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1. INTRODUCTION

Inequalities play a fundamental role in nearly all branches of mathe-
matics -- especially so in probability and statistics. The impact of basic
| jnequalities such as those that carry the names of Cauchy-ScHwarz, Chebyshev,
Cramér-Rag, and Bonferroni in statistics is well known. Inequalities have
been profitably used to obtain bounds for probabilities that are more tedious
to compute or analytica11y impossible to handle. Especially in reliability
problems, the limited assumptions that could be made about the nature of the
1ife distributions of the components of a system as well as the structure of
the system itself render inequalities not merely useful and desirable but
essential. Since interest in inequalities pervades through nearly all
branches of mathematics, significant contributions have been made by a very
large number of researchers whose efforts span well over a century. From

time to time, books and monographs have been written which are completely

devoted to inequaiftie;.r The classic book of Hardy, Littlewood ahd Pé]ya t35j:”

first published in 1934, is a remarkable collection of mathematical inequalities.

Some important works that followed are Beckenbach and Bé]]man [12], Godwin [20],

Kazarinoff [40], Marshall and Olkin [47], Mitrinovic [49], [50], Polya and

Szego [54], Shisha [57], and Tong [59]. Of these, the monographs of Marshall

‘and 01kin [47] and Tong [61] contain the recent developments in the area of
*This research was supported by the Office of Naval Research Contract

NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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multivariate probability inequalities; this topic has seen a major growth in_
the Tast ten or fifteen years. In this connection we also refer to a recent
review paper by Eaton [19]. '

In selection and ranking problem, inequalities and monotonicity properties
have a vital role to play. Consider the classical formulations of these
problems in which one proposes a probedure which will guarantee a minimum
probability of correct selection (PCS). This amounts to evaluating the PCSQ
determining the parametric configuration for which the PCS is minimum, and
then determine the constants defining the procedure so that this minimum is

at least a specified level P*. Determining this configuration, known as a

least favorable cohfiguration (LFC), is a vital part of the analysis.

Obviously, this 1nVo]ves establishing an 1nequa11ty that fhe PCS for a certain
parametric configuration does not exceed the PCS for any other configurétion.
In some situations, this can be established by demonstrating a monotonic
behavior of the PCS. There are a number of problems in which the LFC cannot

be analytically established; in such cases, recourse has been taken to obtain

a good lower bound for the PCS first and then seek the LFC for this lower bound.
Eveh when the LFC for the PCS can be analytically estab]ished, inequalities are
further useful in obtaining conservative but easier-to-compute values for the

- constants of the procedure. Similar situations arise when we consider the
worst configuration for any suitable performance characteristic such as the
expected number of nonbest populations included in the selected subset. Addi-
tional uses of inequalities arise due to spécific assumptions regarding the
families of distributions under consideration; for example, distributions hav-
ing an increasing fai]urevrate (IFR) and increasing failure rate average (IFRA).
For a general view of selection andkranking problems and the various formulations

and goals that have been studied, we refer to Gupta and Panchapakesan [31].

In this paper, we restrict our attention mainly to some inequlities and
monotonicity properties that have typically arisen in the development of the

selection and ranking theory. Basic to the setup of these problems is the
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assumption regarding some order relations such as stochastic ordering and the
monotone Tikelihood property. These and other related ideas, along with

some basic inequalities that arise under these assumptions are discussed in
Section 2. In reliability models, partial order relations such as convex
ordering, star ordering and tail ordering play an important role. Section 3
deals with restricted families of distributions defined by such partial order
relations and some important inequalities obtained in the investigation of
selection problems for such families. Interesting inequalities appear in the
study of selection rules for normal, multinomial and gamma distributions.

These are discussed in Section 4.

2. ORDERED FAMILIES OF DISTRIBUTIONS

Inherent to a selection and ranking problem is the choice of a ranking
parameter, say, 6. The natural setup consists. of k populations that are
described by their associated probability distributions Pei’ i=1, e k,
where 91€sz, a subset of the real line. In other words; these populations
belong to a family ¥ = {Pe} indexed by 6 € @ . A reasonable procedure can be
proposed if we have some knowledge of the structural properties of this
family. For example, if X], cees Xk are observations from the k populations,
we would Tike to say that large values of X generally go with iarge values
of 6. Such statements bring in order relations for distributions belonging
to the family. We will now formalize such concepts and state some monotonicity

results.

2.1. Stochastic Ordering and Monotone Likelihood Ratio Property.

Let X be a real valued random variable with distribution Pe’ 8 € Q. Then the

family ® = {P_}, 6 € @, is said to be stochastiéa]]y increasing (SI) in o if

8
for 61 < 92, the distributions Pe

and Pe are.distinct, and for any real number a,
1 2



(2.1) P, HE (20T < P [XE(a,=)].

It is well known that a stronger property is that of monotone 1ikelihood

ratio (MLR) introduced bbear1in and Rubin [39]and this is equivalent to the

frequency function having total positivity of order g_(TPZ). The concept of

total positivity is, however, more general and is not restricted to frequency
functions (see Karlin [387]).
A basic result of Lehmann ([44],p. 112, Problem 11) can be stated

as follows.

Theorem 2.1. Let {Pe}, 6€ @, be an SI family of distributions and Tet
v(x) be a real valued function nondecreasing in x. Then Eé[w(X)] is non-
dreasing in 6. |

A straight forward. generalization of this theorem independently

obtained by Alam and Rizvi [4] and Mahamunulu [46]is given below.

Theorem 2.2. Let {P,}, 6 € 0, be an SI family of distributions. Let
s Xk be independent ramdom variables, Xi having the distribution

P . ,8.€0, i=1, ..., k. Then E v(X;, ..., X.) is nondecreasing in each
637 1 A 'k

component of 6

(e], cees ek) i p(xgs oons xk) is nondecreasing in each
of its arguments.

