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ABSTRACT

In randomized complete block design, we face the problem of
selecting the best population. If some partial information about
the unknown parameters is available, then we wish to determine the
optimal decision rule to select the best population.

In this paper, in the class of natural selection rules, we
employ the r-optimal criterion to determine optimal decision rules
that will minimize the maximum expected risk over the class of
some partial information. Furthermore, the traditional hypothesis
testing is briefly discussed from the view point of ranking and
selection.

1. INTRODUCTION

In randomized complete block design (R.C.B.D) with one obser-
vation per cell, we can express the observable random variable

X i=1,...,k, 2= 1,...,n) as

ig (



k
Z 1. = 0. (1.1)

where pu is the overall mean, T is the i-th treatment effect, Bl
is the 2-th block effect, and €50 is the error component of (i,%)
cell. We assume that the errors within each block are jointly
normally distributed. We also assume that the quality of a treat-
ment is judged by the largeness of ri's values. The i-th popula-

tion is called the best if Ty T max T, In many practical situ-
1<g<k

ations, the goal of the experimenter is to select the best popula-
tion.

In this paper, we shall use r-optimal criterion to determine
the sample size of a natural selection procedure so that it will
minimize the maximum expected risk over the class of some partial
information [cf. Gupta and Huang (1976)].

In Section 2 some basic definitions and notations are intro-
duced and basic formulation of the problem is also given. In
Section 3, some useful expressions for the probability of correct
selection (PCS) is derived, and T-optimal sample size is deter-
mined. Section 4 deals with a numerical example for illustrative
purpose} In Section 5, we discuss the relationship between 2o and
n*. Section 6 includes some conclusions and a discussion of the
traditional hypothesis testing from the view point of ranking and
selection. For general reference of multiple decision procedures,
see Gupta and Panchapakesan (1979) and Gupta and Huang (1981).

2. BASIC FORMULATION OF THE SELECTION PROBLEM

In R.C.B.D., as (1.1), we assume that €, (E]Q""’ekz)':
error components within g-th block have jointly a multivariate
normal distribution with mean vector 0 = (0,...,0)" and covari-

: 1 . AL
ance matrix £ = ¢ <Z :) , Where 02 is unknown and ) is a
k

known constant. Thus,(X

X, = X]Q,... X, .)' have joint multivariate

>7ke



normal distribution with mean vector 8, = (612""’ek2)' and
covariance matrix I, where 05, = (u + T, t B, ) for all i,
1 <i<k,andany 2,1 <2 <n. For a]] i, ]_5 i < k, define

Z]X12/n Then Y., - (Xi-X],...,Xi-Xk) are jointly suffi-
cient for (ri S TyseesTs - rk) . Now, if T = E;? T, then

T T, >0 for all 1 < 2 < k. We consider a class of natural

selection rules for i-th population, 1 < i <k, as:

(1) 1 . -

SV (x.) = {, if X. —-max X (2.1)
where X, = (X],Xz, ..,Xk)'. Some optimal properties have been
studied by several authors (see Gupta and Panchapakesan (1979)).
So the class of natural selection rules can be denoted by:

- - (1) (k) '
D= 18(x)l80x,) = (687 (x)sen 8 (x )10 (2.2)
The parameter space @ is as follows:
Q= {1 = (r],...,rk)'lri € R for all i = 1,...,k}. (2.3)
Let A be a given positive constant, and for all i, 1 < i < k,
Qi = {1 = (T],...,Tk)ll‘[i 112 + Ag for all 2 # i}, (2.4)
QO = {IIT-I =,..= Tk}, (2.5)

k
and @ =q-(U a.)

k+1 j=0 1 |

Let L(i)(I; 6(j)(§n)) represent the loss function for 1 € Qs

0 < i < k#1, when the j-th population, 1 < j < k, is selected.
Let for 1 <j < Kk,

L(i)(g; s(j)(gn)) = {a(— J')5(3')(1(") for 1 €)e, (1<i<k) (2.6)

Qk+1(i=k+])



where ¢ is some positive increasing function such that 2(0) =0

2
and 2(x) = o(e** ), ¢ > 0, and Co represents the sampling cost
from each population (cO > 0). So, for all T € Q5 0 < i <k+1,
the loss function of §(§n) is defined as:

L5 a(x)) = lz: L (5 sy ). (2.7)
Similarly, we have ’ |

R (e s ) = et (o5 50600  (2.8)
and for some o (prior distribution) over a, y(1)(os 5) is
defined as:

