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Abstract

The data smoothing aspect of Stein estimates is explored in the
nonparametric regression settings. We show that appropriately shrinking
the raw data towards any linear smoother will provide a robust "smoother"
(which dominates the raw data and hence has a bounded maximum risk when

the average squared error loss is concerned).
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1. Introduction

1
In the estimation of the mean e=(e]""’6n) of an n-dimensional normal
random vector y=(y],...,yn)' with the squared length of the error vector as

Toss when the covariance matrix is an identity, it has been well-known that

the James-Stein estimate 6=(1- ”72 5
Lyl

) y (James and Stein 1961) improves the
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trivial estimate y when n>3. 8 shrinks y toward the origin 0. Practically,
the shrinking center need not be 0. For instance, if we feel that all ei

are close to each other, it would be appropriate to shrink y toward

n
I Yiseenoy I y:)'. In this case, the estimate would be -
———————7)(y—§3. Certainly, under the null case that all &; are equal

to each other, we should use gl But on the other hand, using g'may result a
huge bias when the null case turns out false (the supremum of the risks is «);
§ is safer than yl This robustness viewpoint can also be formulated in the
Bayes terminologies (Berger 1980). Plotting § and y separately against the
coordinate indices, we see that § is "smoother" than Ys in the sense that the
data points in the plot for'§ are closer to a straight line than those in the
plot for y-

This data smoothing aspect of Stein estimates wil],becomeﬁc1eapaﬁwwheﬁ~the

observations y;, ¥os....y, are made at the levels. XysX5s....X ;€ [0,1], with

gl

i =85t ey = flxg) + ey
where f is an unknown smooth function from a class. & Some appropriate
definitions of JFwill be given in the examples of Section 3. Here we only
require that & c:,3b = {f|f is a real function on [0,1] such that

lim L
n-> i

nM~Ms

_ 2 ) _
]f(xi)n,< ©}. For the settings of the parametric regression with p

regressors, : & is a finite dimensional space and 6 often lies in a p-

dimensional subspace of Rn; for the nonparametric regression settings, 3



has infinite dimensions and the range of ? is often the whole R". While
the arguments to be used will also apply to the parametric case, we shall
focus our attentions to the nonparametric settings hereafter.

Many nonparametric procedures have been proposed for estimating f,
including the kernel estimates, the nearest neighbor estimates, and the
spline estimates. The asymptotic properties for these estimates such as
consistency or convergent rates have already been widely studied. The readers

may find a number of references from Stone (1977); see also Agarwal and

Studden (1980), Craven and Wahba (1979), Spiegelman and Sacks (1980),
Stone (1980, 1982) and Rice and Rosenblatt (1981). Basically, these
estimates are Tinear in the yi‘s. Thus for such an estimate f(-), the
maximum mean average squared error

(1.1) sup  E{k (f(x;) - 1?’(Xi))z

fez (N

™=

1

is infinite except for the trivial case %(xi);yi, which is of course not
consistent asymptotically. But in view of the Stein effect we may still
hope that there may exist an estimate %n=(%(x1),...,%(xn))' which not only
dominates y (hence has bounded risks) but also is consistent in the sense

that for any f. ¢ &,
1 PR . ‘o
(1.2) w1 f,-f 115 > 0, in probabitity,

as n»e, where f =(f(x;),...,f(x ))' and [[-|| is the Euclidian norm
(Typically, we shall assume that the x sequence is dense in [0,1]).

If such an fn can be constructed, then it can be viewed as a robust
data "smoother" because it "smooths" the noisy data y (at Teast when n

is large) and does this in a totally safe manner (the risks are always



less than those for the raw data ¥). The general framework for the construc-

tion of %n will be given in Section 2. Under some conditions, fn will perform
asymptotically at least as well as the usual linear estimates. Section 3 provides
rsome examples. The case of the unknown variances, and some other remarks are

discussed in Section 4.