Theorem 2.2 has been successfully applied to many selection problems.
For suitably chosen w(x], ces xk), the expectation Eew(X],..., Xk) becomes
the PCS. The monotonicity property of the expectatio;-enab1es one to
obtain the LFC.

Another generalization of Theorem 2.1 in a different direction is due
to Gupta and Panchapakesan [28]who considered a class of subset selection
rules defined through a class of functions h. For evé]uating the infimum
of the PCS, we need to mﬁnimize over 6 the»expectation Ee[w(X,e)]. The

following theorem of Gbpta and Panchapakesan [28] gives a sufficient condition



for the monotonicity of Ee[w(X,é)].

Theorem 2.3. Let F(-3;8), 06€ @, be a family of absolutely continuous

distributions on the real Tine R with continuous densities f(-3;6) and let
p(x,6) be a bounded real valued function possessing first partial derivatives
by and Yy with respect to x and 6, respectively, and satisfying certain
regularity conditions C.. Then Ee[w(X,e)] is nondecreasing in e provided

that for all 8 € @,

(2.2) F(x30)u, (x,8) - 2EX38) 4 (x,0) > 0 a.e.x,
where the regularity conditions C are:
(i) for all eEsg,qk(x,e) is Lebesgue integrable onIR; and
(ii) for every [e],ez]C:szand e3€59, there exists g(x) depending only

on e], 92, 63 such that

| v (x0)Fxseg) - 2EELy (a0) | < g(x)

for all ee[e],ez] and g(x) is Lebesgue integrable on IR.

Remark 2.4 (1) If v(x,8) = 9(x) for all e €q, the sufficient con-

éfgglgl wx(x) < 0, which is satisfied by the hypotheses

dition (2.2) reduces to
of Theorem 2.1 since {Fe} is SI and w(x) 1is nondeckeasing in x.
(2) For the class of procedures defined by Gupta and Panchapakesan [28],

w(x,8) = F(h{x);6) and (2.2) becomes

(23)  fixie) AL - ) (h(a)se) 2E058) 5 o

where h'(x) = (d/dx) h(x).
(3) This condition has been specialized to the cases of (i) location parameter,

(ii) scale parameter, ‘and (iii) convex mixtures of distributions by Gupta-



and Panchapakesan for the purposes of specific applications.

(4) An analogue of this theorem for discrete distributions is given by
Panchapakesan [52], who has given in another paper [5§ﬂsufficient conditions
for monotonicity when @ is a countable set. |

(5) The monotqnicity of Ee[w(x,e)] in 6 is strict if strict inequality holds
in (2.3) on a set of positive Lebesgue measure.

(6) Obvious modifications in Theorems 2.1 through 2.3 give monotonicity in
the opposite direction.

For subset selection rules the expected subset size has been used as a
performance characteristic. We naturally want td know the worst configuration
in the sense that it maximizes the expected subset size. The following theorem
(discussed and proved without a formal statehent) of Gupta and Panchapakesan [28]
gives a sufficient condition for the expected subset size to be maximized

at an equi-parameter configuration.

Theorem 2.5. Let X1, v Xk be independent random variables, Xi having

an absolutely continuous distribution F(-,ei), eiﬁész, with continuous densities

f(-,ei). Let y(x,6) be a bounded function possessing the first partial deri-

vatives by and Vg with respect to x and 6, respectively, and satisfying the

regularity conditions of Theorem 2.3,' Define

k -k

B(64» »0,)= YE [ 1 (X,e)]. Then
1 KT 421 94 Tpeg r
r#i
(2.4) B(e | 8y< ...< 8, ) <B(g | 847 ... =6)
provided that, for all 6. 5_ej and a.e.x, the following holds:
39 (X,6.) w(x, 8;) aF(xse,)

(25) —3—61——'— f(X;Gj) - 53X v P 2_0

i



Remarks 2.6. As in the case of Theorem 2.3, Gupta and Panchapakesan [28]

have specialized this for (i) location parameter, (ii) scale parameter, and

(i11) convex mixtures. For their class of procedures, w(x,ei) = F(h(x);ei),

i=1, ..., k. For Tocation and scale parameter cases, the usual choices are

h(x) =x+b,b > 0, and h(x) = ax, a > 1, respectively. In these cases, the

left-hand side of (2.3) is zero for all x; thereby showing that Ee[w(X,e)]

is independent of 8. . Further, the condition (2.5) ih these cases reduces

to the monotone likelihood ratio property, a result directly proved by Guptal[22]. O
Now, we-note that Theorem 2.2 is a simple generalization of Theorem 2.1

to IRk, the k-dimenional Euclidean space. We now consider various general-

jzations of the concepts of stochastic ordering and monotone Tikelihood ratio

to distributions in higher dimensions. To this end, we introduce the following

definitions.

Definition 2.7. A function ¢ defined on Blk is said to be increasing

with respect to a partial order relation "<" if X3 <X, implies w(zq) f_w(zz)
k
for all Xy5 X, € RO,

Definition 2.8. A set S 1nZRk is said to be an increasing set if its

indicator function is increasing; that is, if x, €S and X3= Xy then x, €S.

1
Let X be a k-dimensional random vector with distribution Pe in Rk',

where §_=(e],...,ek). Let Pe(S) = Pe(ﬁeis) for any measurable set S.

Definition 2.9. A distribution Pe is said to have stochastically in-
<

creasing property (SIP) in o if Py (S) Pe (S) for every monotone in- .
=1 22

creasing measurable set S and for every 6.

1 2

The following Temma is due to Lehmann [43].



Lemma 2.10. A family of distributions Pe has SIP in 6 if and only

if Ee p(X) f_Ee y(X) for all increasing integrable functions y(X) and
9 L) :

8 < 8,

The following theorem follows easily from Lemma 2.10.

