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Abstract

The usually irregular follow-up intervals in epidemiologic
studies preclude the use of classical growth curve analysis. For
short follow-up intervals, it is suggested that individual rates of
change are useful for exploratory analysis. Empirica] Bayes
estimates of these rates of change are recommended for their smaller
overall expected error than that of independent least squares

estimates. An example of bone loss with age in women is given.
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1. INTRODUCTION

Longitudinal studies are often undertaken to measure changes in
the human body which may eventually lead to disease. Such studies
requiré great effort and expense in order to make repeated
measurements on the same subjects over many years; therefore, the
valuable data collected should be fully utilized in subsequent
statistical analyses.

Much of the earlier work on the analysis of repeated
measurements has been deve]oped in the study of growth curves, but it
can be generalized to any dose-response relationship. Grizzle and
Allen (1969) gave a comprehensive summary of those techniques
deve]obed from the generalized multivariate analysis of variance
model of Pothoff and Roy (1964), which requires measurements on atl
subjects at each of several fixed time points. This constraint is a
severe limitation for the analysis of epidemiologic studies in which
subjects 1) often enter the study at different ages, 2) inevitably
miss Sqmé'scheduled visits, and/or 3) drop out of the study
aTtogetﬁér. For longitudinal data with variable follow-up times, the
chojcequ>statistica1 methods is very limited. If one is mainly
intebé;tgd»in testing for overall differences between groups of
subjéct§; £he nonparametric test by Zerbe and Walker (1977) is
app1i¢§6ﬁe.

;jn:this paper, on the other hand, the main emphasis will be on
mode}ﬁ%%tting and (local) estimation of individual response curves.
The apéroach taken is essentially Bayesian or empirical Bayesian in

nature;wmodeled after such papers as Lindley and Smith (1972), Efron



and Morris (1973, 1975), Carter and Rolph (1974), Fearn (1975), Fay
and Herriot (1979), Rolph, Williams, and Lee (1980), Rubin (1980),
and Morris (1982).

An important feature of many epidemiologic studies is that the
follow-up intervals of most of the individuals studied are
sufficiently short that the response curves in the intervals can be
approximated by straight lines, with slopes g;. This will be seen
to allow estimation of the individual slopes and of the mean
population slope u(t), without the need to specify functional forms
for the true individual slopes over the entire age span of interest
(a difficult and uncertain task). The empirical Bayes approach also
gives individual slope estimates which are probably considerably more
accurate than the least squares estimates, which may have large
variances due to the short follow up times.

Two other features of the analysis that might be of interest
are: (i) Empirical Bayes estimation of variances is considered, an
attractive alternative to the standard necessity of choosing between
individual estimates and a pooled estimate; (ii) The analysis is done
in such a way as to be partially "self-correcting" if some of the
individual response curves are actually quadratic over the follow up
period.

Section 2 presents the formal model considered, and outlines the
plan of attack. Section 3 discusses the needed empirical Bayes
theory; Section 4 gives the application to bone loss with age in

women. A discussion is given in Section 5.



2. MODELING THE PROBLEM

2.1 Overview

The procedure proposed in this paper for modeling the problem is
based on the following four steps:
1. Fit a straight line to each subject's data points to obtain
a least-squares slope estimate of the subject's response
curve;
2. Consider each slope estimate to be an estimate of the
subject's true response curve slope at a suitable point in
. the study interval;
3.;'A§sume that, in the population, the individua} true slopes
~are normally distributed with an age-specific population
* mean;
4. Appropriately model the age-specific population mean.
The_justification for this approach is the desire to minimize
the strgﬁtura] assumptions in the modeling. Standard approaches tend
td rquRre the assumption of specific stochastic models for the
indiviﬁﬁa]_response curves. Although this may ultimately be needed,
the mefﬁadhproposed here is useful at the data analytic stage where
good éé@ﬁmates of the individual slopes and population mean may be
desiredeithout involving very uncertain modeling structures. The

detai]ééare presented in the next subsection.



2.2 The Model

The response curve of an individual wi]]lbe denoted y(t), and of

interest is its rate of change
_d
B(t) = F¥(t).

It will be assumed that, in the population, g(t) has a random

distribution with mean function u(t), i.e.,

where e(t) is a random function having mean zero for all t.