2. Main results.

The--main tool used here is due to Stein (1981); namely the estimate

of the form

(2.1) b=y - —— . Ay
oy C

where

(2.2) B={(trace A)-I-2A}" 'A%

and A is a symmetric matrix with

(2.3) 2A < (trace A)-I

in the sense that X(A), the largest characteristic root of A, is less than half of
the trace of A. Stein showed that this estimate dominates y and applied it
to the case of three-term moving averages for a suitable A. In this section,
we shall demonstrate that the desired robust smoother fn of Section 1 can be
constructed exactly in the same manner,

Consider a sequence of symmetric matrices {Mn}:=1 such that for any

'F}‘ 63 °

. 2 |
(2.4) Eﬁ{lfn-Mn yII" >0, asn»«,



Theorem 1. Assume that ej'S are i.i.d. with mean O and variance 1. Let %n
be the é of (2.1) with A = I-Mn and B determined by (2.2). Then the following
results, (i) ~ (iv), hold:
(i) Assuming the normality of Eils’ there exists an N such that for
n>N, %ﬁ dominates y.

(ii) '{fn} is consistent in the sense that (1.2) holds for any fé&&.
1

(ii1) Suppose that the convergent rate of (2.4) is no faster than n~'; that is
(2.5) 1im E|[f. - My |[% > 0.
e n nt

Then the convergent rate of (1.2) is no slower than that of (2.4) in the

sense that for any sequenée {yn} of positive numbers such that

. . )
(2.6) Yn Eﬁ'llfn'Mn¥|| +~0,asn->wo,
we have
(2.7) Y n']llf - f |]2 + 0, in probability as n » «
) n ~n ~n i

(iv) Suppose that the 4th moment of € is finite, and

1 1

(2.8) | tr Mﬁ + o and (n tr Mn)z/n" tr Mﬁ +~0,as n >,

Then we have

-1, = 2 -1, 2
(2.9) Oy - f = (ko (N My -

. -1 2
+ Op(En HMnX - fnll )

If in addition we assume _X(Mﬁ) / tr Mﬁ » 0, then

(2.9") n1E, - £, 110

. 1 _
fall” = (1 + 0 (1)n [y - £



Proof. (i) Write Aj=1 - Mn and ey = (g],...,; ).

Since n—]tr_Mﬁ »ijn']Iffn - Mng]]z, by (2.4) we have

(2.10) (n""Ttr M )% <0 tr M s 0.

Next observe that

(2.11) “(er MOYV20 om o (ee MBYV/2
n - n - n

in the sense of nonnegative definiteness. From (2.11), it follows that
n']lA(A 1

) <0+ 0 72007 Ter w2)V/2 0n the other hand nT'tr A =1 - n”ler M.
< n n n

n
Thus by (2.10) we see that (2.3) holds for n large enough where A = An' Now

applying Stein's result, the proof for (i) is complete.

(i) Due to (2.4) and the inequality that

- - 2 . ~1.2 - 2
(2.12) 0T 12 < -T2 e |

] "1 N '] "] . -
+2|1-(y'By) Gt By) T e [ [ IMy - 1]

it suffices to show that
(2.13) y'B y >~ 1 1in probability.

Now (2.10), (2.11) and the inequalities (1-x)!

| A

1+2x for small positive x and

(1+x)—] >1 - x for x >0,

T(2e]tr M|+ 2(tr M)V eV > 8 > (1T e M f-2n T (e ME) 2R,

n" V(1420
n — n

from which it follows that

(2.14) y'8,y-11 Ve 12

| A

-1
1Ay

2
2.

07 1Ay 12-1] + 2n7 @2+t W |+ 2(tr W)

I A HZ1] + 220+ 30 er )12

| A

-1
n ALY



Now in view of (2.10), it remains to show that

-1 2 . 1
(2.15) n [JAyl[]"-1+0 in probability.
Finally, since

(2.16) |1-n" +2|n" <My -f,e >

n- ~N n- ~Nn n

(2.15) follows from (2.4), Cauchy-Schwartz inequality and the fact that n-][|§||2+1.
(i1i) From (2.12) and (2.13), it is clear that (2.7) is implied by

v (1-yB y)2 -~ 0 in probability, which in view of (2.14) will follow

nt <nd
from |
-1 2,2 . ‘q s
(2.17) vt = n T [AYHT)T > 0 in probability,
(2.18) yhn_z >0
and
-1 2

(2.19) Yt Mo > 0.

Now (2.5) and (2.6) implies that

(2.20) Y >0,

which implies (2.18). (2.19) obviously follows from (2.6). Finally (2.17)
follows from (2.16), (2.6) and (2.20). This complete the proof of (iii).

