z+h)-X(z) < bh'/® for a1l h in [0,1].

Note that both the upper and Tower bounds in (2.3) are needed to get the
Tower bound in (2.4). The upper bound guarantees that the times t(ki) do not
increase to the time of a jump of X(t). Thus, to prove (2.2) it suffices to

prove that given A > 0 there is r < « such that
(2.5) Tim Sup,, PE(x,r,n) > 0.

For 0 < a < b let Ta = inf{t > 1: X(t) ¢ (at]/a’ bt]/a)}.

b

LEMMA 2.2. Given A > 0 there exists r <~ and a p € (0,1) such that

P ..
TS L= e

PROOF. We consider A as fixed, and put 8 = 2'](2“—1)]/a. Let
pe (0,1) and y < » satisfy

EL*(yX(1)+0)%-11P1(2x < yX(1) + x < y) > 2,
for all constants v in [6,1]. It is not difficult to show that there exist
such p and y, using (2.1). Note (2.1) immediately gives EX(1)® = «, so

that EX(1)*P + = as p + 1.



Define stopping times 7., i > 0, by g = (X(1)/2)% if

|
—
-
-
—
1}

X(1) € (2x,¥), tq = 1 otherwise, and, for i >

. 1 1
or if X(r;_q) ¢ (ZATif?, yri{?), and

\
nNo
-
~

i

i T Tl if either Tio1 T Tilo

T = (X(r1_1)/x)“, otherwise,

= 13 = 3 . - - o
and put ¢ = 11mn+°° g and N = inf{n: = rn}. We have 1 ™ < (y/») ™N-1°
and TN-1 5-Tx,r where v = yZ/A. Thus, to show ETg’r = o it is sufficient to

show E¢P = =, which will be accomplished by showing that E(Ti'Ti-l)p > © 3s

i+ o,

Now on {r, >t 4},

X(Tk) = X(Tk_]) + (X(Tk)‘X(Tk_]))

)/ + (X(x)-X(r, 7))

= T;/a(k + s7Z),

1/a

where s = (x -1, _)"/%c /% and 7 + (X(x)-K(z,_q))/ (x=1_q)

Here
6 <s < 1 since Ty 3_2ark_], and, since t) is ET measurable, so is s.
k-1

Furthermore, given v, > 1, _y, Z is independent of 3. and has the same
k-1

distribution that X(1) has. We have
p

= E((X(r )/0) % )PI(K(x,) € ()% yr)/N1le, > 5 4)

= E(r (s DA77 )PI(xtsZ € (20,9))1(z, > 7, _q)

1

EE (1, (a+sZ)*27 %1 )PI(asZ € (22,9))1(7) > PRUCHEN

- P a,=a_1yP :
= Er I{r, > 1, _1)E((A+sZ)"A7%-1)"1(a+sZ € (2x,y)|s<Tk_])

|v

ETEI(Tk > Tk_1)2

p
2_ ZE(Tk'Tk_]) .



This implies E(r;-t; ()P » = as i > =

The proof of the following lemma is implicit in Section 2 of [1].

LEMMA 2.3. Let Y;.Y,,... be independent and identically distributed
P _

nonnegative random variables such that EY7 = = for some p€(0,1). Put Sn=

Y.,
'] -I

nHes1>5

i
and, for t > 0, let N.(Y) = inf{n: S > t}. Then

Now define random variables W., i > 1, by Wy =T, ., and, for i > 1,

Wy = infCt > Wy #1: X(£)-X(H,_q) ¢ (a(e-wy_p /e, et V).

'l—
Here A is arbitrary and r = r(x) is the r of Lemma 2.2. Let
Zi = wi-wi_], i > 1. Then by scaling, we get P(ZNk(Z) > k) < PE(x,r,k),

and this, together with the last lemma, gives (2.5).

3. SYMMETRIC STABLE PROCESSES. In this section (1.2) will be proved.
The outline of the proof is the same as that of the proof just given, but
new difficulties arise because we are no Tlonger dealing with increasing
processes. For a number o € (0,2), let Zu(t) = Z(t), t > 0, be the
symmetric stable process for which the characteristic function f of Z(1)
is given by

dx
TH+a °

log f(u) = f (eiux_]_ iuxz)
- T+x° x|

Any symmetric stable process of index o is identical in law to a constant
multiple of Z(t). We will prove the following theorem.

THEOREM 3.1. Given u > 0 there is an s > 0 such that

Pt € [0,17: wh/® < Z(t+h)-2(t) < sh'/* vh € (0,1]) > 0.



Once the analog of Lemma 2.2 has been established, the proof of Theorem
3.1 follows in exactly the same manner that the proof of Theorem 2.] followed
from Lemma 2.2. The next few lemmas are part of this analog.

Given s > 0, we decompose Z(t) = Ud(t) + MG(t) + LG(t) where UG, M6,
and L% are independent processes, each with stationary independent increments

and for which the logarithms of the characteristic functions of Ud(l), Ma(l),

© . § . .
and L5(1) are [(e"W*-1)ax/x**, [ (7o 2 yau/|x|**, and
) -8 T+x

/ (e1ux-1)dx/|xla+], respectively. Thus v, M, and L® are the processes

-0

composed of the jumps of Z of sizes exceeding 6,'1n [-6,6], and less than -6,

respectively. Again, we consider o to be fixed.