YD os s ) = er (g 690 | (2.9)

n
Thus, the Bayes risk of §n w.r.t. p is defined as

k+1 .
(1)(

vles 6,) = 1 v ). (2.10)
1=0

P3 §n

In this selection probiem, it is assumed that some partial
information is available. So that we can specify m o= Pr(T € Qi)’
for all i, 0 < i < k+1 and define

k+1
r = {p]fg_dp(z) = 7., z T, = 1,0 < i < k+1}. (2.11)

. i
i V20

If there is no prior information, we can assume that
T Tl = Ty = (]-nk+])/(k+]).

Now if there exists n* such that

sup y(p; 8, 4) = inf{sup v(p; 8,01 (2.12)

p€T §n€D p€T
Then 8k is called a r-optimal decision rule and n* is the
r-optimal decision. In the following discussion, we will deter-
mine 8, for this selection problem.



3. MAIN RESULTS

We can easily show the following lemma

Lemma 3.1. Suppose for any 2, 1 < ¢ < n, Xz = (X]Q,...,szr
follows a multivariate normal distribution with mean vector

= + + - + + ' i :
8, (u Ty Bysenns H Tk 62) and covariance matrix

Let Yi = (X —X], ’Xi'xk)' and pi(I) = Pr(Xi 3_@;? Xz) where
_ n
X. = () X../n) for any i, (i = 1,...,k).
i o=y s
Then
a) !1 follows multivariate normal distribution with
mean vector (ri-r],...,ri-rk)' and covariance
2 1 ...%
matrix gg—r(]]—” <: 2> (3.1)
5 ...1/(k-1)
(t:-11)/0 (ti-t.)/0
b) ps(z) = @k_]<:—3-—J————,..., ——1——5————), - (3.2)
V2(1-2)/n v2({T1-1)/n
and
o kK (Ti-TQ)/G
c) pi(t) = [ 1 efz+ ——— |do(z), (3.3)
- QF#1 - Y(T-A)/n

where ¢k_](-) denotes the c.d.f. of (k-1)-variate normal distri-
bution with mean vector 0 = (0,...,0)" and covariance matrix

.
normal distribution.

' .l > and ¢(.) denotes the c.d.f. of standard
(k-1)

=

I
P
Njiz s o o
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Theorem 3.1. In R.C.B.D., for fixed A and A, let

2(T-2)/n

Then there exists n* such that

*
and nO

sup{z(g)-(1-¢k_1(————5l———— beers ——2—))} (3.4)

is a positive

(3.5)

Qu(n) =
g>A Y2{1-1)/n
and H(n) = sup v(p; ¢ ).
p€l
H(n*) = inf H(n).
n>1
<ng> if H(<ng>) < H([nj])
where n* =
* N * *
[ng] if H(wng>) > H([nED)
real number assumed to exist satisfying the following equations.
a) QPI4(n6) = '(Coﬂo)/(]‘“o'ﬂk.*_])
b) QM(na) >0

<x> ([x]) denotes the smallest (largest) integer which is larger

(less) than or equal to x.

Proof. For any Gn € D, we have
k+1 (1)
v(os 8) = T [o RV (138, )do(x)
i=0
(e T [ prledo(o)s I § o)
= {\ChNn P T dp T + 2
07521 Tag' i21°%521 ©
ps(t)do(z)
Since
® k- 1
1) suppila) = f o (2)del2) =
:[:EQO =
2) By Somerville's paper (1954) for 1 < i < k, we have
k T.i"Tj k
s (] 2= 0ps(e)) = sup 1] 2(97)py)
) TEQ, =1 9528 J#
9. 9
= sup 12(9;) (1-8_j(——=s..., ——=—=))} = Q(n).
9;>A /2(T1-1)/n Y2(1-1)/n



Thus, H(n) = sup v(p; 8,) = ne(cymy) + QM(n)(l-ﬂo-wk+1)-
o€l

Since there exists na such that
2) Q) = ~(cqmg)/ (1-mg-my, )
;b) QM(na) >0,
thus, we have
H'(na) = 0 and H”(na) > 0.
<n6> if H(<”6>).i H([na])
So n*=

_[na] if H(<n6>) > H([na]).

