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In estimating a muitivariate normal mean 6 = (61,...,6k)t
under sum of squares error loss, it is well known that Stein esti-
mators improve upon the usual estimator (in terms of expected loss)
if k > 3. The improvement obtained is significant, however, only
if the 6; are fairly close to the point towards which the Stein
estimator shrinks. When extreme ei are 1ikely (such as when the

6, are thought to arise from a possibly

improvement over the usual estimator. Stein (1981) proposed a
Timited translation Stein estimator to correct this deficiency.
This estimator is analyzed herein for a number of fat-tailed prior
distributions. An adaptive version of the estimator is also

discussed.
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Fat-tailed prior, Adaptive estimator.



1. INTRODUCTION
Let X = (X],...,Xk)t have a k-va?iate normal distribution
with mean vector o = (61,...,6k)t and known positive definite
covariance matrix f. It is desired to estimate 6, using an estimator

s(X) = (6](X),...,6k(X))t, under a quadratic loss
L(6,8) = (s - 0)%Q(s - o),

where Q is a known positive definite matrix. An estimator will

be evaluted by its risk function
R(0,8) = E,[L(0,8(X))],

that is the expected loss. For the sum of squares error loss
function, that is Q = I, and for § = 021 (02 known), James and
Stein (1961) showed that the usual estimator GO(X) = X is inad-

missible when k > 3 and that the estimator
2
s(x) = (1 - (k2o (1.1)
XX

has uniformly smaller risk than 02. Estimators having uniformly smaller
risk than 60 for the general situation above have been found by many

authors. See Berger (1982) for references.



A key feature of any Stein type estimator is that it has risk
significantly better than that of 60 only in a relatively small region
(or subspace) of the parameter space (see Berger (1980, 1982) for dis-
cussion). For Stein estimation to result in significant improvement,
therefore, one must carefully select an estimator designed to do well
in the region in which 6 is thought likely to lie. This is essentially
done by finding a Stein type estimator which shrinks toward the
desired region. If any of the P happen to fall substantially outside
this region, the usual Stein estimators will collapse back to X and
offer little imporvement over 60. The estimator in (1.1), for example, .
is designed to do well for 6 near zero, and if any of the 0; are
far from zero then XtX will be large and 6 will be approximately X.

The above problem was noted by Stein (1981), who considered a
modification of the estimator in (1.1) to partially alleviate the

difficulties. He proposed the estimator defined coordinatewise by

2 .
(2-2)c°min{1, z(l)/|x1.]})x

3 i
2. 2
jgl xi/\z(g)

(1.2)

s = (1 -

where & is a large fraction of k, aA b denotes the minimum of a

and b,

Z; = X5 i=1,..0,k (1.3)



and

Z(]) < 2(2) < oee < Z(R) < ... < Z(k)

are the order statistics of Z],...,Zk. Stein (1981) proved that this
estimator is minimax if & > 3. The estimator provides a reasonable
solution to the extreme 0, problem, as is indicated by the observation

that

k

< 2.2
AN

j%1 X5 Z(!L)

is fairly small even if (k-2) of the 6, are very extreme.

In section 2, versions of the estimaotr (1.2) will be evaluated
for the symmetric situation. Since the symmetric situation mainly
occurs when the 0; are felt to arise from a common prior distribution
(the empirical Bayes situation discussed, for example, in Efron and
Morris (1972)), this evaluation will be in terms of Bayes risk
r(n,8) = E"[R(6,8)] for a variety of prior distributions v. The goal
is to determine sensible choices of the truncation point 2. It will
also be indicated that the resulting estimator has quite small maximum
component risk, a desirable feature as discussed in Efron and Morris
(1972).

In section 3, the estimator in (1.2) is considered when & is
chosen adaptively by the data, an appealing possibility which obviates

the necessity to consider the prior distribution of the 0,

(1.4)



In this paper we will mainly be concerned with results for large
dimension k. Extreme ei are clearly more of a danger when k is large.
Also, when k is small the "loss" of dimensions in going from k to

% can be quite harmful, so truncation is less appealing.