LEMMA 3.2. Given e, § positive,
(i) pud(1) = 0) = P(L®(1) = 0) = ¢(8) > 0, and

(11) P(supy g [M2(2)] < €) = k(s,¢) > 0.

PROOF. Clearly c(8) = exp(-ft'(]+“)dt). To prove (ii), note that if

v - 5
k(s,e) = 0 for some §,e positive then k(y,e) would be 0 for ally > 0, since
if y < §, there is a positive probability that the process Ms(t) - My(t),

0 <t<1, is identically 0, and this process is independent of w(t), 0O<t<1.

But M (t), O <t <1, is a martingale, and thus using a standard inequality of

Doob ([2], p. 317), applied to continuous parameter martingales, we get

|A

P(supg . IW(8)] 2 &) < & 2E(sup 4 W' (6))°

ae"2EW (1)2

i A

2 Y -
=472 7 X% | x| (1*a) 4y 5 0 as y + 0,
-y

so that k(y,e) is not zero for all y > 0, establishing (ii).



LEMMA 3.3. Let 8 <u < t. Then
t
p(u < 13(1) <t) s c(e) [x (TFoday,
u

where c(s)is as in Lemma 3.2.

PROOF. The probability that UG(t), 0<t<1, makes exéct]y one jump of size

- (T+a)

between x and x+dx, if x > &, and no other jumps, is c(&8)x dx. Thus

t \ ,
c(s) f x'<]+a)dx is the probability that US(]) equals the ~onTy jump made
f _

by UG(t), O<t<1, and that this jump has size between u and t.

Now for x > 0 Tet P( ) and E( ) denote probability and expectation

XY
associated with Z(t) given Z(x) = y, and let P and E continue to stand for -

Xs¥

. . _ _ a
P(O,O) and E(O,O)' Let u > 1 be considered fixed, and put v v(x)__g (x/2u)

and a = a(x) = v(x) - 1.

LEMMA 3.4. There is a positive constant n = n(u) such that if x > 3u

and y > 1 then

-1 -1 - -
(3.1) P(],X)(Z(v)—xe(xy-Z X, 2Xy+2 'X), sup ]EﬁfyZ(t)<Z(v)+2 X5

. -
inf I<tev Z(t)-x > x/2) > ny .

PROOF. The process Z(t+1)-x, t > 0, has the same distribution under

P<] x) that Z(t), t>0, has under P. Using this and the scaling property of

Z(t) we get that the probability in (3.1) is equal to

1

(3.2) P(z(1) € (2™ (xy-2"Tx) a7/ (2xy+27 ),

Z(t)’>-a-]/a

supg g Z(1) < (1) + a ey, LI x/2).

Now, since x > 3u, we have 2(x)<a<v(x), where ¢(x) = x®,"%(27*-37%).

For any 8 > 0, recalling that Me, u®

, and L% are independent, we have that
the probability (3.2) is at Teast '

-1/a

(3.3)  PUO(1)E (a0 xy, 2a-M%y)) P(L%(1)=0) P(SUPg. 41 | Me(t)| <a™ ' %/4)).



“oysay = k(eaw/2),

(x)'1/uxy > 6, Lemma 3.3 gives that the first is

The third of the probabilities in (3.3) is at Teast k(e,v(x)
the second is c(8), and if v
at least

20"y

[ ¢ (TFedge

infy e [ (x),v(x)1¢(®)
b'1/“xy

This infimum equals c(e)ay ®, where A is a positive constant depending only on

)7H/e (07

u. Thus, by taking & = v(x X = 2u, guaranteeing v xy > 6 since y > 1,

we have that n may be taken to be k{2u,u/2) c(Zu)2 A.

LEMMA 3.4. Given K> 0 there existse= e(u,K) <= and p = p(u,K) € (0,1)

such that, for x > 3y,

(3.4) E( )Z(v)“pI(pv]/“<Z(t)<:ev]/a for all te[l,v], Z(v)>’3ﬂv]/“)_i Kx®P

1,x

PROOF. We first observe that, if Z(1) = x and infy oy Z(t)-x>-x/2,

then Z(t) >uv/® = x/2 for 1<tev. Let

H=Z(v)I( Z(t) < Z(v)+x/2, 1nf1<t<VZ(t)-x> -x/2).

sup1_<_t_<_v
Then (3.1) implies that

P(],x)(xy-<H-<4xy) i_ny'd for each y > 1, giving

k k

x<H< 4k+]x) > nd™®

P(1,x) (4 for k > 0.

Let m be the smallest integer such that 4"x > 3ﬁv1/“. Then
E(i,X)H“pI(4mx~<H-<4nx)

n-1
> Z (4kx)ap 4_0Lk N

k=m

____nXOLp ni] (4oc(p-1 ))k.
k=m
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k

First pick p to be that number in (0,1) such thaty } (4a(p-1)) = 2K, and

k=m

N N N N N-]
then let N = N(u,K) be the smallest integer suchthatn } (40‘(p']))k > K.

k=m
Define e by ev]/“ = 4Nx+(x/2). Then (3.4) holds, since for this choice of

N

e, the expectation in (3.4) is at least as large as E(] X)Ho‘pI(4mx < H < 4"%),

b

in fact there is a pointwise inequality between the random variables involved
in these expectations.