Theorem 2.11. Let the distribution of X have SIP in g and let

y(x,0) be increasing in x and ¢ . Then Eew(l)g) is increasing in g.
When we have independence, it is easily verified that the MLR property
implies SIP (Lehmann [43]). When we deal with correlated random variables

X s Xn’ it is natural to look for a generalized concept of MLR in

17 -
higher dimensions. For a density f(x;e) in the one-dimensional case, the
MLR property says that

(2.6) fxy307) Fx,30,) = Fxy38,) Fxy307) > 0.

for every Xy < Xy and 81 < 85 We can rewrite (2.6) in the form

(2.7) f(x;8) > flx; (1,2)8)

where f(x;8) =

f(x;305), 8 = (87.0,), and (1,2)g is the vector obtained
.i

=N

1

from g by interchanging o and 8- This provides the motivation for the

following definition of Property M by Eaton [18].

Definition 2.12. A family of real valued density functions

{fu(ﬁig)},(xe;ﬁ,is said to have Property M if, for each o ¢« and for each

pair (i,j), 1 <1 # J <k, the following holds:

(2.8). SRS and o, > 852 fa(gﬁg) >ifu(§5 (i,3)8).

Eaton [18] has given a necessary and sufficient condition for a class

of densities to possess Property M. Bechhofer, Kiefer and Sobel ([111,p. 41)



in their monograph on sequential identification and selection rules define

a rankability condition which is same as Property M. Hollander, Proschan

and Sethuraman [36] have defined a concept of decreasing in transposition

(DT) which is also same as Property M; however, their motivation comes from

finding classes of functions which share certain properties of Schur func-

2k

tions. In fact, when g(x,8) = h(x-8), g is DT on R“" if and only if h

is Schur-concave on IRk. Finally, Marshall and 0lkin ([47], p. 160) have also

used DT functions but they call them arrangement increasing (AI) functions.

It is important to note that, unlike in the case of one-dimensional
distributions, Property M does not imply SIP. The following simple example

of Hsu [37] illustrates this point.

Example 2.13. X X;,X,) has the following distribution for four

permissible values of g = (e],ez).

X
] | (5,6) | ~ (6,5)
(1,2) 0.9 0.1
(2,1) 0.1 0.9
(3,4) 0.6 0.4
(4,3) 0.4 0.6

Further, we can have SIP without Property M; this is true in one-
dimension also. Finally, it is possible to have both SIP and Property M as
it is the case with the multinomial distribution.

Another geheralization of MLR is given by Gupta and Huang [25] who
obtained for a family of densities having this generalized MLR property an

essentially complete class of multiple decision rules.
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Definition 2.714. A probability density f(x;0) is said to have a

generalized monotone likelihood ratio (GMLR) in x, if for every i and all

fixed X3 J=1, «.os ky § #1, f(g;g])/f(g;gz) is nondecreasing'in.xi,,where

o, = (921’ ""ezk)’ L =1, 2; 81: = 823 for all j #1, and 015 > 0o

What we have discussed so far are some basic assumptions that are
usually made regarding the underlying family, and the monotonicity behavior
of the expectations of certain functions. Also of relevance here is the con-
cept of stochastic majorization and inequalities obtained by majorization.
One definition of stochastic majorization is to say that X is stochastically
majorized by Y if E(w(X)) < E(y(Y)) for all Schur-convex functions y; of course,
there are other possible definitions (see Marshall and OTkin [47], chapter 11).
Majorization techniques can be used to show that E[y(X)] < E[y(Y)] for sev-
eral other families of functions y. The relevance of these results to selection
problems is obvious, when y(X) is the indicator function of the event "a
correct selection is made." For several useful inequalities in this direction,

we refer to Chapters 12 and 13 of Marshall and Olkin [47].

3. RESTRICTED FAHILIES OF DISTRIBUTIONS

By restricted families of distributions, we mean a family of distri-
butions & each member of which is partially ordered in a sense with respect
to a given distribution G. Such families do arise naturally in reliability
studies. More commonly known families of this type are those with increasing
failure rate (IFR) and increasing failure rate on the.average (IFRA) and
naturally those with corresponding decreasing properties. In dealing with
such classes we do not know the exact forms of the distributions that belong

to &, but we do know the nature of the partial order relation and the distri-
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bﬁtion G. Precisely this knowledge enables one to find bounds for quantities
of interest such as the probability of survival and mean 1ife in terms of
G. Inequalities are thus very important in reliability studies. As a matter
of no surprise, significant contributions to inequalities for restricted
famf]ies have been made by researchers in mathematical reliability -- Barlow,
Marshall and Proschan, to mention a few. Typical of these problems is the
use of order statistics. Many important order statistics inequalities that
arise in 1nference‘prob1ems of reliability are reviewed by Gupta and
Panchapakesan [29].

Selection procedures for restricted families of distributions were
first studied by Barlow and Gupta [7]. When we have k populations from &, we
can generally evaluate (under some additional assumptions) the infimum of the
PCS in terms of the known G-by establishing appropriate inequalities.
e describe in this section such inequalities
and explain the contexts of the selection problems. For purpose of describing
these results, we need to introduce some definitions.

Assuming that all our distributions are absolutely continuous, we now
define some of the special order relations of ihterest to us. F and G denote

distribution functions.

Definitions 3.1. (i) F is said to be convex with respect to (w.r.t.)

G (written F.5 G) if and only if G_]F(x) is convex on the support of F.
(ii) F is star shaped w.r.t. G(F < G) if and only if F(0) = G(0) = 0 and

G_]F(x)/x is increasing in x > 0 on the support of F.  (iii) F is tail

1/2, and G_]F(x) - X

ordered w.r.t. G(F 5 G) if and only if F(0) = G(0)

is nondecreasing on the support of F.

If G(x) = 1-e %, X > 0, then (i) defines the class of IFR distributions
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studied by Barlow, Marshall and Proschan [ 9] while (ii) defines the class of
IFRA distributions studied by Birnbaum, Esary and Marshall [14]. Convex
ordering was studied by van Zwet [62]. Doksum [17] has used the tail ordering.
It is easy to verify that the above ordér relations are all partial order
relations. One can also easily see that convex ordering implies star ordering.
Without the assumption of the common median zero, the definition (iii) has

been used by Bickel and Lehmann [13] to define an ordering by spread with the

germinal concept attributed to Brown and Tukey [15] by them. This kind of
ordering has also been perceived by Saunders and Moran [56] in the context of

a neurobiological problem and is called ordering by dispersion by them. We

now give a formal definition below.