Lemma 3.2. (Slepian (1962)) Let (X],...,Xn) be multivariate
normal with zero mean and positive definite covariance matrix
E] = {pij} and (Y],..

and positive definite covariance matrix 22 = {Kij}. Let Pij

.,Yn) be multivariate normal with zero mean

i=1,...,n. Then

> a ).

n—n

>k;. for i, j =1,...,n and Pij T K

iJ ii?

Pr(X] z_a],...,ani an)_z Pr(Y] 3_a],...,Y
We need a numerical solution for n to satisfy the infimum
of H(n).
Theorem 3.2. Let 2(:) be a positive increasing function

2
such that 2(x) = o(eCX ), (c > 0),

QM(n) = sup{z(g)(1-¢k 1 ———iL——— ... ———1l———)

g>a 1 A /2 i A)

and H(n) = negmy * (1-n0-nk+])QM(n). Let

2
i (2(g,))
nO - <(k_])2(11—rl)( c01T k+])2 5 >, (3.6)
0°0 93 eg*/Z(]-X)

Then

inf H(n) = inf H(n)
n>1 n<n,



9% 2
2(9+) - 775y -_(LT
where g, is such that ——gi— e Aa01-a) sup;&ég) e 4(1-x 2.
* g>A

Proof. By Lemma 3.2, we have

-0 1 (e .nt) < 1-0571(t) < (k=1)(1-a(t))

o]
=
—
3
~—
A

< supfz(g)(k-])@w(——ﬂ—)); (3.7)

< (k-1) /(1-2)/ sup 2(g) o 4(1-1) )
- /n g>al 9
Since 2(g) is a positive increasing function such that 2(g) =

o(eCg ) (c > 0), then there exists g, such that

2
{ﬂgl e 02 } Mo -glra1-n), (3.8)

sup
g>A

By (3.7) and (3.8), as n » o, QM(n) decreases to 0. We can find

G

2
T-m - (2(g4))
g - <$(k_])2(1;x)( CoTr k+1,2 - * N
0°0 2 9x/2(1-1)
gx€
to satisfy

CAT

0'0
Qulng) < 57—

M0 1-n0 LR

CAT
00
Now fpr any n > ng, QM(n)—QM(n+]) E-QM(nO) i'TT:;E:;E:;T and
H(n+1)-H(n) = cono-(l-no-nk+])(QM(n)-QM(n+1)) > 0. In other
words, H(n) is an increasing function of n. Thus,



inf H(n) = inf H(n).
n>1 n<n,

Under a finite domain of n, we can solve for the infimum of
n* numerically by the following algorithm.

1. Determine "y such that (3.6) holds.

2. Determine a non-empty set C, where

QM(nl) < QM(n"])'Coﬂo/(]'ﬂo'“k+])

C = nl . nu <
QM(n') i QM(nI+])+COTTO/(]-TTO-1Tk+-I)

3. IfcC is a singleton consisting of n', then n* = n'; ifC

has a cardinality > 2, then choose n* such that

H(n*) = inf H(n).
nec

An example is considered in Section 4.

4. Numerical example for the existence of n*

We consider a special case of the loss function, namely,

2
2(g) = c'g", ¢' >0, g>4, a>1, then %ﬂe‘g /401-2)

a—]e-92/4(]-k)

c'g has the maximum point at g, =

max(v2(1-1)(a-1)34). Thus n, can be expressed as

T-mn-m 2
1- ' 2 2(a-1) _-g%/2(1-2
ny = <(k_])2(_ﬂ>\_)(g_o #(ﬂ) g*(OL )e gx/2( )>.

let



Now, ¢ is a set of all n' < Ng such that

(1) Mz_]<%/é%§;;;)//(n')a/z-Mz_]<A zn;fl >//(n'+1)a/2 <

"0/ "m0y
¢! (2(1-1))%/2

(2) Mﬁ_]<A/§f%};;)//(n')“/2-M§_1<A/5%Tf%y)//(nF—l)a/z <

_ %m0/ 1o ke
¢'(2(1-2))%/?
By using the table 3.1 of Somerville's paper (1954), we can compute

H(n*) = inf H(n) directly. Some r-optimal sample sizes are given
nec

in Tables I and II for A = 0.0, 0.5, T = 0.05, 0.10, 0.15,
o = 1.0, 2.0, A < 0.05, Tt # 0.0 and C'/c0 = 15, 30, 45, 60.