We need a version of (3.4) for Z given Z(s) = x. It is the following.

1/a'

Let s > 0 and x > 3us Then for K> 0 and p = p(u,K) and e = e(u,K) as in

the last lemma,

1/ 1/a

Pa R
(3.5) E(S,X)Z(v) I(SUP55ﬁ5yz(t) <ev '™, 1nf55ﬁ§yz(t) >uv ',

Z(v) > 3uv'/%) 5 Kx@P,

Inequality (3.5) can be proved just as (3.4) was proved, or can be derived

from (3.4) by using the fact that, under P( » the distribution of Z(t+a),

a,b)
t > 0, is the same as the distribution of b + Z(t), t > 0, under P, and

changing scale.

Given K > 0 define times yi(u,K) = yi, 1

;
Y] = v(Z(1)) = (Z(1)/20)%f 3u < Z(1) < e, v = v Otherwise, and, for

| v

0, by Yo =1,

k>1, Yk+1 = V(Z(Yk)) on {Yk > Yk-1° UV(Yk)]/a < Z(t) < eV(Yk)]/u for all

te Dnpomds 2(v) € Gun® e /)30 and v g = vy otherwise. Here

1]

e = e(K) is as in the last lemma. Let y = 1imk+mYk and N = sup{k: Ty > yk_]}.

t]/a

Then vy_4 < V(u,K) =V =inf{t > 1: Z(t) ¢ (ut]/“,(ez/Zu) }, and furthermore

TN-1 3_(2u/e)“yN. We will show that, for large enough K, EvP = «, where
p = p(u,K) is as above, which implies EVP = . From this point the proof of
Theorem 3.1 can be completed in exactly the same way the proof of Theorem 2.1

was finished off after Lemma 2.2 had been proved.



and

Thus, if K > 28~

1
Let & = (1-(2/3)%). Then (v, 177 ) 2 Bvpyq ON {ypyq > ¥, }s so that

E('Yk+'|‘Yk)p > BEYE+]I(Yk+1 > Yk)

BE(Z(v, )/2W)*P Ty 07 > 7,)
= BE(Z(y)/20)%PL(yy > v _pour < Z(t) < en)/* for vy <t <,
Z(r) € Gun/®s ex/®)

BEE[(Z(Yk)/Zu)apI(Yk > Yk_1,uvl/a < Z(t) < eYl/a for v 1 <t <7

1 1 YA
Z(yk) € (3qu/a, eYk/a)IEYk_])

BEL(v > Mo DE(y 70y, ) Z(V(Z0r1))/2m)%

Yk=125\Yk-1

I(uV(ZYk_]) < Z(t) < ev(ZYk_]) for Yi-1 <t f_v(Z(Yk_])),

Z(v(v,_1)) € Guv(Zlr_ N evz(y, ')

iv

BEL(v, > vy _1)KZ(v,_1)*P(21)™  (using (3.5))

BEI(y, > Yk_])K(ZuY;/a)ap(Zu)_ap

|v

Ke EvRI(y, > v, _7)

v

__KBE(Yk'Yk_])p-

1, then E(yp,q-v, )P > 2E(v, vy _q)P 5o that E(y,,q-v, )P » =

and thus Eyp =,

4, HAUSDORFF DIMENSION. Let X(t), t > 0, be a strictly stable sub-

ordinator of index d, as in Section 2. Put A = {t: lim infh+0(X(t+h)-X(t))h'

= + »}, In this section we prove

1/0
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THEOREM 4.1. The Hausdorff dimension of A is almost surely zero.

The reader has now seen that none of the times t which were found
to show the truth of Theorem 2.1 are in A. The analog of Theorem 4.1 for
symmetric stable processes is true. For exponents o € (0,1) this follows
immediately from Theorem 4.1. We do not give the proof of this analog,

since it closely parallels the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. For ¢ > 0 Tet

A -1/a

c > ¢}, and let

{t: Tim infh+O(X(t+h)-X(t))h
inf{t > 1: X(t) 5_c(t—1)]/“}. Let the Hausdorff dimension of a set

T
Cc

B be denoted by dim B. Theorem 4.1 will be proved by showing that, given

6 > 0, there is a c such that dim A < s. To do this we employ

LEMMA 4.1. Given p € (0,1) there exists ¢ € (0,») such that

ETE < o,
Before proving Lemma 4.1, we will show how it implies Theorem 4.1.

Let, for each positive integer j, Ag = {t > 0: X(t+h)-X(t) > ch]/a for

1

0<h<j '}. Wewill show that ExP < » implies that dim A < 1-p a.s.,

which immediately gives dim AC < 1-p a.s. Since the proof of
this is the same for all positive integers j, we prove it for j = 1. To
do this it suffices to show that dim(Al n [0,1)) < 1-p a.s.

We note that if I = [a,a+n_]) is a subinterval of [0,1) of length

n_], then

1/a

AN T # 01 e U, X > clt-(an™ )% (amn™) < £ < atl,

and changing scale gives

1

P(AC

ni#o §_P(TC > n) f_n_pETE.