(iv) First we shall prove (2.9). By (2.12) and (2.13), it suffices to

show that

)2

. -1 2 -1 2
(-y'By)™ = o (n "[{My-F 117 + En "My - £ 117)



which in view of the first inequality of (2.14), will hold if

(221)  (7IAy - HIE - )P = o e eV [a £ 112+ 07 Myt (1)
and
(2.22) 22 % Jte M|+ 2(tr MZ)”Z)2 o(n”er 1)

Now (2.22) clearly follows from (2.8) while in view of (2.16), (2.21) will

hold if we have

2.23) (7 lg, 1717 = o (n7Ter M)

(2.24) (n'1 <Mes §n>)2 = op(n-1trVMﬁ) >

and

(2.25) (<AL g = o (0T A 1)

Finally (2.23) follows from (2.8); (2.25) holds because E(n™ <A f ¢ >)°

= 0% £ 1175 (2.24) holds because

-1 -1

E(n <Mn§n’§n>)2 <Me , §n>)2 + Var n'] <Mn§n’ g >

(En nEn

(n_] )2 -2

< tr Mn +mn “tr Mg

where m denotes the 4th moment of € Therefore (2.9) is established. To
show (2.9'), we need to prove that of ][lM y-f, ll o, n-]I|Mn¥'fn||2)

which in turn will hold if

(2.26) Car My - £ 115 /7 EnTH Iy - £ 1157 > 0.

A straightforward computation shows that Var n_]IIM AR ||2

2072 (Var| M c]|° + Var 2<M e,A f >) < 20 % (m tr M} + 4|]Mn £ 118)

< 2002 tr 1+ 4] (A £, 112) < 2m2nid) (e D)7 (e W2+ 7 (a g 12



= 2(m2)a () (tr MO)™1 (E| My - £ |[)% . Therefore (2.26) holds, com-

pleting the proof. O

~Note that (2.8) implies (2.5) and in nonparametric regression (2.8) holds typi-

cally; see Section 3 for examples. Moreover,_x(Mﬁ) is usually bounded. In fact if
2

A(Mn) > 1 then the Tinear estima-te'MnXn is obviously inadmissible and can be improved
. ' n
upon by other Tinear estimates; for example, writing Mn= ¥ Aieie% with ei's
Ci=1 7T N

being eigenvectors with eigenvalues Ai's, and putting A; = min {1, max {Ai,O} },

n

it is clear that ( ) A
i=1

Quite often Mn may be asymmetric. Thus in what follows, we shall construct

)X_ improves Mnx.

a reasonable Stein estimate of the form similar to (2.1) for the asymmetric A.

For any nxn matrix A, let A{A} denote the maximum eigenvalue of {A%?—} ;

suppose that
(2.27) trace A > 2x{A} .
Define é by (2.1) with B determined by
(2.28) B=rlaA
where r is a positive number such that
(2.29) 0 <r < 2 [trace A-2){A} ].

Proposition 1. Assume that (2.1),(2.27) ~ (2.29) ho]d; Then é dominates y.

The proof of this proposition is given in the Appendix. A good choice of r

seems to be r = trace A - 2x{A}. Using this r and defining fn to be the é
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of (2.1) with A =1 - Mn and B determined by (2.28), Theorem 1 holds (where
2
n

the symmetric case.

M~ should be replaced by MﬁMn)' ‘We omit the proof because it is similar to

Before closing this section we introduce the following lemma which will

be used in Section 3.  The proof is given in the Appendix.

Lemma 1. For any nxn matrix A, the maximum singular value of A{i.e., the

square root of A(A'A)) is no Tess than A{A} .

3. Examples.

Example 1. Periodical f and the symmetrized nearest neighbor method.
Take & = {f|f is continuously differentiable on [0,1] such that
f(0)=f(1) and f'(0)=f'(1)}. Suppose XqSeen2Xg € [0,1] satisfy the condition

that as no«,

(3.1) max'{x1+1-xi|1=0,l,...,n-]} +0

where xOExn-1. Consider the following simple variant of the nearest neighbor
estimate of f(xi) defined by
k

(3.2) JEO an(‘y1'+j+‘y'i-j)

where wjn,j=0,...,k are nonnegative numbers such that

K 1
. % . T,
(3.3) I Win2

and we write yn+j=yj and y—j=yn-j' - Choose k suitably such that as n-e,
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(3.4) k » o,