Assume the study involves n subjects with measurements Yiy» -

th

s Yip. of the i7" subject's response y;(t) at
;

times t].1 <, , , < tim.’ i=1, . . ., n. We assume the measurement

errors are independent and normally distributed with variance ¢;2

for the ith individual, i.e.,

~ 2 $= . is
yij N(yi(tij)’ci ) j=1, . . ., m.s i 1, . . ., n

Based on these observations, we wish to estimate u(t) and the Bi(t)

-g—yi(t) for the follow-up intervals.

dt
The empirical Bayes or Bayes approach seeks to utilize the
information available from (2.1) in the estimation. The difficulties

in proceeding directly, however, are considerable, in that the nature



of e(t) must be carefully specified. Usually, this involves assuming
some functional form for g(t) (and u(t)) involving random parameters.
Analysis may be very sensitive to the assumed structure, an
undesirable feature of this direct approach.

Ah alternative method of proceeding can be based on the

observation that if the follow up interval (til’ tim ) for the

jth individual is short, it is reasonable to expect yi(t) to be

approximately linear on this interval, say
i

y:(t) = o+, t. (2.2)

If this_approximation is reasonable, the ordinary least squares

estimator of g; is given by

m. m.
b, = YN (y,.-y:)(t:.-t.)/ Y'(t,.-t.)2 (2.3)
i j=1 ij Ji ij i j=1 17 1
where -
Vo= Yy ¢ .= it/
y. = Y../m. an , = L./m. .
i j=1 ijoi i j=1 LV

;fTﬁfs will be (approximately) normally distributed with mean B

and. variance

d. = 0.2/ J(t, .-t )2. (2.4)



To estimate the oj2, we can use the independent random variables

m.
2 = V1 -v . )2._ - . )]g 2,2
Although bj is formally an estimate of g;(t) for all
te(til’tim ), it is helpful to consider it an estimate only of
i
Bi(ti)’ where
m. _
Y -t.)3
=, gttt
t, = ti+ g‘i = (2.6)
2 ) (t..-t.)
ja1 WO

The reason for this, as shown in Appendix A, is that if yi(t) is

really a quadratic on (til’tim ), then at ti the actual slope Bi(ti)
i

will equal the slope found by fitting a linear function to the points

(teuy(ta))s o o o, (tim.’yi(tim.))’ The approach thus possesses a
ir7ivril i i

degree of built in robustness.

We have reduced the data to independent

This reduction greatly simplifies the needed modeling of the
randomness in (2.1), since we effectively have only one random
observation at one time t; from each realization gj(t). Assuming

independence of subjects, progress can now be made solely by modeling



the distribution of 8(t) at fixed points t. We will indeed assume

that, for fixed t, the population slopes are distributed as
B(t) ~ N(U(t)9D) .

The assumption of constant (over t) variance D of the distribution of
slopes in the population seems reasonable for the example we
consider, although more generally a function D(t) might be inserted.
The point is that, because of the simple form of the data in (2.7),
we need not be concerned with the covariance of g(t) at different
times, and hence can avoid imposing particular structures on the B3
over the entire age span of interest.

It;wii] also be necessary to assume some structure for u(t), the
age specific population mean rate. The choice of a functional form
of u(f) is sometimes determined a priori from the theoretical
considerations of the underlying biological or physical process.

More pften, however, no theoretical model exists and u(t) is
approxim&ted by a polynomial function in t, with the degree of the
pdlynoﬁfal determined empirically from the data. Although more
genéréﬁ:forms of u(t) could be considered, we will suppose that u(t)
can be:egpressed as

n(t) = h(t)y, (2.8)

~

wheref{%is a P-vector of regression coefficients and h(t) = (hl(t),

~ ~

. g;uhp(t)), where the hj(t) are given functions of t. In



particular,for a polynomial function of degree (P-1), h(t) = (1, t,

t2, . . ., tP 1y,
In our example, it will suffice to consider P=2, h, (t)=1 and
hz(t)=t, i.e., a linear u(t). To summarize, the problem has been

reduced to considering for i=1, . . ., n,

where
2, W 2 2 202
d1 = o, /-Z (tij_t') and S;5~0.2x (m.-2)" (2.10)
j=1 i
and

~ ~

from which we wish to estimate the Bi(ti) and v.

It should be noted that we have "thrown away" information in the

above approach, by compressing the data to the bj (and the 512).

In particular, there may be other information in the original yij’

or, at least, in the least squares estimate of o (see (2.2)). This
information cannot be used to estimate the Bi(t) and u(t), however,
unless very special structures for the Bj are assumed. The amount

of information Tlost seems marginal, in any case, since the linear
approximation to Bi(t) on (til’tim ) is usually very reasonable and
. i '



since ai will tend to be so variable in the population as to provide

little information about the Bi(t) or u(t).