1

Thus, if N is the number of intervals of the form [jn” ,(j+1)n']), 0 <Jj<n-1,

which have nonempty intersection with Al, we have EN g_nn'pErg. Using the
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above intervals as a covering of Al, we have Al covered by N intervals

of length n T,

The sum of the lengths of these intervals raised to the
8 power is n'SEN, so the expected sum goes to 0 as n goes to « whenever
§ > 1-p, which easily gives dim(Al n[o,1)) < 1-p a.s.

Now we turn to the proof of Lemma 4.1. Let T_ = inf{t > 1: X(t) 5_ct]/“}.
We will show that, given p € (0,1), there is a k = k(p) such that ETE < w.
Since ik' does not exceed T Plus a constant if k'>k, this will establish
Lemma 1.

First we note that EX(])O‘p <o if p < 1. One way to show this is to
divide X(1) = B+L, where B is the sum of the jumps of X(t), 0 <t<1, of
magnitude exceeding one and L is the sum of the jumps of magnitude in (0,1).

Then EL < =, and EB®P? < Exj®P < «, where the sum is taken over all the

jumps j making up B. Now given x and c positive, we have

E(],X)X(x“)“pI(X(xa) > ¢x)

=E(X(x*- 1)+x)*PI(X(x%-1)+x > cx)

< E(X(x*)+x)*PI(X(x*) > (c-1)x)

< 2%PEX(x*)PT(X(x%) > (c-1)x) + 2%Px ®PI(X(x*) > (c-1)x)
< 2%PxOPEX(1)®PT(X(1) > c-1)+2"Px*Pp(X(1) > c-1).

Pick k = k(p) so large that this last quantity does not exceed
x*P/3 for ¢ = k, and assume k > 2%

Now let ny = 1, and n; = X(1)% if X(1) > k, ny = 1 otherwise, and,

. . 1 .
in general, n.,, = X(ni)a if n; > nyuq and X(”i) > kni/“, Nis1 = N4

otherwise. Let n = 1im nis and note that n z_Tk. Now
p
i+]

1
= EX(n)*P1(X(ng) > knd/% nipq > )

E( )p < En I(X(ﬂi) > kn}/a, Nit] > n:)

i+1704 i
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= EE(X(n1)apI(X(ni) > kn}/a, Nigq > ni)lgni_])

- ap 1/

- EI(ni g ni—])E(nj_])’X(ni_]))x(ni) I(X(ni) > kni 0L)
f_EI(ni > ni_])x(ni_])ap/3

< EI(n; > n;_1)nb/3

= 2E(n-i'n-i_'|)p/3,

the Tast inequality holding since n;-n;_; > n./2 on {n; > n;_;}, since

Lymng )P <1+ T Elngeny )P

k > 2% Thus EP = E(1 +
n 1 i=

i

<1+ T (2/3)Em-1)P < o,

i=]
Acknowledgement. The author thanks Ed Perkins for pointing out the prob-
Tems in this area, and Herman Rubin, for a number of discussions about

stable processes.
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ON THE PATHS OF SYMMETRIC STABLE PROCESSES
BY
BURGESS DAVIS'

ABSTRACT. It is shown that if X(r), 1 = 0, is a symmetric stable process of index a,
0 <a<2, then sup liminf, o(X(r+ h)— X(t©ZWh™'/* = w0 as. This settles a
question of Fristedt about strictly stable subordinators.

1. Introduction. This paper studies the paths of stable processes, that is, processes
with stable, stationary and independent increments. We will always work with the
version of a process which has right continuous paths with left limits, and rule out
the trivial case that a process is identically zero. Edwin Perkins has recently proved,
in [7], that if Z(¢), t = 0, is a symmetric stable processes of index a € (0,2), then
there is a constant ¢, € (0,00) such that
|Z(t+h) = 2(1)] _

Az o

(1.1) inf lim sup
! hi0

¢, as.

Here we show

Z —
(1.2) sup liminf (t+h) Z(t):oo a.s.

. k10 h'/«

This contrasts with the @ = 2 (Brownian motion) case. If W(z), ¢t = 0, is a standard
Wiener process then both

| W(t+h) = W)l _

(1.3) 1r{1f hr}r}llsoup i 1 as.,
and

W+ R)— W(t)
(1.4) Sl{lp lnglﬁ)nf i =1

Equality (1.3) was proved independently by P. Greenwood and E. Perkins [5] and by
the author [1] and is a refinement of results of Dvoretsky [3] and Kahane [6].
Equality (1.4) is proved in [1].

Let X(¢), t = 0, be a strictly stable subordinator, that is, a stable process satisfying

Ee M) — PR
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786 BURGESS DAVIS

for a positive scale constant ¢, and an index constant a € (0, 1). Strictly stable
subordinators have nondecreasing sample paths which increase only by jumps, and
every increasing stable process Y(t), ¢ = 0, can be decomposed Y(r) = H(r) + ki,
where H(1) is a strictly stable subordinator and k > 0. Bert Fristedt has shown [4]
that, if X(1) is a strictly stable subordinator of index a, then there are constants ¢,,
€3, ¢4 in (0, c0) such that

| X(e + ) = X()| _

1.5 inf lim su ¢, a.s.,
(12) ‘ /zqop ||/« ’
e X(t+h)— X(1
(1.6) inf lim sup ( ) () _ cy as.,
! hi0 hl/a ’
and
X(t+h)— X(H
(1.7) sup liminf X ) ()] =¢, as.
. h=0 |h|'/®

Fristedt did not decide whet};er the “natural” (1.8) holds. Equality (1.2) shows it
does not. Since the difference of two independent identically distributed strictly
stable subordinators is a symmetric stable process, (1.2) implies

L X(e+ ) — X(1)
(1.8) Sl:p 11r}¥1l10nf Pz = o0

a.s.