Definition 3.2. G is more dispersed than F (F'E‘G) if

(3.1) G—](B) - G_](a) > F_](B) - F-](u) for all 0 < a < B < 1.

F—1(u), it is easy to see that (3.1) is

By setting x = F'](B) and y.

]F(t) - t is increasing in-t. However, (3.1)

equivalent to saying that G
| presents the idea more clearly, that is, any two percentage points of G are
at least as far apart as the corresponding percentage points of F.

Finally, we define a general partial order relation through a class of
real functions introduced by Gupta and Panchapakesan [29] The star and tail

orderings can be obtained as special cases.

Definition 3.3. Let # = {h(x)} be a class of real valued functions

h(x) defined on the real Tine. Let F and G be distributions on the real Tine
such that F(0) = G(0). We say that F is n-Qordered w.r.t. G (F ; G) if
(3.2) 6 TF(h(x)) > h(&"TF(x))

for all h€¥ and all x on the support of F. =
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A1l the order relations we have defined so far can easily be verified
to be partial order relations inthat they satisfy only reflexivity and
transitivity. It can be seen immediately from the above definition that; if
¥ = {ax,a>1} and F(0) = G(0) = 0, we get the star ordering and that the
tail ordering is obtained by taking ¥ = {x+b, b>0} and F(0) = G(0) = 1/2.
Also, if we do not include F(0) = G(0) in the definition, then the dispersion
ordering becomes a special case.

The next theorem gives the basic inequality of Gupta and Panchapakesan [29]

and some related inequalities.

Theorem 3.4. Let X., X s X (Y.,Y , Yp) be independent and

03 -Ig LA p O,-l, e s
identically distributed, each with distribution function F (G), and let

F ﬁ G. Then the following inequalities hold.

(a) Prih(Xg) > Xss i=1, ..oy P} > Prin(Y,) > Y., i=T, ..., pl,

)
b) PriXy > h(X;), i=1, ..., p} < PriYq > h(Y.), i=T, ..., p},
)

c) Prih(Xg) < Xos 451, .ouy P < Prih(Y,) < Y., =1, ..., pl,

i

(
(
(
(d) PriXy < h(X;), i=1, ..., p} > Pr{¥y < h(Y.), i=1, ..., p},

Proof. We will prove (a). The other inequalities can be established

1

similarly. Let o= G 'F. Then

Prih(Xy) > X;» i=1, ..., p}
= Pr{m(h(xo)) > cp(Xi), i=1, ..;, p}, since ¢is nondecreasing
> Pr{h(@(XO)) @ (Xi)’ i=1, e p}, since F g G
= Pr{h(YO) > Vi, i=1, ..., p}, since ¢(Xi) is stochastically equal to

Yi’ i=0, 1, ..., p. O
The inequalities (a) through {d) of the above theorem can be re-

written respectively as

(3.3) [FP(h(x)) dF(x) > [GP(h(x)) d6(x),
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(3.4) [P () dF(x) < [6P(hT(x)) da(x)

(3.5) [ D1-F(h(x))TPdF(x) <[ [1-6(h(x))IPda(x),

and

(3.6) [ O-F(h7 (x)) 1P dF(x) > [ [1-6(h"1(x)) TP d6(x),

where h'] is assumed to exist and the integrals extend over the supports of
the relevant distributions. 'Gupta [23] obtained essentially these inequalities
for ahy p > 0 under a set of hypotheses which amounts to ¥ -ordering. Also,

in selection and ranking problems, we typically get the probabilities,

Pr{h(XO) Z.Xi’ i=0, 1, ..., P} and Pr{XO 5_h(X1), i=0, 1, ..., p}.

These are same as the Tleft-hand side probabilities in (a) and (d) of Theorem 3.4
if we assume that h(x) > x. This is satisfied for natural choices of h(x)
im the procedures. It should be noted that h(x) > x in the specig] classes
of ¥ yielding star -and tail ordering.
Interesting special inequalities are obtained by considering special
pairs of F and G in Theorem 3.4. We mention here a few of them relevant to
selection rules, thus Qenera11y'app1y1ng inequalities (a) .and (d) of Theorem 3.4.
Suppose X], cees Xn are i.i.d. with distribution F and Y1,..., Yn are

i.i.d. with distribution G. Let F < G. Let Fr.7 and Gp.q denote the cdf's
M » [J] [J]
of the jth order statistic of the Xi and the Yi respectively. Define

B, (x) = [n/(-1)1(n=9)11 | w1 (1-0)"Jau
jon 5

so that

(3.7) F[j](x) = (F(x)) = B. F(x).

B.
J,n

Since

-1 _ -1 -
(3.8) G[j] F[j] (x) = [Bj,nG] Bj,nF(X) = G
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we see that order statistics preserve H-ordering. Sowe get
p Y
(3-9). f F[J](h(x)) dF[j](X) ZIG[j](h(X)) dG[jJ(X)
qnd
-1 p -1 p
(3.10) [ D-Frygh™ 00T dFps4(x) > [ -6p57(h™ (x))17 dGp44(x).

Barlow and Gupta [7] studied subset selection procedures for selecting
the distribution with the largest (smallest) a-quantile from k = p+1 distri-
butions that are star ordered w.r.t. G. In their procedures, h(x) = ax, a > 1.
With this choice of h(x), the right-hand sides of (3.9) and (3.10) become
the infimum of PCS in these two cases. Specializing these inequalities

further to the'case of IFRA distributions, we get the following corollary.