(3.5) max {xi+k-x1|1=-k+],-k+2,...,n-k} -0,
and
(3.6) sup w. >0,

O<j<k 9"

i .= .- i<0.
where we write x,=x ..-1 for i<0

Denote the estimate of f defined by (3.2) by My for a symmetric matrix M-

Then under (3.1) ~ (3.6), it can be shown that (2.4) holds; see Priest]ey‘
and Chao (1972) for the related results. Thus using Theorem 1

we obtain a robust smoother by shrinking y toward the symmetrized nearest
neighbor estimate Mnyvsuitab1y. To'see how Targe N will be in (i) of
Theorem 1, we need to compare the trace and the maximum eigenvalue of

A=I-Mn. The following Temma is helpful. The proof is given in the Appendix.

Lemma 2. For the Mn defined by the symmetrized nearest neighbor estimates

(3.2) and (3.3) the maximum eigenvalue of Mﬁ is no greater than 1.

Using this lemma, (2.3) holds if n(]-2won) > 4. Moreover, since tr Mﬁ =

k
2n 7} w§0 > 2_]n(k+1)'], (3.1) and (3.5) imply that tr Mi + ®, To ensure
=0

J
(n_]tr Mn)z/n_]tr Mg ~ 0, we may impose the condition that k Woﬁ +~ 0, which
can be easily satisfied, for example by Won® k_].
Example 2. Nearest neighbor and kernel estimates.

Take & = {f|f is continuously differentiable on . [0,1]}. Consider the k -
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nearest neighbor estimate first. Denote the jth closest point to point X
among Xy .- sX, by Xj(i) (ties are broken in a systematic way). Given

k

a sequence of positive numbers Wi Wk such that )

L w1.n =1, the k -

nearest neighbor estimate for f(xi) is defined by
k
3. . Vo
(3.7) jZ1 "inl5(4)

where j(i) is the index such that Xj(i) is the jth nearest neighbor to X;
Assume that as n » =, {X;,...,X } gets dense in [0,1]. Choose k and

k
{W. }5_q such that as n - «, we have k > «, ]i?zn | X3 X (1) | -~ 0,

and sup {w; | i=1,...,k} > 0. Let My denote the estimate for f defined
by (3.7). It can be shown that th is consistent in the sense that (2.4) holds.
To evaluate x{I-Mn} , we find the following lemma helpful, whose proof is given

in the Appendix.

Lemma 3. Assume that Win > Wop 3_...3;wkn. Then the maximum singular value of
the matrix Mn defined by the estimate (3.7) is no greater than V2.

Using this lemma and Lemma 1,(2.27) will hold if n(]—w]n) > 2(1+ ¥2). How-
ever, if the weight sequence {win} i$ not decreasing, then it seems hard
to find a useful bound for X{Mn} . As in Examb]e 1, to ensure (n_]tr Mn)z/

n_]tr Mﬁ » 0, it suffices to have k'1w1?n > 0. Similar results apply to the

kernel estimates. We omit the details.

Example 3. Smoothing splines.
Consider the case that &= w§[0,1]={f|f has absolutely continuous
derivatives f,f',...,f(k']) and f% f(k)(x)zdx < o}, The smoothing spline

estimate for f is the solution solving
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n |
(3.8) Mi %— 1§](yi-f(x1))2 +h fé £ (k) ()24x

where the smoothing parameter hn is a positive number. Let Mn be the nxn

matrix such that MnX is the above smoothing spline solution evaluating at
X]’XZ”"’Xn' It can be shown that Mn is symmetric and for an appropriately
chosen sequence of h, (eig., h = O(n’2k/2k+])),M ny will be consistent (see,

for examp]e Wahba 1978). Thus Theorem 1 15 app11¢ab]e .J0 see when

(2.3) holds, we need to compute trace (I-M ) and A{I- M }. Some resu]ts from )
Demmler and Reinsch (1975) (see also Reinsch 1967 or Speckman 1981 a, b, 1982)

will be useful. Introduce the space of natural polynomial splines Sﬁ defined

by Sk = {f: f ¢ C2k'2[0,]], f is a polynomial of degree 2k-1 on (Xi’ x1+])

i=1,...,n-1, and f(k) = 0 on [O,X]] and [xn,]]}.

n n
Let {¢jn}j=1 be the eigenfunctions with eigenvalues {pJn}J =1

satisfying

1 " }
0 151 b30(%;) 0510 (%;) 65513
(k) (k) -
f (x) 43 (x) d x jnéjj‘
for j, j' =1,...,n, with
0=p_ln=...=pkn<pk+],ni..._<_pnn.