2. OPTIMAL CHOICE OF THE TRUNCATION POINT

2

The estimator (1.1) is the empirical Bayés estimator if X ~ Nk(e.c I

k)
and ¢ ~ Nk(O,TZIk), where 12 is unknown (see Efron and Morris (1972)).

In general it is a reasonable estimator if the 0; are thought to be
independent realizations from a common symmetric prior distribution

7 having median zero. If the common prior is symmetric about its

median u # 0, the estimator

2 t
S(X) = X - (k‘z)k (X-(u,...,u) ) (2'])

2

would be appropriate. If p is unknown the {the realistic case),

replacing u in (2.1) by X = k7!

L. X; (or some more robust estimate
if = could have fat tails) would ;uffice. We will be considering mainly
large k situations, and hence can assume that p is known, and without
loss of generality is zero.

Since the estimator (1.2) is minimax (for 2 > 3 and sum of squares

error loss), the choice of % should be based on the overall expected

gain from use of the estimator. The most reasonable measure of this



average gain is the improvement in Bayes risk of the estimator over
that of 50. Using Stein's unbiased estimator of risk this can easily

be shown (as in Berger and Dey (1980)) to be

2
A|(<2) = t‘(ﬂ,éo) - Y‘(N,G(l)) = 04Em[ k(l-Z) 1, (2.2)
) x2az?
j=1 J (2)

where E" stands for expectation under the marginal density of X.
Note that the Xi are marginally independent (since the ei are) with

common marginal density

m(xi) = (Zn)']/zo'] exp{-(xi-ei)z/Zoz}dn(ei). 7 (2.3)
Unfortunately, Aél) is rarely obtainable in closed form. Since
the large k cases are of primary interest, however, reasonable approxi-

mations can be obtained by choosing
% = Lykl, (2.4)

where 0 < y < 1 and [v] denotes the nearest integer to v, and letting

k + o, The optimal fraction (1-y) of observations to be truncated

can then be determined in this limiting case, and should prove reasonable
for more moderate k.

For use in the following, let



g(z) = m(z) + m(-z)

denote the marginal density of the Zi = IXil, and observe from (2.3)

that
a(z) < 2(2n) /%1 = B,

Also, let o(y) denote the yth percentile of g, that is

(y)
g(z)dz = y.

O R

Lemma 2.1. For Z(Q) defined by (1.4) and 2 as in (2.4),
Z(z) + a(y) almost surely

as k » o,
Proof. See Rao (1973). ||

Theorem 2.1. For 2 as in (2.4)

2
;im K TEM k(z‘s) > ] = yz/uz,
-»00
" A
i K5 2
where
_ 2 2
hp = E'XS A G (y)]
a(.V) 2

2]
0

m(x)dx + o2(y) (1-y).

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10){



(Note that Hy < o ifO<y<1,)

Proof. Given in the appendix. ||

Define,

2

"Wt Sy '

26 n(x)dx + o2(y)(1-y)

Thus r(y) is the asymptotic (k>«) Bayes risk improvement (normalized
by c4k']) of the truncated James-Stein estimator over 60. This repre-
sentation for r(y) was essentially given for a normal prior = in Stein
(1981). The following lemma will give the behavior of r(y) near 0

and 1.

Lemma 2.2. If r(y) is defined as in (2.11) then

(1) Tim r(y) = 4[m(0)3°
y-0
and

(ii) Tim {y) = {I/vifVv <=
y+1
0 ifv= o,

where v is the marginal variance of Xi‘

Proof. Let G(z) be the distribution function of Z, = |Xi|. Then

(2.11)

(2.12)



Glro - iior 4y oz =2 1 a(Odx, (2.13)
Define,
6 1(u) = infiz: 6(z) > u}. (2.13)

Then clearly the yth fractile of G is given by

aly) = 67 (y). (2.15)
Hence,
2
lim r(y) = lim 57 [6(a(y))]
y-0 aly)-0 2 f x2m(x)dx + az(y)[]-G(a(y))]
_ b

IZm)QO gg%%%%%%g%g%%%%]-(by L'Hospital's rule)
oy

8[m(a(y))1° + 46(aly))n’ (a(y))

;2$)+0 2[T-G{a(y)VT = 4a(y)m(a(y)) (by L'Hospital's rule)

a[m(0) 1,

which completes the proof of part (i) of the lemma.