5. Sensitivity analysis betweeh A and n*

In this section, we discuss some relationships between A and
n*. Since A and n* depend on A, a, k, c'/co, Tys Tpp1o We fix
A =0.5 a=1.0, k = 4 and Tl = 0. Let c'/c0 change from 15
to 30 and T change from 0.10 to 0.15. With different values
of c‘/c0 and mps We get a clear idea of the relationship between
A and n*. The results are shown in Table III and Fig. 1. We
observe that the relation in Fig. 1.b is more stable than in
Fig. 1.a and the relation in Fig. 1.d is more stable than in
Fig. 1.c. Thus for fixed c'/cO, the larger A corresponds to
more stable relationship between A and n*. Similarly, Fig. 1.a
is more stable than Fig. 1.c and Fig. 1.b is more stable than
Fig. 1.d; this means that for fixed TG the smaller c'/cO corre-
sponds to more stable relationship between A and n*.



6. Discussion

In the special case of k = 2, we have
Q= {1 = (T]; 12)'|Ti € R, i=1,2},

QO = {IIT] = Tz}’
8y = x|, > 1, + Ao},

Qy = {Isz > 1y + Ad},

and 93

1
o]
1
—
N Cr™o

If we do not know any prior information about the parameters we
can take Pr(g € QO) = Pr(g € Q]) = %u Then this is reduced to
the traditional problem of testing
* | . =
(*) HO' T T,
It should be pointed out that both the type I and type II errors

Vs H]: Ty 2 T, * Ac.

are controlled simultaneously.
TABLE III.

Relationship between A and n*

c'/cO T i;>\é‘§_0.25 0.27510.30]0.35[0.40]0.45]0.50

15 0.10 nT 8 8 9 11 12 12 11

15 0.15 n§ 6 6 8 8 9 8 8

30 0.10 n§ 13 15 17 19 18 17 16

30 0.15 nz 9 9 12 13 13 12 12




TABLE T (o = 1.0)
I-optimal Sample Size for R.C.B.D. Problem

A (» = 0.0) (» = 0.5
C./zg 0.05 | 0.10 | 0.15| 0.05 | 0.10 | 0.15
15 1 7 5 9 6 4
30 17 | 8 | 14 9 6
45 22 14 | 10 18 | N 8
60 27 |17 | 12| 22 | 13| 10
15 15 9 71 12 7 6
30 23 {14 | 11| 18 | nm 8
45 30 |18 | 14 28 |15 | nm
60 36 | 22 | 16| 20 | 18 | 13
15 17 | 10 8 | 14 8 6
30 26 | 16 | 12 | 21 | 13 9
45 3 |21 | e | 27 |17 | 13
60 42 | 26 | 19| 33 | 20 | 15
15 18 | 1 8 | 15 9 7
30 29 |18 | 13| 23 |14 | n
45 38 |23 |17 ] 30 |18 | 14
60 46 | 28 | 21 | 3% |22 | 16
15 20 | 12 9 | 16 | 10 7
30 31 |19 |18 | 25 [1s [ n
45 90 | 25 | 18 | 32 | 20 |15
60 49 | 30 | 22 | 39 | 24 18




Table II (a = 2.0)

r-optimal Sample Size for R.C.B.D. Problem

X (x =0.0) (A =10.5)
00
N 0.05 0.10| 0.15§ 0.05 | 0.10 | 0.15

15 10 7 6 7 5 4
30 14 10 8 10 7 6
45 17 12 10 12 9 7
60 20 14 11 14 10 8
15 13 9 7 9 7 5
30 18 13 10 13 9 7
45 22 15 12 16 11 9
60 26 18 14 18 13 10
15 15 10 8 11 7 6
30 21 14 12 15 10 8
45 25 18 14 18 13 10
60 29 20 16 21 14 12
15 16 1 9 12 8 7
30 22 16 13 16 1 9
45 27 19 15 20 14 1
60 32 22 17 23 16 13
15 17 12 10 12 9 7
30 24 17 13 17 12 10
45 29 20 16 21 14 12
60 34 23 19 24 17 13




Figure 1

Graphical relationship between A and n*

3

15 . 15

12 12

9 ? '
3 31

L 0.275 - LA " 0:275 et &
0.25 0.30 0.35 Q.40 0.45 0.50 0.25 0.30 0.33 0.4 C.45 0.30

Fig 1.a under ¢'/feg=15, 7, = 0.10. Fig 1.b under ¢'/ce=19, m = 0.15.
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