3. EMPIRICAL BAYES ANALYSIS

3.1 Bayes Versus Empirical Bayes

The problem to be analyzed in (2.9) through (2.11) can be
approached from two directions. One is the Bayesian approach of

Lindley and Smith (1972), which would involve putting priors
(typically noninformative ones) on D and vy and probably a two stage

prior on the i 2, and then calculating the posterior means of the
3i(ti) and of y given the data.

~

"The second approach is the empirical Bayes approach of

ca]cu]ating Bayes estimates of the desired quantities, pretending
that D, vy and the oiz are known, and then inserting estimates of D, y

~ ~

and the 0.2 based on their joint 1ikelihood.

Thé Bayes approach will usually be superior for small or
moderééé-n, but has the disadvantage of being somewhat remote in the
sense thépithe estimators used must be evaluated by numerical
integraﬁfdn and are not always easy to intuitively understand. The
empirjcgi Bayes estimators are often of a simpler form, and for large
n tehdigo work as well as the Bayes estimators. Since the n
considéfed in this paper will be large, we will opt for the empirical

Bayes ﬁgproach.



3.2 Bayes Estimates of Bi(ti) for Known Parameters

If the 012, Y, and D are known, then the usual Bayes estimator

~

of Bi(ti) is the posterior mean

i i

~

(recall u(t.) = h(t.)y) which has posterior variance

) diD )
(t.)Ib,) = . (3.2
itift D,

Var (g

This is a weighted combination of the least squares estimator bj

and the population mean estimate “(ti)' We now must estimate vy, D,

~

and the 012.

3.3 Estimation of Variances -- A Compromise with Pooling

.) might well be

The measurement process (used to obtain the yiJ

assumed to have equal variance o2 across subjects. On the other
hand, the measurements may be more or 1éss variable for certain
subjects. Classical analysis usually requires a choice between
individual estimates and a pooled estimate. The situation cries out
for empirical Bayes (or Bayes) handling, to arrive at a compromise

between the two extremes.

10



Suppose we have

51.2 ~ oizxﬁ. i=1l, . . ., k,
1

(Tet fi(sizloiz) denote the appropriate Chi-squared density), and

believe that the o;2 are distributed in the population according to
a prior distribution w(¢2). Empirical Bayes analysis is usually

fairly robust with respect to the functional form chosen for © (see
Berger (1980)), so for convenience we suppose m is an inverse gamma

distribution with density

1(02) « 0-2(a+l)e-6/(202).

The parémeters a and B are considered unknown, and are to be
estimétéd from the data. (Again the Bayes approach of using
noninformative priors for a and 8 and calculating the posterior means
of the o032 is a very attractive alternative.)

: quvknown o and B, an easy calculation shows that the posterior

mean fdk oj2 is
2 2y =
E(o;21s,2) T | (3.3)

To estimate a and B from the data, it is common to employ moment
methqdéwor maximum likelihood methods. In the interests of providing

intuitively accessible formulas, we here use a mixture of these.

11



The marginal densities
mi(sizlaas) = fof'(sizloiz)“(cizIaas)deZ’

provide the vehicle for the estimation of o and g. Using the moment

approach first, calculation gives

2 2 2
m, H(Oi la,B) fi(si lo.2)

;
n = E [s;2] = E E ' sy2]

n.g
Eﬂ[nioiz] = ! ’
2(a-1)

and

Var, = E 1(s.Z-u.) = E

il
m
5
m
—
—_—
—_
w
—
N
1
>
a

I
m
=
——
N
=S
Q
-y
r
+
———
=
a
N
1
=
—_
o
N
——

Thus the



are independent and have marginal means 8/[2(a-1)] and variances

2+n .
v. B (24 ).

k k
_lei/vi -'1512/[2(a-1)+ni]
2 = 12 = -
; k . k
Y 1/v, ) n,/[2(a-1).]
i=1 ' s ‘

Equating s2 and B/[2(a-1)], we get as an estimate for g

k
2(a-1) siz/[Z(a-1)+n1]

i=1

i“lni/[Z(a-l)+ni]

o~ R

. Before proceeding with determination of a, it is worthwhile to
s]ight}y modify the estimate of B, by replacing (a-1) with a. The
change7i$'minor and gives an estimator which reduces in the Timits to

the usual estimators. Thus we have

13



k
2a ) s.2/[2a+n.]
AL !