-

To prove part (ii), notice that as y ~ 1, a(y) + =. Now clearly, .

w aly)
V-2 xZm(x)dx > 2 ! xXZm(x)dx + [aly)1°[1-6(a(y))]

aly)

-2 xZm(x)dx + [a(y)12(1-y).
Therefore if v < », then

tim  [a(y)1%(1-y) = 0. (2.16)

a(y)e
Using (2.16) in (2.11), part (ii) of the lemma follows. ||

Generally, r(y) will be a concave function with a maximum occuring
between 0 and 1. To give a feeling for the behavior of r(y), we evalute
the function when m is a t-distribution with p-degrees of freedom;

that is, when the Xi have marginal density

2
C,. o1+ pLz) 2 g, (2.17)
(¢

m{x)

where

c = lptN)/2)
P29 pur(p/2)o
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Observe that
E(X;) = 0 and Var(X,) =5€§-02, (p>2), i=1,... k. (2.18)

For the cases p = 1,2,3,4; r(y) is given as follows. (The proofs

are given in the Appendix.)

Case 1. p = 1 (canchy marginal). Here
=yl .2 2
r{y) = y°/[c"1(2/n)tan(ny/2) -y + (1-y)tan®(ny/2)}]. (2.19)
Also,

lim r(y) = /%% and 1im r(y) = 0.
y-»0 y+1

Case 2. p =2 (t-marginal with 2-degrees of freedom). Here
ry) = y*/[26%110g(1+y)/(1-y2) V2 _ y7(14y)11. (2.20)
Also

limr(y) = 1/26% and 1imr(y) = 0.
y-0 y-+1



Case 3. p = 3 (t-marginal with 3-degrees of freedom). Here

"

rly) = y2/[(662/n)1Arc tan b(y) - b{y)/(14b2(y)} + 36%b2(y)(1-y) 1,

where p(y) = a(y)/o/j. Also

o® 1im r(y) = 0.54 and o Tim r(y) = 0.33.
y-+0 y+1

Case 4. p = 3 (t-marginal with 4-degrees of freedom). Here
ey) = y2/126%1b(y) 7162 (y) + 831728 + B2 (y) (1-9)1,
where 2(y) = o(y)/o. Also

Tim r(y) = 0.56 and lim r(y) = 0.5.
y=0 y-+1

Table 1 presents values of r(y) for each of these cases, and for
the situation of a N(0,1) marginal, which would arise from the usual

empirical Bayes normal prior. (The marginal variance (02 + rz) in

(2.21)

(2.22)

this case would simply be a scale factor for r(y).) As intuition would -

have suggested, the fatter the tail of the marginal (or the prior),

the smaller y should be chosen. It is, of course, unlikely that explicit



knowledge of the tail will be available, but Table 1 suggests that

choosing y to be about .7 or .6 would be reasonable.

The choice

y = .6, for instance, leads to a Bayes risk about 13% worse than

optimal at the extreme normal case, and about 20% worse than optimal

at the extreme Cauchy case, a reasonable compromise between the two

extremes. Of course, these results are asymptotic results as

k - «, and must be modified for smaller k.

2 =3+ [.7(k-3)]

seems reasonable for general use.

A choice of & such as

Table 1

Values of r(y) For Cauchy, t2, t3, t4 and normal marginals
y Cauchy tz t3 t4 Normal
0 .40 .50 .54 .56 .63
A .43 .53 .57 .59 .70
.2 .44 .55 .61 .63 .74
.3 .43 .57 .63 .65 .76
.4 .42 .58 .64 .68 .79
.5 .39 .57 .65 .69 .83
.6 .35 .56 .66 .70 .87
7 .29 .53 .65 71 9N
.8 .21 .49 .62 .69 .94
.9 N .40 .56 .67 .97
1 0 0 .33 .50 1

12

(2.23)
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Remark 1. It should be mentioned that, if a specific fat-tailed

prior is suspected, one might want to use an empirical Bayes estimator
suitable for that prior. For example, the natural empirical Bayes
estimator for a t-prior differs substantially from Stein-type esti-
mators. The Stein type estimators have the advantage of being guaranteed

to be minimax, however.