Corollary 3.5. Let F[j] denote the cdf of the jth order statistic in

a random sample of n observations from an IFRA distribution F. Then

TP TP
(3.11) % F[J] (ax) dF[j](x).i % G[j] (ax) dG[j](x)
and
: < Xy P " Xy 1P
(3.12) {)[]'F[j](i)] dF[j](X) 1(}; [1-G[j](g)] dG[J-](X)-
where o ‘
(3.13) 6r57(x) =tzj(2) [1-e7X]t ¢~ (n-t)x =‘Bj’n(1—e'x).

Barlow, Gupta and Panchapakesan [8] have tabulated the values of a-]

for which the right-hand sides of (3.11) and (3.12) are equal to P* (the
guaranteed minimum PCS) for selected values of p, n, j and P*. Gupta and
Panchapakesan [30] studied a similar quantile selection procedure for selecting

the Targest quantile for distributions that are star ordered w.r.t.the standard
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normal distribution folded at the origin. In this case, the inequality (3.11)

holds with G[j](x) = B (26(x)-1), where o(x) is the standard normal cdf.

j.n
The values of a_] for which the right-hand side of (3.11) is equal to P* are
tabulated by Gupta and Panchapakesan [30] for selected values of p, n, j and P*.
It is easy to verify that the folded normal distribution is an IFR and
therefore an IFRA distribution. So we can obtain further inequalities by

taking Fr.q(x) = B, (28(x)-1) in the above corollary.
[i] n

Js
We can get similar inequalities for F and G such that F é G. Ye have
to take h(x) = x+b, b > 0, in (3.5) and (3.6). More inequalities can be
obtained by considering F[j] and G[j] with special choices of G. These in-
equalities occur in selection procedures of Barlow and Gupta [7] for selection
in terms of medians for a class of distributions (not defined in this paper)

and the procedures of Gupta and Panchapakesan[§9] who have used the logistic

distribution for G.

- Remarks 3.6 Suppose we take ¥ = {ax, a > 1} in Theorem 3.4. Then,
etting 7.+ w02 i L e e (L,
etting Z1-— max{Y63 ...,_XO}, 22 min {XO, e XO}, w] max {YO, s YO}
B T
and w2 min LYO’..'.’ YO}, we get

PriZ, < a} > Pr{l; <a},

1 1

(3.14) PriZ, < 1< Pridy < 33,
Pr(Z, > a}=< Pr{l, > a},

Pr{Z, > %—}3_ PrW, > %‘L

In other words, we have inequalities for the distribution functions (and

hence for quantiles) of the maximum and the minimum of certain correlated
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ratios of variables with distributions F and G.

In the case of ¥ = {x+b, b

fv

0}, we Tet Z] = max {X1'X0’ cees Xp-XO},

22 = min {X1—X05 ...,'XP—XO}? Wi = max {Y]-Y',...,, Yp—YO} qnd Né = min

{Y]- YO’ cees Yp-YO}. Then, we get
[ Prizy < b) > Pril} < b},

A

Pr{Z; < -b} E_Pr{Wi < =b},

i Pr{Zj > b} < Pr{i} > b},

Pr{Z, > -b} > Pril; > -bl.

(3.15)

\%

\'

.
We will come back to these inequalities in Section 4.3. O

4. INEQUALITIES FOR SPECIFIC DISTRIBUTIONS

We are mainly interested in certain 1nequa1it1es relating to multi-
variate normal, multinomial and gamma distributions that occur in ranking and

selection problems. Of course, these are of interest otherwise too.

4.1 Inequalities for Multivariate Normal Distribution. A probability

expression that occurs frequently in selection problems is Pr[X] SAys s
Xy 5_ak] where X], X2, cees Xk are identically distributed but correlated.
Most familiar of these and perhaps most often used in practice are the cases
where X], cens Xk have a joint k-variate normal and t distributions. Evalu-
~ation of these probability integrals are difficult to accomplish as k gets
large when there is no special pattern of the associated covariance matrix .
In such cases, inequalities which give goqd bounds become more attractive.
There are numerous results in the Titerature in this direction. We will men-
tion here only two results, namely, those of Anderson [6 ] and Slepian [58].

For a detailed account of these and other related inequalities and reférences,
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the reader is referred to the book of Tong [61] and the recent survey paper

of Eaton [19]. To state Anderson's theorem, let us define a partial

ordering_;ﬁ for covariance matrices of the same order by ¥<x if £ -V

is positive semidefinite.

“Theorem 4.1  (Anderson [6]). Let X = (X ces Xk) and Y = (Y Y

1 12
be k-variate normally distributed random vectors with common mean vector zero

)

and covariance matrices I and ¥ respectively and Tet E be a convex set
symmetric about. the origin. Then ¥ <z implies Pr[Y €. E] > Pr[Xe€ E].

As we have pointed out earlier, inequalities have been used in selec-
tion problems typically to obtain the infimum of the PCS or a lower bound for
it. One result that has been.used very often at some stage of the problem

is the Slepian inequality stated below.

Theorem 4.2 (Slepian Inequality). If X = (X], cens Xk) has the k-
variate normal distribution with nonsingular covariance matrix £ = (Gij)’ with
o5 = 1, i=1,...,k, then for any constants CpoeeesCps the probability

PriX; 5_c],...,Xk < ¢t is strictly increasing as a function of each %3 for

i#j. In particular, if 055 > 0, i, j =1,...,k, then

I = xa

Pr[Xi < Gy i=1,...,k] » .

Pr[Xi < c:].
;

-I - 1
Motivated by a design problem with a selection and ranking goal, Rinott
and Santner [55] obtained an inequality that combihes the aspects of the results

of Anderson and Slepian; namely, for d>0

(4.1)  [] o" (dtx+ay) @"(d+x) de(x) de(y) < fo" "™ (d+x) da(x)

where o(x) is the standard normal cdf, m and n are integers such that

mtl > n > 1, and all integrals are from - to ». It can also be shown that
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the left-hand side of (2.8) is decreasing in |a| for any d > 0.