(3.4)

K
1.Zlni/[Zoﬁni]

as the estimate of B.
The method of moments gets very messy in estimating a. Hence it

seems reasonable to revert back to maximum 11ke]ihoqd. The Tog

k
likelihood for a and 8 (from = mi(sizla,s))is (for some constant
i=1

K(slz, C e e skZ)J

n

g k F(a+?i) k n, 1
Tlog L(a,B) = K+k a 1og?-+.zllog e -.21(a+?~)]ogﬂg(siz+8)]. (3.5)
i= i=

Replacing g by B (from (3.4)) and maximizing over a, will give an
estimate G for a.

Plugging E and & into (3.3), we get as estimates of ¢;2

k
5. 2473 n. g2 . .Z Siz/[2a+ni]
222 l - i i, fa )1—1 _ (3.6)
2atn, 26?+ni n, 2a+n. k N
y n./[2a+n ]
i=1

Comment 1. If nyj =n, i =1, ., Kk, then
2 A 2
22 = Ny A LSy

1‘ k]
_ 234N n 2a+n In,

14



which is a compromise between the individual estimators and the

pooled estimate.

s .2
Comment 2. When a4 = 0, g.2 = (the individual estimates), while

i n;
I,

2 = (the pooled estimate).
In;

-~
[o X}

A
when a = «, ;

Comment 3. It can be shown that a and hence 312 is scale

invariant.

Comment 4. If Siz/ni = ¢gfor i=1, .. ., k, then TogL will be of
the form h(a)*g(z), for some functions h and g, and indeed h(a) can
be shown to attain a maximum at o=e, Thus when the Siz/ni are nearly

equa1;'612 will be the pooled estimate as intuition would demand.

Comment 5. The following comments may be of assistance in maximizing

(3.5) over o (with g replaced by ﬁ):

Qﬁ) As can be seen from Comment 4, it is possible for the

";;.bmaximun to be attained at a==, It can be shown that o<« if

(zn.)z(zsi“) Z(zni)(znis%Z)

poo Ik e > 0.

N . 2e T+
xn, 2§:n1

(Tj) As o»0, loglL (a,§)+ -w, SO 2 can never equal zero.

15



(iii) Note that
n./2 4

) T if n; is even
(0‘*—2) 910"
3"109 I‘zas

n.
w(ahzl)-w(a) if niis odd,

where ¥ is the digamma function. Furthermore,

i _MNS 1
¥ o -2——)-\y(a) = 2-_21 A
I (G- 1) (a1
(iv) If nj =n (even), i =1, .. ., k,
q 2 knn/2 kns12 no K kns.2
H-O-LlogL(oz R) Ziraif‘rf 2 Tog( 1 ?—-—7g-(1+?E)121(1+?Efg;ﬂ

Conclusion: We will be using (3.6) to estimate the ;2. In our
problem, n{ =m;-2, and k=n. It should be observed that, again,
some information is being ignored, namely the information about the
o2 contained in (2.9). A grand simultaneous empirical Bayes
analysis involving the joint density of everything in sight could
have been performed, but the information ignored seems minima]land
the advantage for intuitive checking of results by considering the

0j2 separately seems considerable.

16



3.4 Estimation of y and D.

~

There are several ways of estimating y and D. Rubin (1980)

~ ~

gives details of the application of the EM algorithm (Dempster,
Laird, and Rubin (1977)) by treating the Bi(ti) as missing data.

Other methods are based on the marginal distribution of the bi’ which

can be seen from (2.9) and (2.11) to be given by

i i

~

b, ~ N(h(t )Y’D+di)’ i=l, . . ., n. (3.7)
The moment (or weighted least squares) procedure (see Fay and Herriot
(1979)) and the maximum 1ikelihood procedure (see Efron and Morris
(1975)) are two such methods. The maximum likelihood procedure is

simp1e here, and leads to reasonably intuitive estimators, so we

employ this method.
The likelihood function L for y and D is just the product of the

normal. densities in (3.7). It is easy to check that the maximizing
value of vy is

~

(t'v-lt)~l(t'v-lb), (3.8)

~A A~ ~A A A~

) =D
i

where

V = DI +diag(d;),

17



and

n
) [{(bs-h(t,)y)2-d.}/(D+d,)2]
(21 i i i i
D =12 . . (3.9).
. n v
J (D+d )2
i=1 !