Remark 2. The truncated estimator given in (1.2) also has the
advantage of sharply limiting the component risks of estimating each
6. While the usual James-Stein estimator has good overall risk

R{e,8), the risk of estimating individual PR i.e.
R, (6,6,) = E_ (0, - 6,(x))2
T | 81 i ’

can be huge. Indeed, Efron and Morris (1972) show that this component
risk can be as large as k/4, and suggest limited translation Stein-
type estimators which have much smaller maximum component risk while
maintaining good overall risk. |

Finding the maximum component risk of 5(2) seems quite difficult
in general. An indication of its componeht behavior can be obtained,
however, by looking at R](e*,agg)) for o* = (|e|,0,...,0)t and large

le|. Although for 6(2) this is not necessarily the least favorable

configuration of o in terms of maximum component risk (as it is for

the James-Stein and Efron-Morris estimators), it should indicate the
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magnitude of the problem. Very large |6| seem likely to be worst for

6(2) (also in contrast to the James-Stein and Efron-Morris estimators).

Lemma 2.3. If 2 = [yk], 0 <y < 1, then

lim Tim R, (6%, 6(2)) =1+ y (y)/u2 , (2.24)

koo |6 |-

where ¢(o(y)) - ¢(-a(y)) = y, ¢ being the cumulative distribution

function of the standard normal distribution, and

wp = EDGAGP(1)] = -(2/m)2a(y)expi-a®(y)/2} + y + «2(y) (1-y),

the expectation being taken assuming Xi is N(0,1).

Proof. Clearly as [6]|+~ and when ¢ = o*,

(2-2)2(2)

s () > x, -
5 XJAZ(z)

the last term being independent of X] with probability going to one,
since X] will be truncated with probability approaching one. It

can thus easily be shown that
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2)z
11T R (8%, 6(2)) = Ee*(X] - (2 ) (2) - 6])2
oo /2
° Z(ay?* “ 70,)
=1+ Egual. (r-2)° 2(2) 1,

2

2, 2
{z(g)+ y X3 AZ

(z)}

where 6** is the (k-1) dimensional zero vector. An argument similar
to that of Theorem 2.1 then completes the proof of (2.24).

The calculation of u, is straightforward. ||
A short table of the limiting component risks as a function of

y is given below.

Table 2

Component Risks

y 01 0.1 0.2 0.3 0.4 0.5 | 0.6 0.7 0.8

2

T+y dz(y)/ug 111.6850 [1.8577 1.9498 12.0980 £2.2744 £2.5010 [2.8134 3.2773 |.1712

Not only are these values substantially better than the maximum
component risk of k/4 for the usual James-Stein estimator, but they
are only slightly worse than the maximum component risk of the
Efron-Morris limited translation rules (for the choice of y leading

to equivalent Bayes risk performance with respect to a normal

prior). Of course the values in Table 2 are not necessarily the maxi-
mum component risk of 6(2), but the indication is that 6(2) has very

satisfactory maximum component risk.
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3. AN ADAPTIVE CHOICE OF THE TRUNCATION POINT
A very appealing possibility is to let the data select 2 in the
estimator (1.2). Since we are trying to maximize (2.2), the obvious

method of selection is to choose that ¢ > 3 (say 2*) which maximizes
(2% @Az ) (3.1)
521 9T '

In actual use of Stein-type estimators, the positive part versions
should always be employed, so the suggested adaptive estimator is
given componentwise by |

2 .
(2*-2)o"min{l, 2% \/|X.|}
X = (1 - ok ?z) | 1‘

2, .2
jZ]XjAZ(l)

)t (3.2)

i!

where a* = max(a,0).

Theoretical analysis of this estimator is immensely difficult,
due to the complicated dependence of 2* on X. We did, however, perform
a numerical study of R(e,5*) for various 6. Table 3 presents the
risk (for simplicity 02 is taken to be equal to one) along a coordinate
axis. The table only goes up to |e| = 6, since the risk is essentially
constant beyond this point. (The first coordinate is always being
truncated.) Observe that the risk of the usual James-Stein estimator
would go to k as |8 »+ =, so &* is performing very well indeed.