4.2 Inequalities for Multinomial Distributions.

Let X = (X], e Xk) have the multinomial distribution given by

kX,

(4.2) PriX =x}=n! 1 (6, /x.!)

. - - j=1 | 1

h ( ) . d " 1
where X = (Xys «ve5 X, ) & X; =nand I 0, =

L 1 k =1 1 1.=-|,1
Define
(4.3) C(e], cees em) = Pr{Xi > Cs i=1, ..., m}
m

where 1 c. <nandm < min(k-1, n). The results of Alam [ 1] are summarized

i=1 "
in the following theorem.

Theorem 4.3 C(e], e em) is nondecreasing 1"'61’ i=1, 2, ..., m.

Further, for c; = Cj’

(4.4) Cisel07s --os ) < ClOgseeus B) < Cy

where Cij(e1’ v em) is obtained from C(e1, cees em) by rep]acing_ei and 8

with their average, and C.

1jt(91’ cees em) is obtained from C(e], ...s 0_.) by

m

).

substituting t for 0 and ei+ej—t for ej where 0 < t < min (ei, eJ

Let us assume here and in what follows on multinomial distribution that"

e] < 62 < el < ek. From Theorem 4.3, we have

(4.5) PriX; > ¢, ..., X > |e], cees 895 0%}

< PriXy >

v
(@}
-
-
><
~
\%

> cloys -oes 82

< PY‘{X.l >

v
e}
-
-
><
==
|v
O
D
')
-
D
—

where ¢ < n/k, 6* = 1—(kiT)6] and 9 =_291/k,
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Using a representation of Pr{X] > Ch ovees Xk z_cle], e ek}
in terms of the Dirichlet integral, the inequalities in (4.5) can be ob-
tained as a special case of Theorem 1 of 01k1n [51] which shows the Dirichlet
integral to be a Schur function. More general results are available in
Marshall and OTkin ([47], p. 306).

Bechhofer, Elmaghrabi and Morse [10] considered a single sample selec-
tion procedure to select the most probable cell with a minimum guaranteed
probability P* that the selected cell will be the one associated with 61
whenever ek/ek_] > 6>1. The.ru1e R proposed by Bechhofer, Elmaghrabi
and Morse takes a sample of N observations and selects the cell that yields
the Targest number of observations using randomization to break ties. The
PCS is given by
(4.6) PCS = Pr{Xk > Xj’ J#Eky + 1/21§k Pr{Xk=Xi, Xk > Xj’ Jj#i}

+ ...+ 1/k Pr{Xk = Xk-] = ... = X]}

= ¥(095 855 -..s 0 ), say.
The following result of Kesten and Morse [41] gives the LFC.

Theorem 4.4  With the above assumptions and notations,

* .
(4.7) ¥(0y, «ous 8y |0, /8y 1 28 > 1) 3_w(eT,,.., 8)

1 1

* * - * -
where 6y = ... =8 ;= (6tk-1) " and o = s(s+k-1)"".

Cacoullos and Sobel [16] used an inverse sampling rule for the same
selection problem. Observations are obtained sequentially until one of the
k cells has a prespecified count N. This particular cell is then identified

as the most probable cell. 1In this case, the PCS can be written as a Dirichlet
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integral and the LFC is the same as that of the single sample procedure of
Bechhofer, Elmaghrabi and Morse [10]. Alam [ 3] considered a different
stopping rule, namely, the observations are taken sequentially until the
difference between the highest and the next highest cell count is equal to r.

For k=2,

(4.8) Pcs = A" /(1+1")
where A = ez/e]. For k> 2, there is no exact result. Alam [ 3] gives a

lTower bound, namely,

k-1
(4.9) PCS > 1 - = A% 7(105)
B i=1 !
; r k r
where Ai = ei/ek, i=1, ..., k=-1. An improved bound, namely, 0 / z 0.5 is
1

recently given by Levin and Robbins [45].

Going back to the single sample procedure of Bechhofer, Elmaghraby
and Morse [10] for selecting the most probable cell, the LFC is sought subject
to ek/ek-1 > & > 1. If we are interested in selecting the Teast probable cell,
then the analogous problem will be to get the LFC whenever ez/e] > §>1.
The analogous procedure will select the cell with the least count using random-
jzation to break ties. In this case, a minimum P* for the PCS cannot be
guaranteed for all P*. This is shown by Alam and Thompson [ 5] who proposed
a modified indifference-zone. Their rule is still to select the cell with

the Teast count. Let w'(e], cees ek) denote the PCS for this rule. Then their

LFC result can be stated as follows:

o ok *
(4.8) y (e], cees 9k|92'91 >c) > ¥ (e], ek)
-1 * *
where 0 < ¢ < (k-1) ', o, = [1-(k-1)c]/k, and 8y = ...= eﬁ = (1+c)/k.

1
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We get additional probability 1nequa11ties'via subset selection rules.
Gupta and Nagel [27] discussed single sample subset slection rules for
selecting the most (least) probable cell. If we denote the cell counts by
Xj, cees Xk’ their rules R] and R2 for the most and the least probable cell,
respectively, are as follows:

Select the cell with count Xi if and only if

R]: X1 z_max(X], cens Xk)- d

R2: ‘ Xi_f_m1n(X], cens Xk)+-c
where c and d are nonnegative integers chosen suitably to guarantee the
specified minimum PCS.

The PCS for R1 is given by
(4.9) .\;P(CS-IR])ﬁ F(k,n,d; 015« v ek) = Z(v] ...

where the summation is over all k- tuples (v], ...; vk) such that the Vs

are nonnegative, vy = n and Vs E_vk+d, i=1, ..., k-T. In the case of R

2’
P(CS|R2) = G(k,n,c;e], cees ek) is agiven by the summation in (4.9) extending
over k- tup]és (v], ces vk) such that the v; are nonnegative, Zvy =N and

v, > v, - C, i=2, ..., k.
i—= "

We now summarize the inequality results of Gupta and Nagel [27] in the following

Temmas and theorems.