Equations (3.8) and (3.9) can be solved iteratively for D and v,

~

convergence to a solution generally being very rapid. (To check the
uniqueness of the solution, it is a fairly easy task to insert (3.8)
into the 1ike1ihood function and roughly graph it as a function of
D.)

It is interesting to note that (3.8) implies that the estimated
u(t) will be the weighted least squares estimate based on b (with the

~

(D+di)-l’ the inverses of the marginal variances of the bi’ as
weights). Also, if the weighted least squares estimate of u(t) is
calculated based on the empirical Bayes estimates Bi (where now the
weights are (D+di)/D2, the inverses of the marginal variances of Bi)

one gets the same result.
If n were small, it would be better to use the modifications of
the above estimate suggested by Morris (1982). For the large n we

consider, however, these modifications are not needed.

18



4. APPLICATION TO BONE LOSS IN POSTMENOPAUSAL WOMEN

4.1 Background

Osteoporosis, a condition of diminished bone mass with increased
risk of fractures, is often considered an accelerated aging process
rather than a distinct disease. This problem is most prevalent in
postmenopausa1 Caucasian women. Hence, knowledge about the natural
history of bone loss in a general population of these women may
improve the understanding of osteoporosis. To this end, a
longitudinal study was started in 1971 to characterize the change of
bone mass with age in postmenopausal women.

The details of the study design and methodology have been
reported previously by Smith et al. (1975). Briefly, all the
subjetts were volunteers free of diseases known to affect bone
metabolism. New subjects have been added to the study whenever they
bec ame ayai]ab]e. Since the subjects were not compensated for their
participation in the study, visits were always scheduled at their
cdnveniénce and bone mass measurements were made at each visit.

'_Tﬁe_ana1ysis in this paper is aimed at characterizing the change
of.bénélﬁa§s with age in 268 postmenopausal Caucasian women. Their
initiéljaées range from 50 to 95 and thé number of visits per subject

varies[ﬁetween 3 and 44.

19



4.2 Results

Since all subjects were aged 50 and over, and rapid boné loss is
usually assumed to start at around age 50, a convenient
transformation, t = age-50 was made. Examination of a typical set of
data (see Figure 1) indicated that linearity of the response curve
over the follow-up period is a reasonable assumption. Thus for each
individual, the least squares slopes bj (see (2.3)),'the sample
variances si? (see (2.5)), and the ti (see (2.6)) were
calculated. Since, marginally, the bj would be distributed
N(U(ti),D+di), a feeling for the shape of u(t) can be found by
plotting by against ti. This plot is given in Figure 2 (with one

apparent outlier off the graph) and suggests that u(t) can be
approximated by a Tinear function Y1+Y2t. Thus in (2.8), v =

~

(vp>7,)" and h(t) = (1,t) was used.
In estimating the 012 using the technique of subsection 3.3, the

likelihood function (3.5) attained a maximum at o = «, i.e., the
empirical Bayes estimate (3.6) turned out to be simply the pooled
estimate of variance

)s.2

52 = —— 1 = 1.089x10-5.

l(m]'z)

(This was a comforting result, since the measurement process was such

20



that a pooled estimate of variance seemed natural.) This estimate
was used in (2.4) and gave estimated variances d; (of the least
squares slopes bj) ranging from 8.7x107® to 0.15. Finally,

equatiqns (3.8) and (3.9) were solved iteratively, yielding estimates
D = 6.958x1075
and
(3,57,) = (-0.01754; 4.652x10").

The standard errors of these estimates (from the weighted least
squareQirégression based dn (3.7) and assuming D and the d; known)
ar'e‘l-.32-x10'3 and 5.45x10_5. These are probably underestimates of
the error, since D and the d; were estimated. The fitted line for
u(t) is indicated by the solid line in Figure 2. (As a check, a
quadratic was also fitted to u(t), but the quadratic term was found
to be nggligible and statistically insignificant.)

As;a check on the modeling assumptions made, a normal

probability plot of the standardized residuals

1

r‘- = - wrnipvneEn
! /b+di

[b-i'(/Y\l*'?Zti)]

is giveﬁ in Figure 3 (with two ri~-4 excluded). (By (3.7), the rs
shou]dﬁﬁe N(0,1), ignoring the randomness introduced by the estima-
tion of the parameters.) As can be seen, the normality assumptions
seem reasonable.