Of course, this is the most favorable case for a truncated estimator,



so in Table 4 the intuitively least favorable case, in which 8 lies

on the diagonal

Tablie 3
Values of R(6,8*) for o = (_|e|,0,...,0)t

17

N I 5 [0 [ 15 [ 20 [25 |30 | 35 | 40 | 45 | 50
0 {0.95 [1.18 [1.38 |1.61 [1.92 [2.23 |2.40 |2.71 | 2.00 [3.27
1 |1.70 |1.98 |2.15 |2.40 |2.65 |2.81 |3.02 |3.24 |3.47 | 3.83
2 |2.09 |2.31 [2.62 |3.05 |3.50 [3.95 |4.41 |4.82 |5.31 |5.75
3 [3.57 {3.71 |3.94 |4.15 |4.42 |4.63 |4.88 |5.09 | 5.49 | 5.89
4 |3.60 |3.80 [3.98 |4.36 |5.14 [5.48 |5.78 |6.17 | 6.56 | 6.98
5 |3.62 [3.85 [3.98 |4.46 |5.15 |5.50 |5.78 | 6.23 | 6.56 | 7.02
6 |3.62 |3.86 [3.99 |4.46 |5.15 [5.51 |5.78 |6.23 | 6.56 | 7.02

(|e|k']/2)(1,...,1)t, is considered. (The normalization by k is done
so that the resulting risks can be given as functions of le].)
Table 4 provides strong evidence that &* is indeed minimax (even for
small k) and shows that &* compares favorably with other Stein-type
estimators even when all of the 6; are similar.

These risks were calcualted by simulation, with between 1000 and

2000 random vectors being used for each value of |6]|. The standard




errors of the values found for the risk were found to be about .05.

Values of R(e,s*) for o = J-gl-(l,l,...,l)t
vk

Table 4

18

[o 5 10 15 20 25 30 35 40 45 50
0 0.95 | 1.18 | 1.38 } 1.61} 1,92} 2.23 ] 2.49| 2.71 | 2.99 | 3.27
1 2,35 | 2,70 } 2,951 3.35} 3.70 | 3.91 | 4.15| 4.45| 4,70 | 4.95
2 3.21 | 3.62 | 3.92 | 4.31 | 4.65| 4.97 | 5.37} 5.71 | 5.28 | 6.76
3 4.07 | 4.89 | 6.24 | 7.13| 8.04 | 9.01 | 9.94 |10.82 {11.75 | 12.66
4 4,39 | 5.9 | 6.97 | 8.66 {10.13 |11.65 |13.11 | 14.43 |15.78 | 16.92
5 4.57 {6.47 | 8.46 |10.51 | 12.62 |14.57 |16.67 [ 18.62 |20.42 {22.35
6 4.68 | 7.10 | 9.39 {11.57 | 13.67 [15.60 {17.77 | 19.99 |21.94 |24.96
7 4,75 | 7.78 | 9.91 [12.37 |15.74 {17.89 |21.04 | 24.85 |27.83 [29.54
8 4.80 | 7.99 [11.41 {14.00 |17.35 |21.10 |24.62 | 27.05 ]30.09 | 32.05
9 4.83 | 9.10 {12.84 116.60 |20.34 |23.38 |26.45 [29.74 |32.05 | 34.29
10 4.86 | 9.23 [13.16 {17.03 | 20.91 |23.96 [27.24 }30.33 [33.19 {36.50
11 4.88 | 9.34 113.37 |17.42 | 21.37 {24.73 |28.18 | 31.07 {34.09 | 37.15
12 4.90 | 9.43 {13.58 |17.77 21.85 25.35 129.03 ] 32.18 | 35.27 | 38.56
13 4.91 | 9.51 |13.76 |18.04 | 22.25 {25.93 {29.76 | 33.13 [ 36.36 | 39.28
14 4,92 1 9.57 113.91 {18.25 | 22.59 {26.40 |30.37 | 33.92 | 37.29 | 40.41
15 4.93 | 9.62 {14.03 [18.45 }22.86 |26.81 |30.87 | 34.55 | 38.09 | 41.40
16 4.93 1 9.66 |14.13 {18.62 |23.10 |27.15 {31.32] 35.12 | 38.79 | 42.25
17 4,94 1 9.69 |14.22 |18.76 |23.30 {27.43 |31.70 | 35.60 |39.39 | 43.14
18 4.95 | 9.72 [14.29 [18.88 23.47 [27.68 {32.02 | 36.01 {39.91 | 43.62
19 4.95 1 9.74 |14.35 {18.98 |23.61 |27.90 |32.29{ 36.38 |40.37 [ 44.18
20> 4.96 | 9.76 [14.41 |19.07 |23.74 |28.09 |32.54| 36.70 | 40.77 | 44.67
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APPENDIX
Proof of Theorem 2.1,
Define
2,52
., o= XEA
Y.k = X 2(p)
and
2, 2
.= XEA )
Observe that
. 2 2 Al
lUj’k vjl E.lz(g) a“(y)|, (A1)
and, using (2.8),
2 2
IZ(Q) - a (y)| > 0 almost surely as k - o. (A2)