Even though (1.8) follows from (1.2), we prove it separately, and first, in §2, since
this proof has the ideas but not the technicalities of the proof of (1.2). The proofs use
techniques from [1].

The proof of (1.8) does not show there is almost surely a time s such that
liminf,, (X(¢ + ) — X(s))t™'/% = co, nor does the proof of (1.2) give this informa-
tion about Z(1). We cannot decide whether there are such times and do not even
have a guess. We do show, in §4, that the Hausdorff dimension of these times is

almost surely zero.

2. Strictly stable subordinators. In this section X(7), ¢ = 0, will be a strictly stable
subordinator of index a € (0, 1), which is considered fixed. For definiteness we take
the scale constant ¢ to be 1. Define %TIX =4, for t>0, to be the o-field
o( X(s), 0 <s <1). Frequent use will be made of the scaling property of stable
processes, which is that, for any positive constant k, the process k~'/*X(kt), t = 0,
has the same distribution as the process X(¢), t = 0. We will also need the following

welll-known estimate on the tail of X(1). There is a positive constant u such that

(2.1) liminf P( X(1) > y)y* = p.
y—o0

This follows from the fact that the Lévy measure of X(1) is a constant 6 times
=0+t > 0) dr, so that the probability that X(z), 0 <t <1, makes a jump of
magnitude exceeding x is 1 — exp(—[20:™ *® dt) ~ px~*, where p = 0/a. In this
section we prove the following theorem.
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THEOREM 2.1. Given A > 0 there is an r < oo such that
(22) P(Are[0,1]: An"/e< X(¢ + h) — X(t) < rh"/* for all h €(0, 1]) > 0.

Theorem 2.1 clearly implies (1.8), since the probability in (2.2) is the same if
“3r €10,1]” is replaced by “3r € [a, a + 1]”. It also gives half of Fristedt’s result
(1.6), the “ < oo™ half.

PrROOF. Given 0 <a < b and k a positive integer let E(a, b, ky={3r €10, 1]:
ah'/* < X(1 + h) — X(t) < bh'/*Vh € [k}, 1]}. If some sample point w is in
E(a, b, k) for infinitely many k, that is, if for a subsequence k., i =1, there exist
times 1(k;) satisfying
(2.3)  an'" < X(1(k;) + k) — X(e(k;)) < bh'/* forall hin [k, 1],
then if 7(w) = 7 is any cluster point of the #(k,), i = 1, it is not hard to show that
(2.4) ah'/* < X(7+ h) — X(7) <bh'/® forall hin [0, 1].

Note that both the upper and lower bounds in (2.3) are needed to get the lower
bound in (2.4). The upper bound-guarantees that the times t(k;) do not increase to
the time of a jump of X(¢). Thus, to prove (2.2) it suffices to prove that given A > 0
there is » << oo such that

(2.5) limsup PE(X, r, n) > 0.

H—0oc

For0<a<bletT,, = inf(1> 1: X(r) & (ar'/" b'/*)},
LEMMA 2.2. Given XA > 0 there exists r < oo and a 2 € (0, 1) such thar ET{, = oo.

PROOF. We consider A as fixed, and put 6 = 27'(2* — 1)/« Let p (0,1) and
¥ < oo satisfy

E[N(yX(1) + M)* = 1]71QA < yX(1) + A< y) > 2,

for all constants y in [, 1]. It is not difficult to show using (2.1) that there exist such
p and y. Note (2.1) immediately gives EX(1)* = oo, so that EX(1)* > 0 asp 1 1.
Define stopping times 7, i =0, by 7, = I, = (X(D)/A) if X(1) € 2A, ),
7 = 1 otherwise, and, for i=>2, 7, =1_, if either Ty = Ty or if X(7._|) &
ALY, yrl/F), and -

7= (X(7,_,)/A)°%, otherwise,

and put 7 = lim,_ ., 7, and N = inf{n: 7 = 7,}. We have r = Ty < (y/A)*ry_,, and
Tyv—) < Ty, where r = y2/A. Thus, to show ET{, = co it is sufficient to show
E7? = o0, which will be accomplished by showing that E(r, — 7,_ )" - o0 as
i — co.
Nowon {7, > 7,_,},
X(m) = X(1_)) + (X(7,) — X(me—y)) = At/ + (X(7) — X(7_1))

=1/%(\ +sZ),
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where s = (1, — 7,_)"/%/7)/* and Z = (X(7,) — X(7,_))/ (7 — T )/ Here
# <s <1 since 7, = 2°r,_,, and, since 7, is &,  measurable, so is s. Furthermore,
given 7, > 7,_,, Z is independent of %,  and has the same distribution that X(1)
has. We have

E(Tk+1 - Tk)p = E((X(T,‘,)/}\)“ - Tk>p1(X(7k) S (2}‘7/1/&~ J’T/:/a))[(q'k = Tk—l)
= E(r(A +sZ2)"N — 7)) I(A +sZ € N,y (7, > 7)
= EE(7, (A +sZ)"N = 7,) I(A + 5Z € (2X, yWI(7 > 715, )

= Expl(r, > 1 )E((N+5sZ)"N" = 1)"I(A + sZ € (2X, )|, )

TT-1

= EvfI(1, > 7, _ 1=2FE(r, —1._).
kAN Tk k-1 k k—1

This implies E(7, — 7,_,)? — 00 asi — 0.