21



The estimates of D, dj, and y(t;) were then used in (3.1),

~

resulting in empirical Bayes estimates bi of the individual slopes

Bi(ti)' These estimates are plotted against ti in Figure 4, and are,

as expected, pulled in towards the estimated u(t).

5. DISCUSSION

Comment 1. The empirical Bayes methods discussed in this paper are
recommended as a practical tool in the analysis of longitudinal
studies with irregular follow-up intervals, particularly in early
stages of the study when most of the follow-up intervals are short.
The methods provide an estimate of the population growth rate without
requiring specific knowledge concerning the form of the individual
growth curves, and lead to what is probably a substantially more
accurate picture of the variation of the individual growth rates.

The ultimate medical goal is, of course,-to come up with good
diagnostics. Improved estimation of the individual growth rates
after a short follow-up period is certainly helpful here, but what is
really desired is ability to predict the long term future growth rate
of a patient. This necessarily involves considerably more involved
modeling of the individual growth curves, and probably a fair]&

substantial sample with Tong follow-up periods.

Comment 2. Since u(t) appears to be approximately linear, one would
expect the individual growth curves y;(t) to be approximately
quadratic in the long term. The use of straight line fits to

subjects with long follow-up intervals thus seems suspect. However,

22



the use of t; (see (2.6}) as the point in the follow-up interval at
which the slope is considered to be estimated theoretically protects
against quadratic growth curves. |

To investigate the success of this method, a quadratic function
in t was fitted to the measurements of each of the women in the
study. Eleven of these functions had a significant quadratic term.

If the estimated regression function is

A
= 2
yi(t) bi0+bi1t+b12t .

a reasonable estimate of the actual slope at t; is

yi'(ty) = by+2b,

t..
i i

2

The absolute differences between 91I(ti) and bi for the eleven women
were all less than 0.66 times the estimated standard deviation, /H}l
of the bi’ (average absolute difference = 0.11 /3:) so the use of ti

seems to essentially eliminate the problem of possible quadratic

growth curves. (A true underlying quadratic growth curve would tend
to'cahse.an inflated variance di for bi’ but a few somewhat enlarged
variances -should not affect things too seriously.)

Commént 3. The estimated population growth rate

U(t) = -0.01754+4.652x10™ (t-50)

has the surprising feature that it predicts an increase in bone mass

23



after age 87. This is near the end of the study period, so the
phenomenon could well be an artifact of the assumed linearity of
p(t). However, examination of the fndividua] least squares rates of
women over age 70 with five or more years of follow-up revealed that
about one-third of them did have significantly (at 5% level) positive
rates, indicating the existence of positive rates for at least a
substantial proportion of women over 70.

An increase in bone mass is biologically plausible because while
some old bone is absorbed on the inside of the long bones, new bone
is deposited on the outside. Thus Bi(t) can be considered to be a
sum of two rates, one positive and one negétive, and the positive
rate could certainly dominate after a certain age. Even if there is
a net gain in bone mass after a certain age, however, it is not clear
that there is an incfease in the mechanical strength of the bone and
hence a decrease in the risk of fracture. These questions are now

being investigated.

24



APPENDIX A. JUSTIFICATION FOR (2.6)

Suppose Yi(t) is really a quadratic function

so that

i(t) = vy (t) = byyebpt. (A.2)

Imagine that we fit a linear function (a+bt) to yi(t), based on

t, . The least

observing y (t) exactly at the points til’ ST
. ] .l

1

squares value for the slope b is

m
i 1, :
Ly (b Ot & [y (t O[Tt ]
- j<1 LR N AR NP 3 it 3 ij
Jtoim = [Jtss]2
t..- — ..
51 my 3 ij
= b t
Pi17%P50%

using.(Aﬁl), (2.6), and some simplification. Thus, from (A.2), b is

precisely equal to Bi(ti)’ 0f course, in reality, the observations

are not the yi(tij) exactly (but rather the yi(tij) plus error), so

the Coﬁkespondence will not be exact.
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Figure Captions

Figure 1: Schematic diagram of measurements in a longitudinal study
with irregular follow-up intervals. Consecutive

measurements of each subject are joined by straight lines.

Figure 2: Individual least squares estimates of rate of bone loss

bj vs. ti, where the ti are suitably chosen points

in the follow-up intervals.
Figure 3: Normal probability plot of standardized residuals.

Figure 4: Individual empirical Bayes estimates of rate of bone loss

~

b, vs. t..
i i
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