Now, by the strong law of large numbers,

k
%— I Vj > uy almost surely as k » =, (A3)
j=1

Combining (A1) through (A3), it follows that



u.

1,
=1 JsK

K > Yy almost surely as k - «,
J

Next choose 0 < A < az(y) such that exB/y < 1 where B is given in

(2.6). Then using the fact

K
2,2 2
321 X§AZ(,) 2 (k-2)Z(,)

it is clear that, on the set'{zfz) > A},

k K

K = 2
jg} Y .k (k-z)z(z)

< ey <

where ¢ is a constant > k/(k-2) for all k. Using (A3) through

(A5) and the dominated convergence theorem,

9lz;)dz; » 3! P(2{,) > ).

[
n=x
—

k
f B
22 > Y u
(2) j=1 Jsk

o2
Now, on the set {z(l) < A},

C

k k :
I noeegdny < [ 55 1oz

2 j=1 P z Jj=1
Wk Hpy )

Furthermore,

20

(A4)

(A5)

(A6)

. (A7)
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k
/ —21—- I g(z.)dz.
Z%zfA zyy 317

A
- (z-lsi(k-ETT' ] 272[6(2)1*7 ' [1-6(2) 1 *g(2)az

) kI (B2 2
X O ) I

k! kY g 2-2,,2
= — = == (2B B™.
(k-z)!kl b -2 (28) (A8)
Now using Stirling's approximation for 2! and the fact eaB/y < 1,
(AB) goes to zero as k + ». Combining (A6) through (A8) and letting

A -+ 0, shows that

Em[ —k-—k—— ] > u—;' as k » «, (Ag)
ikl
Thus equation (2.9) is immediate. The representation for Ho

follows from the definition of a(y). ||

Proof of (2.19)

Substituting p = 1 in (2.17) it follows from (2.13) that

G(z) = (2/n) arc tan (z/0)



. and
Z(y)xzm(X)dx = (1/10) z(y)xz(l + x210?) Vax.
Using (2.15) it follows that
y = G(aly)) = (2/7) arc tan a(y)/c.
Thus

Z(y) = o tan(ny/2).

Nowvto evaluate r(y) as defined in (2.11), clearly

a(y) )/o

2 é Y x2m(x)dx = (2/%) ?(y 02x2/(1+x2)dx
0

(202/n){a(y)/0 - arc tan(a(y)/o)}

o1 (2/v)tan(ny/2) - y}.

Substituting (A16) and (A17) in (2.11) it follows that

r(y) = yz/oz{(Z/n)tan(ny/Z) -y + (l-y)tanz(nyIZ)}.

22

(A16)

(A17)
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Finally using Lemma 2.2, it is clear that

lim r(y) = 4/02n2 and lim r(y) = 0.
y-0 y>1

Proof of (2.20).