Here §.., is the Kronecker delta. Note that {¢. } =1 is a basis of Sﬁ,

JJ Jn'j=
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and the smoothing spline solution of (3.8) can be written as a linear

n
combination of ¢jn's. Moreover, it was shown that trace Moo=z (1+h p. )']

i=1 n in
n°nn .
and AM{I-M } = ——22_  Now we can obtain the following.
: 1+h p
n"nn
n-1
Lemma 4. Suppose Pan < i Pin: Then for any h, > 0, trace {I-M } >

i=1

ZA{I-Mn}.

‘The proof of this lemma will be given in the Appendix. Note that X{Mn} =]
and under a mild condition on the sequence’{xi}iz1 » (2.8) will hold if hn
is chosen appropriately, so that hn -~ 0 and n hl/Z'(+ » (see Craven and

Wahba (1979)).

‘4, Remarks.

Remark 1. If the common variance 02 of €'s is not known but we also observe

a real random variable S, distributed independently of y as 02 X2 Then

k.
Stein (1981) showed  that instead of (2.1), the estimate

(4.1) é =y - S _1 Ay

dominates X;:Simi]arly,}for:ésymmetric A, Proposition T holds if (2.1) is replaced
by (4.1). If as n>o, k> the consistency result of (ii) of Theorem 1 holds.
Moreover, if limrKE"_]l,Man - fnllz >0 (= «), then (iii) ((iv) respectively;)

of Theorem 1 also holds. This can be easily seen by observing that

n-]llfn - fn(oz)ll2 =zOp(k']), where %n is the estimate é of (4.1) and fn(oz)

is é of (4.1) with S/(k+2) being replaced by 02.
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Remark 3. It is well-known that Stein effect occurs for distributions other
than the normal one; for example, see Shinozaki (1984). But even if
Stein estimate (2.1), does not dominate y, it still has a

' 12
y'By y
the distribution has a bqunded density. Thus the advantage of %n over

y'A'Ay 5_§$%$%73) provided that

bounded maximum risk (because (

linear smoother Mny does not depend on the normality assumption.

Remark 4. The average squared error loss in (1.1) is reasonable in the
case that we are interested in predicting the values of f at XQoeoesXp
Suppose we are also interested in interpolating to other x values. Then

the Toss function would be different; e.g., it may be fé(f(t)-?(t))zw(t)dt
with a chosen weight function w(t) > 0. It is clear that with such a loss
function, any estimate (since it is based on only finitely many observations)

would have infinite maximum risk unless the 3 is either finite-dimensional

or bounded in certain sense (e.g., the second derivative of f is less than

a fixed number). Thus it is difficult to discuss Stein effect for such loss
functions. However, sincé for large n the average squared error loss

would be approximately equal to the integrated squared loss with w(-)

being the density function of xi's. Thus one can expect that an estimator
performing well under the average squared error loss would also do well
under the integrated squared error loss with the correct w(+). For the
Stein estimate constructed in this paper, we can easily interpolate to
other x values by using any spline interpolation method (e.g., connecting

by line segments), just 1ike one can use spline interpolation in any
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kernel (window) estimates, nearest neighbor estimates, or spline estimates.
Our restriction to the average squared error loss is mainly to avoid the

more complicated numerical analysis involved in doing the interpolation.

Remark 5. To select a good smoothing parameter (k in Examples 1 and 2,
or hn in Example 3), one may want to choose the one which minimizes the
unbiased estimate of the risk of fn‘ This turns out to be related with
the generalized cross-validation method; for details, see Li (1983).
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Appendix

Proof of Proposition. As in Stein (1981), we have

- 2 1
E6 - of|° = Ely - —— Ay - o]|
~ ~ ~ ¥B‘Y ~ ~
=n + Ee‘{¥ A A¥2 _ 2 trace A 4! A Bg}
-Ly'By)™ yBy (y'By)
=n+E { re _ 2r trace A | 4r(¥ A'A 2¥)} ]
- X'A'A¥ XlA'AX (X'A'Ay)
In view of (2.10), it suffices to show that
y'A'A'Ay
== < 2(A).
y'A'Ay
To establish this inequality, observe that
y'A'A'Ay Z'A'Z .
max “—————— < max ———= =>\{A;A}. O
y y'A'Ay Z 1'7