The next lemma, which we. have not been able to find elsewhere, has a standard
renewal type proof which is implicit in the proofs of Lemma 2.1 and the ¢ > 1 part
of Theorem 2.1 of [1].

LEMMA 2.3. Let Y = Y|, Y,,... be independent and identically distributed nonnega-
tive random variables such that EYF = co for some p € (0,1). Put S, = X[_\Y;, and,
fort=0,let N(Y) = inf{n: S, > t}. Then

lim sup P( Yy, (v, > k) > 0.

k— o0

Now define random variables W,, i =1, by W, =T, ,, and, for i>1, W, =
inf{r=W,_, + 1. X(1) — X(W,_)) & (M1 — W,_ DV r(t — W,_)'/®)). Here A is
arbitrary and r = r(A) is the r of Lemma 2.2. Let Z, = W, — W,_,, i = 1. Then by
scaling, we get P(Zy, (7, = k) < PE(A, r, k), and this, together with the last lemma,
gives (2.5).

3. Symmetric stable processes. In this section (1.2) will be proved. The outline of
the proof is the same as that of the proof just given, but new difficulties arise
because we are no longer dealing with increasing processes. For a number a € (0, 2),
let Z (1) = Z(t), t = 0, be the symmetric stable process for which the characteristic
function f of Z(1) is given by i

(e“""—— _iux dx
T+ x2) x| e

tog f(u) = [

-0

Any symmetric stable process of index a is identical in law to a constant multiple of
Z(1). We will prove the following theorem.

THEOREM 3.1. Given p > 0 there is an s > 0 such that
P(ar € [0,1): ph'/e < Z(t + h) — Z(1) < sh'/*Vh €(0,1]) > 0.
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Once the analog of Lemma 2.2 has been established, the proof of Theorem 3.1
follows in exactly the same manner that the proof of Theorem 2.1 followed from
Lemma 2.2. The next few lemmas are part of this analog,

Given 8 > 0, we decompose Z(1) = U®(t) + M%(t) + L%t) where U®, M® and L%
are independent processes, each with stationary independent increments and for
which the logarithms of the characteristic functions of U3(1), M?(1) and L5(1) are

iux
1+ x?

. 8 .
foo(el[lx . 1) dx/xa-(—l, / (elu.r -1 = dx/|x|"‘“,
8 -8

and

-,
f (elu,\'_ 1)dX/lX[a+l,
-0
respectively. Thus U®, M® and L? are the processes composed of the jumps of Z of
sizes exceeding 8, in [-6, 8], and less than -8, respectively. Again, we consider « to
be fixed. .

LEMMA 3.2, Given ¢, 8 positive,
(i) P(UP(1) = 0) = P(L3(1) = 0) = ¢(8) > 0, and
(i) P(supo<,=1 | M(2) <€) = k(8, &) > 0.

PrOOF. Clearly ¢(8) = exp(-[5°r""'** dr). To prove (ii), note that if k(8, &) = 0
for some &, ¢ positive then k( y, ¢) would be 0 for all y > 0, since if y < §, there is a
positive probability that the process M3(t) — M*(1),0 <1< 1, is identically 0, and
this process is independent of M*(z),0 <t < 1. But M*(1), 0 < 1 < 1, is a martingale,
and thus using a standard inequality of Doob [2, p. 317], applied to continuous
parameter martingales, we get

2
P( sup Wy(t)l?e) <e2E( sup M(1)) < 4e?EM(1)

(ESE O=<r=<1

¥
= 45‘2f X x[M®dx -0 asy — 0,

-
so that k( y, &) is not zero for all y > 0, establishing (ii).
LemMAa 3.3, Let 6 < u < t. Then

Plu<U%(1)<t)= c(6)/,x'“+”) dx,

where c¢(8) is as in Lemma 3.2.

PrOOF. The probability that U°(z), 0 < < 1, makes exactly one jump of size
between x and x + dx, if x > 4§, and no other jumps, is ¢(8)x '+ dx. Thus
¢(8)/;x "% dx is the probability that U%(1) equals the only jump made by U%(z),
0 <t =<1, and that this jump has size between u and ¢.
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Now for x = 0 let P, ,, and E, ,, denote probability and expectation associated
with Z(¢) given Z(x) = y, and let P and E continue to stand for P, and E . Let
1= 1 be considered fixed, and put v = v(x) = (x/2p)* and a = a(x) = v(x) — L.