Lemma 4.5 F(k,n,d; 815 ---s ek) satisfies the following inequalities:
F(k,n,d; TP ek) > F(k,n,d; T ej+-e, e ek).

(2) For 1 <i <k, and 0 < € < 8>

F(ksn,ds 095 -..5 6,) > F(k,n.d; 8> +ees B.FE, L, 0, €),

Oy



23

It should be noted that Lemma 4.5 is true even if the order is
disturbed in the configurations on the right hand side of the inequalities.

The next theorem on the LFC is a consequence of Lemma 4.5.

Theorem 4.6 Let r be the smallest integer for which b; > 0 and Tet
s be the largest {nteger such that ej < 0. For a configuration minimizing
F(k,n,d; 61, cees ek), we have r > s. Furthermore, if r = k-1, then r > s.

In other words, Theorem 4.6 says that the worst configuration is of

the type (0, ..., 0, a, B, ...,8), o < B.

Lemma 4.7 G(k,n,c; 815 ~ons ek) satisfies the following inequalities:
(1) F0r1<1'<j'ikand0<€_<_6_i,
G(k,n,c; 815 -o- ek) 3_G(k,n,c;eT, s 8- € ...,,ej + €, ..., ek).
(2) FOP]<jikand0<€iej,
G(k,n,c; 815 -nn> ek) > G(k,n,c; 0t €5 ooty 05" €, ..., ek).
As in the case of Lenmma 4.5, here also the statements are true even if
the order is disturbed in the configuration. The following theorem is a

consequence of Lemma 4.7.

Theorem 4.8 . G(k,n,c; 85 ~ons ek) is minimized at a configuration of

the type 0y = «.. = 01 5_ek.

Now, let us consider % independent multinomial distributions each with
k cells. Let 8; = (611’ cees eik> be the vector of the cell probabilities of
I the ith distribution,, i=1, ..., m. We also assume that, for each 1,
e_” < ... < eik.

Definition 4.9. We say that 6 majorizes gj(e S Qj) if

D
\"

H o™ =x
(e

o for r =1, ..., k with equality holding for r = 1.
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Definition 4.10 If a function ¢ satisfies the property that

o(x) < oly) (p(x) > o(y)) whenever x > y, then ¢ is called a Schur-concave

3v

(Schur-convex) function.

n-moDx

If 8; > 0., 1t implies that H(e.) < H(

58 ), where H(gd) = -

8.4 log 854,

9.
= oc'|1

is the Shannon entropy function associated with L

Suppose we take n independent observations from each multinomial dist%i-

bution. Let Xi denote the number of outcomes in the cell with probability

. inm,, a =1, ..., k; i=1, ..., 2. Define
Tal 1
(4.10) Qj(n,k,z; 815 +ens 8,)
X X. X X
= _J]_ Jk N _&.I_ __OL__ _ s
Pr { o S s n') > max o ( e Tr )-d}, i=1, ..., 2,

<ozt
where ¢ is a Schur-concave function and d > 0.
Gupta and Wong [ 34] investigated a subset selection rule fer selecting
the population whose cell probability Vector majorizes that of any other,
assuming that one such exists. The special case of k = 2 multinomial distri-
butions with the Shannon entropy function as a particular choice of ¢ was
earlier considered by Gupta and Huang [24]. The following theorem relates

to the properties of the procedure of Gupta and Wong [34].

Theorem 4.11. If 8 2 8. then Qi(n,k,lg [ PP

h & 0,) g_Qj(n,k,l; 8>

—L

"_e_ 9/ =

o). Further, if p. ~ 8 for all j=1, ..., 2, then Q.(n.k,2; 8; ... 8,) >

).

Qi(n,k,z; 8y=... =8,
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4.3 Inequalities for the Gamma Distribution

Let

X m-1 -t
(4.17) y(m,x) = [t e " dt

0
and
(4.12) r(m,x) = r(m) - y(m,x), m>0.
of coursé,

e-ttm—l

(4.13) f(x;m) = Ty X >0, m>0,

is the gamma density where m is the shape parameter. For 0 <m < 1, con-

" tinued fraction expansions can be obtained (see, for example, Khovanskii [42])

m -m X

for x M &% v(m,x) and x™ e r(m,x).  Let Pn(m,x)/Qn(m,x) and Pﬁ(m,x)/Qﬁ(m;x)
be the nth convergents of these two expansions respectively. |

In the case of y(m,x), Gupta and Waknis [33] obtained the system of
inequalities:

Pp(mx) Py (m,x) x" (n+1+m)
)

(4.14) 6;13E§7-< e” x  y(m,x) < Qn(m,X) + i n+1(n+1+m-x)’ n=1,2, ...,

where x <n+m+1 is anecessary restriction only on the inequalities on the

right-hand side af (4.14) and where (n)r = n(n-1) ...(n-r+1), r > 1, and

P (m,x) 2 oon-1

1
(4.15) Qn mx) . m [1+ 1ﬁm * ('l+m>)( (Zmy Foeee 7t (1+m)x... (n-T+m) 1.

In the case of r(a,x), the even order convergents form a monotonic
increasing sequence and the odd order convergents form a monotonic decreasing

M r(m,x). So a system of inequalities can

sequence, both converging to e x”
be generated by bounding X xM r(m,x) by successive convergents. These
bounds are discussed in Gupta'and Waknis [33]. These bounds in turn can be

used to get bounds on the integrals
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(4.16)

o 8

Fp(cx;m) f(x;m)dx

and

(4.17) [1-F(bx;m) 1P £(x;m)dx

o— 8

where F(x;m) is the cdf of the gamma distribution. The integrals (4.16) and
(4.17) with ¢ > 1 and0<b< 1 are the infima of the PCS for the subset
selection rules of Gupta [21] and Gupta and Sobel [32].