Substituting p = 2 in (2.17) it follows that

arc tan(z/v2 o)
G(z) = [ cosodo

sin arc tan(z/ov2 )

2/(2% + 26%)1/2,

and

5 arc tana(y)/ov2
o [ tan“ecoseds

)
/ Y sz(x)dx
0 0

o arc tana(y)/ov2
g

(seco-coso)ds, (A18)
0

where a(y) = G'](y). Thus
y = 6laly)) = aly)/(aBy) + 262)1/2,
and hence

aly) = yov’f/(l-yz)]lz. (A19)
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Clearly, it follows from (A18) that
aly)
} m(x)dx = oZLon 1 (14y)/(1-y2) 2 -y, (A20)

Substituting (A19) and (A20) in (2.11), it follows that

y2/202[% {(l+y)/(1-y2)]/2} -y + Z(l-y)ozyz/(T-yz)]

r(y)

212620 1 (1+y) 700-y2) V23 - yr(14y)1.

Finally,using Lemma 2.2,

lim r(y) = /262 and lim r(y) = 0.
y-0 y-1

Proof of (2.21).

Substituting p = 3, in (2.17), it is clear that

arc tan(z/ov3) 2
G(z) = (2/70) é cos“odo

= (2/n)[arc tan (2/0v3) + 02V3/(z% + 36°)]

and

y) arc tana(y)/ov3
/ xzm(x)dx = (6/) é " ’ sinzede, (A21)
0
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where a(y) = G'](y). Therefore
y = 6(aly)) = (2/n)[arc tan(a(y)/ov3) + ca(y)¥3/(a®(y) + 3¢%)]

(2/x)[arc tan (aly)/o)/V3+ Ta(y)3/aH/{(aly)/o)? + 3}]

H(a(y)/o) (definition).

Then

aly) = ol (y). (A22)
It follows from (A9) that

aly) 2 2 2 2
f x'm{x)dx = (3¢"/x)[arc tan{a(y)/ov3)-a(y)a¥3/(a"(y) + 36%)].
0
Clearly from (A22), a(y)/c is independent of o. Therefore,

a(y)

I " a(x)ax = (362/m)[arc tanb(y) - b()/Q + b2(y))],  (A23)

where b(y) is defined in the statement of Case 3 and will be obtained

from

y = (2/x)[arc tanb(y) + b(y)/(1 + b2(y))].
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The proof is complete using (A23) in (2.11). Finally, using Lemma
2.2, it follows that

o Tim r(y) = 16/31% = 0.54 and o2 1im r(y) = 1/v = 0.33.
y-0 y>1

Proof of (2.22).

Substituting p = 4 in (2.17), it follows that

arc tan(z/20) 3

6(z) = (30/2) | cos~odo
0
~arc tan{z/20)
= (3/2) | ' (cos3c + 3cose)/4de
0
= [(3sino - sin’/2]3"c tan(z/20)
= 22 + 62V /(2 + 45%)3/2,
and
aly) tan~Ya(y)/20

y
J xzm(x)dx = 36% / (cose - cosze)de, (A24)
0 0
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where a(y) = G'l(y). Therefore

y = Gla(y)) = a(y')faz(y) + 602}/fa2(y) + 452312
= [laly)/o)i(aly)/o)? + 611/ (aly)/o)? + 43%/2
= H(a(y)/o) (definition).
Thus,
a.(y) = o (). (A25)

It follows from (A24) that

(¥) 5 arc tana(y)/20

a
[ x“m(x)dx = 02[3Sin arc tan(a(y)/20) - 3 | cos~ode]
0 , 0

3

arc tan(a(y)/20) = o2fa(y)/(a®(y) + 85%) V233,
(A26)

ozsin

Clearly from (A25), a(y)/o is independent of o. Then from (A26)



aly) 5 L
g(y xm(x)dx = o2ib(y)/(b2(y) + 4)1/2)3, O (men

where b(y) is defined in the statement of case 4 and will be

obtained from
y = b{y)ib%(y) + 61/1b2(y) + 41%/2,

Now (2.22) follows using (A27) in (2.11). Finally, using Lemma 2.2,
it follows that |

1im r{y) = 9/16 = 0.56 and 1lim r(y) = 1/v = 0.5.
y-0 y->1
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On Truncation of Shrinkage ‘.Estimators in
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Simultaneous Estimation of Normal Means