LEMMa 3.4. There is a positive constant 1 = 1) such that if x=3pandy =1 then

(3.1) P(I_X)(Z(u) —xe (-2 2xp + 27%),

sup Z(t) < Z(v) + 2%, inf Z(1) — x> x/z) S
I=r=<o t<r=v
ProOF. The process Z(z + 1) — x, 1 =0, has the same distribution under 7, .,
that Z(1), t = 0, has under P. Using this and the scaling property of Z(t) we get that
the probability in (3.1) is equal to

P(Z(l) € (aV/*(xy — 27'x), a™V/*(2xy + 27'x)),
(3-2) sup Z(1) < Z(1) +a™ /% /2, mf ]Z(t) > —a‘[/“x/Z).

o=<r=<l

Now, since x = 3, we have [(x) < a < v(x), where /(x) = xu (2% — 37*). For
any 8> 0, recalling that M’ U’ and L’ are independent, we have that the
probability (3.2) is at least

sup |MO(1)|< a“/"x/4).

0=r=<l

(3.3) P(U°(1) € (a~"/*xy,2a"/*xy))P(L°(1) = O)P(

The third of the probabilities in (3.3) is at least k(6, v(x)™"/*x/4) = k(6, p/2), the
second is ¢(#), and if v(x)™"/%xy = 6§, Lemma 3.3 gives that the first is

2p~V %y
inf c(0) / Wm0t gy
b~

be[I(x). v(x)) Vayy

This infimum equals ¢(6)A y~% where A is a positive constant depending only on u.
Thus, by taking 6 = v(x)™"/%x = 2u, guaranteeing v(x)™'/“xy > 6 since y > 1, we
have that 7 may be taken to be k(2u, 11/2)c(2p)A.

LEMMA 3.5. Given K > 0 there exists e = e(p, K) < 0 and p = p(p, K)e (0,1
such that, for x = 3p,
(3.4)

Eq o Z(0) P 1(po'/® < Z(1) < ev'/® forall 1 € [1,0], Z(v) > 3pv'/*) = Kx*7.

PrROOF. We first observe that, if Z(1) = x and inf <, Z(t) — x > —x/2, then
Z(t) > po'/* = x/2for 1 <t <wv.Let

sz(o)l( sup Z(r) < Z(v) +x/2, inf 2(1) = x> x/2).

I<r<vp
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Then (3.1) implies that

P(],x)(x)’ <H<d4xy)=qy® for eachy =1,
giving
Py o x < H <4k x) = qpa o forf >0,

Let m be the smallest integer such that 4”x > 3u0'/®. Then

n—1 n—1
B H7I@™ < H<4'%) > 3 (4%) 4%y = yxor 3 (420 0)*

k=m k=m

First pick p to be that number in (0, 1) such that n3%_, (4°?~ V)% = 2K and then
let N = N(p, K) be the smallest integer such that n2}Z,1(4*?~ D)% > K. Define e by
ev'/* = 4"x + (x/2). Then (3.4) holds, since for this choice of e, the expectation in
(3.4) is at least as large as E, H*I(4"x < H < 4"x); in fact there is a pointwise
inequality between the random variables involved in these expectations.

We need a version of (3.4) for Z given Z(s) = x. It is the following: Let s > 0 and
x = 3ps'/® Then for K >0and p = p(p, K) and e = e(p, K) as in the last lemma,

(3.5) E(S‘X)Z(v)’"’]( sup Z(1) < eo®, inf Z(1)> po'/,

<
s<r<vp SSIsY

Z(v) > 3,11,01/"‘) = Kx®P,

Inequality (3.5) can be proved just as (3.4) was proved, or can be derived from (3.4)
by using the fact that, under P ,.1y> the distribution of Z(z + a), t = 0, is the same as
the distribution of 4 + Z(¢), t = 0, under P, and changing scale.

Given K >0 define times vy,(g, K)= Y 20, by yvy=1, v, =0(Z(1)) =
(Z(1)/2p)*if 3u < Z(1) < e, y, = v, otherwise, and, for k = 1, Ye+1 = 0{Z(y,)) on

{Yk > Ye—1s ,U«U(Yk)l/a < Z(t) < ev(Yk)l/a forallz € [Yk—p Yk],
Z(v,) € (3pvi/*, evi’®)},

and vy, , = y, otherwise. Here e = e(K) is as in the last lemma. Let y = hmy v,
and N = sup{k: v, > v,_,}. Then

Yoor < V(p, K) = V=int{r=1: 2(1) & (', (e2/20)1/%)}.

and furthermore yy_, = (2p/e)*yy. We will show that, for large enough K, Ey? =
oo, where p = p(u, K) is as above, which implies EV” = 0. From this point the
proof of Theorem 3.1 can be completed in exactly the same way the proof of
Theorem 2.1 was finished off after Lemma 2.2 had been proved.
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Let 8= (1 — (2/3)"). Then (Y41 — Y&) = B¥is1 00 {Yer1 > Vi) SO that
E(Verr — %) Z BEY I (Ve > W) = IBE(Z(Y/\-)/zﬂ)apI(YkH > ;)
= BE(Z(v)/21) T I(ve > YVemr» v/ < Z(1) < eq/®
for ve_ 1 <1 <7 Z(v) € (37, evt/*))
= BEE[(Z(v)/20) " 1%, > Yee s pY2/* < Z(1) < ev/

fory, | <t<yvy,,
and Z(v,) € (3pvi/* evl/)) 157 ]
= BEI(y, > yk*l)E(yb .,Z(yk,mZ(U(Z(Yk1))/2:“)”

I(po(z, )< Z(1) <eo(Z, )fory,_, <t<v(Z(y,-,)),

-1

Z(v(v,-1)) € (Buo(Z(ve— )", eo(Z(v,-))""))
= BEI(v, > Yi— )KZ(vi— )™ (2p)™"  (using (3.5))
= BEI(y, > v ) K(2pv)/*)™ 2u)™"
= KBEY/I(v, > vi—1) = KBE(y, — v,—1)”

Thus, if K > 287", then E(Y,.; — )7 > 2E(v, — V)7 so that E(y,py — %) =
oo and thus Ey? = co.