Proof of Lemma 1. Since the maximum eigenvalue of A'A is no less than the

maximum eigenvalue of (A'A+AA')/2, the desired result follows from the

fact that

1 1 ] 2
A AZAA - <A ;A> is nonnegative definite.
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: k
Proof of Lemma 2. For any y = (y],...,yn)'.e R", define }} = I
y 520
w. ( + ). Clearly, y° < ; we (y2 .+ y2..). Th
jn ‘y'i-j y1-+j . Y .Y.i =< 320 jn yi_j y1-+j . us
2_ N M K 2 2 N
| M YII = L Yyi=< L g ow, (ys . +ys..) = £ yS . This implies
n- 'i:] 1 i:] j:o Jn 1_\} 1+J -l___‘l 1

that the maximum eigenvalue of Mﬁ is no greater than 1. O

Proof of Lemma 3. This will be similar to the proof of Lemma 1. Defining

>3

K g
-2 L2
Yy = roZ ~an‘y‘"-i(j) <2 .

,
i=1 j=1 i=]

n
A

Vi by (3.7), we have [|M y||? =
~ 1

In o=
—

i

This implies that the maximum eigenvalue of Mr',Mn is no greater than 2. O

n-1
Proof of Lemma 4. Let p = % 0 Then trace (I-Mn)-X{I-Mn} =
i=1
n-1 o n-1 ol o]
h et — >h.s LLUE g AN O
N g=p Mhgegy =0 = I¥hye 1*hy - nT+hpenn

Acknowledgements. We thank Professor James Berger for very helpful

discussions on this work and a referee for useful suggestions that lead to

a better presentation.



19

References

Agarwal, G.G. and Studden, W.J. (1980). Asymptotic integrated mean square
error using least squares and bias minimizing splines. Ann. Statist.
§ 1307~1325.

Berger, J. (1980). A robust generalized Bayes estimator and confidence
region for a multivariate normal mean. Ann. Statist. 8 7161761,

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions.
Numer. Math. él, 377-404.

Demmler, A. and Reinsch, C. (1975). Oscillation matrices with spline smoothing.
Numer. Math. %&, 375-382.

James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc.
Fourth Berkeley Symp. Math. Statist. Probab. 1 361-380. Univ. California
Press.

Li, K.C. (1983). From Stein's unbiased risk estimate to. the mathod of.generalized
cross-validation. Technical report. Department of Statistics, Purdue
University. ‘

Priestley, M.B. and Chao, M.T. (1972). Non-parametric function fitting. J.
Roy. Statist. Soc. Ser. B gﬁ, 385-392.

Reinsch, C. (1967). Smoothing by Spline functions. Numer. Math. 10, 177-183.

Rice, J. and Rosenblatt, M. (1981). Integrated mean square error of a smoothing
spline. J. Approx. Th., 33 353+369.

Shinozaki, N. (1984). Simultaneous estimation of location parameters under
quadratic loss. To appear in Ann. Statist.

Speckman, P. (1981a). Spline smoothing and optimal rates of convergence in
nonparametric regression models. Ann. Statist., to appear.

Speckman, P. (1981b). The asymptotic integrated error for smoothing noisy data
by splines. Numer. Math., to appear.

Speckman, P. (1982). Efficient nonparametric régression with cross-validated
smoothing splines. Unpublished Manuscript.

Spiegelman, C. and Sacks, J. (1980). Consistent window estimation in
nonparametric regression. Ann. Statist. §, 240-246.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution.
Ann. Statist. g, 1135+1151.

Stone, C.J. (1977). Consistent nonparametric. regression (with discussion).
Ann. Statist. é, 5951645,




20

Stone, C.J. (1980). Optimal rates of convergence for nonparametric estimators.
Ann. Statist. §, 1348+1360.

Stone, C.J. (1982). Optimal global rates of convergence for nonparametric
regression. Ann. Stfatist. 10,.1040 ~ 1053.

Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding
against model errors in regression. J. R. Statist. Soc. B QQ, 3644372,