Now, Tet XO"X1’ e Xp be independent identically distributed each

having a gamma distribution with density f(x;m) given by (4.13). Let

( _ X X
Z, = maxt;L,..., L),
1 X X,
(4.18) : ; ;
ﬁ in (5 2
Z, = min{g—, , .
2 0 X0
A

Let Gm(y) and Hm(y) denote the cdf's of Z] and 22, respectively. We note

that the integrals in (4.16) and (4.17) are Gm(c) and 1-Hm(b), respectively.
Alam [ 2] proved that, for m > 1, Hm(y) is increasing in m for y > 1 and is
decreasing in m for y < 1. Alam's proof involves a fair amount of analytical
details. Further, Alam has ho comment on the behavior of Gm(y). The following
theorem provides validity of Alam's result for m > 0 and establishes the -

monotonicity behavior of Gm and Hm for a larger class of distributions.

Theorem 4.12. Let X X]’ cens Xp be i.i.d. nonnegative random variabies

0’

each having the distribution Fx, where {FA} is a star-preceding family in x €A
[i.e., F>\2 < F}\1 for A] <A2]. Let Gx and HX be the cdf's of Z] and 22 defined
in (4.18). Then Gx(y) and HA(y) are both increasing in x» for y > 1 and

decreasing in x for y < 1.
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Proof. Since sz " FA
1
follow immediately from the inequalities (3.14) of Remarks 3.6. [

for A] < xz, the conclusions of the theorem

Remarks 4.13. In the case of_the gamma family {Fm}, it is known
that Fm convex precedes in m > 0; see van Zwet [60], p. 60. Since the con-
vex ordering implies the star ordering, Alam's result readily follows from
Theorem 4.12. As we pointed out earlier, in subset selection procedures, we
typically encounter Gm(y) for y < 1 and Hm(y) for y > 1. That the monotonicity
properties of Gm(y) and Hm(y) in these cases can be established by the star-
ordering property of the gamma distribution was known though not formally
demonstrated; see McDonald [48] and Panchapakesan [53] who have given different
alternative proofs in the case of integral m for p = 1 and p > 1 respectively.
Finally, the monotonicity property of Hm(y) is applied to evaluate the infimum
of the PCS for the inverse sampling procedure of Cacoullos and Sobel [16]
for selecting the most probable multinomial cell. O

For the Gamma distribution with density in (4.13), let gm(a) and gm(s)
denote the ath and the gth quanti]es, where 0 <o <8 < 1. For my < m,, as

pointed out eak]ier,'Fm X Fm .. This is equivalent to

2 1
-1 -
F F
(5.19) m (8) > m12 (8) |
_ ~ > — .
Fm1 (a) sz (a)

in other words, gm(s) / Em(a) decreases in m,-a result obtained by Saunders
and Moran [56] using a fairly long direct method. They have also shown that,

for m <m,, F_ s more dispersed than Fo3 in other words, gm(s) - gm(u)

2 1
increases in m. Also, we can now apply the inequalities in (3.15) to obtain



28

new inequalities for the distribution functions of the maximum and the minimum

of certain correlated differences.

4.4 Inequalities Arising From A Two Stage Selection Procedure.

Gupta and Miescke [26] studied sequential selection procedures with
elimination which are based on vector-at-a-time sampling. They showed that
the 'natural’ terminal decisions are optimum in a fairly decision-theoretic
sense. To decribe the inequalities that are obtained, let Mys oees T be k
independent populations with densities f91, 6, € Q, with respect to the
Lebesgue measure on the real 1ine IR or any counting measure on a lattice in

IR, where & ={fe}, 6 € Q, is a one-parameter exponential family. Let

Xi]’ X12, ... be independent observations from Hi, i=1, ..., k. For fixed

n<m, let Ui = X11.+ ce +'X1n’ V1 =.X1,n+1 + ...+ Xi,m, and wi = Ufa+ Vi’
i=1, ..., k. Further, for fixed s < {1, ..., k}, permutation symmetric
Borel set AC IRk, and 1€ s, define
/

q; =Py {Vi = max V.1,
(4.20) ﬁ - jes

re =Py {wi = max wj [(U], ey Uk)El\}.

— Jj< s

.

Theorem 4.13 For s = {1], cees 1m}

(1) 0, < 8 implies that re < and q; <4 > j.o =1, ..., my j# 2, and
J L J % J %

(2) the vector r = (ri s oeees P ) majorizes the vector q = (qii, cees Q. ).
a 1 m : m

4.5 An Ordering Theorem and Its Specific Applications

random variables, that is, their joint distribution F is a mixture of the form
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p
[ F1(xi,z)dF2(z)

(4.21) F(x],xz,...,x ) I

P

p
E Fi(x:,Z)],
[Py (3552

where F] (for given z) and F2 are distribution functions. The following

theorem is due to Tong [59].

Theorem 4.14. Let a = (a1,a2,...,ar) and b = (b;,b "’br) be vectors

'l’ 2"

of nonnegative integers such that ap > 8, >...> 3 and b1 > b2 >...> b _with

r r e =T e T T

) a; = J b.=p. If.Xy5...,X are conditionally i.i.d. random variables and
=1 J 5=1 9 P

if a > b, then

m
r r
(4.22) I PriX; € A, i =1, 0,80 > T Pr{X: €A, 1 =1,...,bs}
51 R ’

holds for every Borel measurable set A.

Now, if Y],Y .,Y_ are i.i.d. random variables and Z is independent

2seea¥p
of the Y;, then it is known (see Tong [60], Theorem 2) that X; = ¢(Yi,Z),
i=1,2,...,p, are conditionally i.i.d. for any Borel measurable function ¢.
This fact together with Theorem 4.14 can be used to obtain bounds on the PCS
under the indifference zone formulation and the subset selection approach in
view of the factthat the PCS for many classical rules (see Gupta and
Panchapakesan [28]) 1is a cumulative probability of conditionally i.i.d.
random variables.

Tong [59]) has also discussed a special form of Theorem 4.14 and its
applications to several specific multivariate distributions. Applications

to multiple decision situations besides selection and ranking are discussed

by Tong [60].
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