4. Hausdorff dimension. Let X(1), t = 0, be a strictly stable subordinator of index
a, as in §2. Put 4 = {r: liminf, o( X(¢ + k) — X(:))h"'/* = +co}. In this section
we prove

THEOREM 4.1. The Hausdorff dimension of A is almost surely zero.

The reader has now seen that none of the times ¢ which were found to show the
truth of Theorem 2.1 are necessarily in 4. The analog of Theorem 4.1 for symmetric
stable processes is true. For exponents a € (0,1) this follows immediately from
Theorem 4.1. We do not give the proof of this analog, since it closely parallels the
proof of Theorem 4.1.

PROOF OF THEOREM 4.1. For ¢ > 0 let A, = {#: liminf,  o( X(¢ + h) — X(:))h™'/*
> ¢}, and let 7, = inf{z = 1: X(¢) < c(r — 1)"/}. Let the Hausdorff dimension of a
set B be denoted by dim B. Theorem 4.1 will be proved by showing that, given
8 > 0, there is a ¢ such that dim 4, < 8. To do this we employ

LeMMA 4.2. Given p € (0, 1) there exists ¢ € (0, o) such that E1? < co.

Before proving Lemma 4.2, we will show how it implies Theorem 4.1. Let, for each
positive integer j, A = {t = 0: X(t+ h) — X(1) > ch'/* for 0 < h <j'}. We will
show that E7” < oo implies that dim 47 <1 — p as., which immediately gives
dim 4, < 1 — p a.s. Since the proof of this is the same for all positive integers j, we
prove it for j = 1. To do this it suffices to show that dim(4. N[0, 1) <1 —pas.
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We note that if / = [a, a + n™') is a subinterval of [0, 1) of length n~', then
{(Aini=o)c{Xx, —X>clt—(a+n") " (atn')<i<a+n'+ 1)
and changing scale gives
P(AANI+ @} <P(r,>n)<nrErr.

Thus, if N is the number of intervals of the form [ jn™",(j + Dn™"), 0<,j<n — 1,
which have nonempty intersection with A, we have EN < nn?Et?. Using the
above intervals as a covering of 4!, we have 4! covered by N intervals of length n™".
The expected sum of the lengths of these intervals raised to the § power is n °EN, so
the expected sum goes to 0 as n goes to co whenever 6 > 1 — p, which easily gives
dim(4. N[0,1)<1—pas.

Now we turn to the proof of Lemma 4.2. Let T, = inf{r = 1: X(¢) < ct'/*}. We
will show that, given p € (0, 1), there is a k = k(p) such that ET} < 0. Since 7.
does not exceed 7, plus a constant if k&’ > k, this will establish Lemma 4.2.

First we note that EX(1)*” < oo if p < 1. One way to show this is to divide
X(1) = B + L, where B is the sum of the jumps of X(¢), 0 <t <1, of magnitude
exceeding one and L is the sum of the jumps of magnitude in (0, 1). Then EL < oo,
and EB*’ < EZ j* < oo, where the sum is taken over all the jumps j making up B.
Now given x and c¢ positive, we have

Eq o X(x*)I(X(x*) > ex) = E(X(x* = 1) + x)*I(X(x* — 1) + x > cx)
< E(X(x*) 4+ x)*1(X(x*) > (¢ — 1)x)
<2WEX(x*)"I(X(x*) > (c — 1)x) + 2Px*PI( X(x*) > (¢ — 1)x)
< 2%x*PEX(1)YI(X(1) > ¢ — 1) + 2*x*?P( X(1) > ¢ — 1).
Pick k = k( p) so large that this last quantity does not exceed x*? /3 for ¢ = k, and
assume k = 2%

Now let ny = 1, and 7, = X(1)* if X(1) >k, n, = 1 otherwise, and, in general,
Moy = X(m)® if m; >n,,; and X(n,) > kn;”%, m,,, = 7, otherwise. Let n = lim U
and note thatn = T,. Now

E(n40 — m)p < E77ip+11(X(”’7i) > ke, M1 = 771)
= EX(n,)* 1(X(n,) > kn}/*, m,, > ;)
= EE( X(n,)" 1(X(n,) > knl/*, n,5, > 1,)1F, )

= EI(W,' > 7li~1)E(n,_l.X(ni_,)»X(ni)ap1<X(ni) > knl-/“)

< El(ni > ni—l)X(ni-—l)ap/B
< EI(TH > "’Ii—l)nip/3 = 2E(77i - 77,'—1)1)/3>
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the last inequality holding since n, — n,_; > n,/2 on {n; > n;_,}, since k > 2% Thus

oC [ee]
EP=E[1+ 3 (n,—n_)"| <1+ ZE(m—m_)

i=1 i=1

oc
<1+ X (2/3)E(n —1) <.
j=1
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