DIPAK K. DEY and JAMES O, BERGER*

In estimating a multivariate normal mean 0 = 04,...,
0.)’ under sum of squares error loss, it is well known that
Stein estimators improve upon the usual estimator (in
terms of expected loss) if £ = 3. The improvement ob-
tained is significant, however, only if the 0; are fairly close
to the point towards which the Stein estimator shrinks.
When extreme 0; are likely (such as when the 0; are
thought to arise from a possibly heavy-tailed prior dis-
tribution), the standard Stein estimators may offer little
improvement over the usual estimator. Stein (1981) pro-
posed a limited translation Stein estimator to correct this
deficiency. This estimator is analyzed herein for a number
of heavy-tailed prior distributions. An adaptive version
of the estimator is also discussed.

KEY WORDS: James-Stein estimator; Stein’s trunca-
tion; Heavy-tailed prior; Adaptive estimator.

1. INTRODUCTION

Let X = (X,, ..., X:) have a k-variate normal dis-
tribution with mean vector 6 = (9, . . . , 0x)" and co-
variance matrix o2/. For convenience, o2 will be assumed
to be known but, as usual in symmetric Stein estimation,
results remain essentially unchanged if o2 is replaced by
a suitable estimate, say S%/(m + 2), where $%/02 has a
chi-squared distribution with m degrees of freedom (df).
It is desired to estimate 6, using an estimator 3(X) =
(31(X), ..., 8:(X))*, under sum of squares error loss
L(6,8) = X f_,(8; — 8,)%. An estimator will be evaluated
by its frequentist risk or expected loss, to be denoted by
R(6,3) = Eo[L(9, 3(X))]. James and Stein (1961) showed
that the usual estimator 8°(X) = X is inadmissible when
k = 3 and that the estimator

2
k - 2)o ) %

XX
has uniformly smaller risk than 8°. For recent references
concerning Stein estimation see Stein (1981), Berger
(1982), and Morris (1983).

A key feature of any Stein-type estimator is that it has
risk significantly better than that of 3° only in a relatively
small region (or subspace) of the parameter space (see

3(X) = (l - (1.1

* Dipak K. Dey is Assistant Professor, Department of Mathematics,
Texas Tech University, Lubbock, TX 79409. James O. Berger is Pro-
fessor, Department of Statistics, Purdue University, West Lafayette,
IN 47907. This research was supported by the National Science Foun-
dation under Grants MCS 78-02300 and MCS 81-01670A1. The authors
are grateful to the referees and the Associate Editor for valuable com-
ments on the earlier draft.

Berger 1980,1982, for discussion). For Stein estimation
to result in significant improvement, therefore, one must
carefully select an estimator designed to do well in the
region in which 0 is thought likely to lie. This is essentially
done by finding a Stein-type estimator that shrinks toward
the desired region. If any of the 0, happen to fall sub-
stantially outside this region, the usual Stein estimators
will collapse back to X and offer little improvement over
8°. The estimator in (1. 1), for example, is designed to do
well for 0 near zero, and if any of the 0, are far from zero,
then X*X will be large and & will be approximately X.
The above problem was noted by Stein (1981), who
considered a modification of the estimator in (1.1) to par-

- tially alleviate the difficulties. He proposed the estimator

defined coordinate-wise by
_ (1 =2)0® min{l, Zy/| X |}
k&

Jj=1

30X = 1

X,  (1.2)

where lis a large fraction of k, a /\ b denotes the minimum
ofaandb,Z,- = IX,",i= 1, . .. ,k,andZ(|)<Z(2)<
o <2y < ... < Z, are the order statistics of Z,, . . .,
Zy. Stein (1981) proved that this estimator is minimax if -
[ = 3. The estimator provides a reasonable solution to the
extreme 9; problem, as is indicated by the observation
that 3% X2 A\ Z,)? is fairly small even if (k — I) of the
0; are very extreme. .

In Section 2, we evaluate versions of the estimator (1 2)
for the symmetric situation. Since the symmetric situa-
tion mainly occurs when the 6; are felt to arise from a
common prior distribution (the empirical Bayes situation
discussed, for example, in Efron and Morris 1972), this
evaluation will be in terms of Bayes risk (%, 8) =
E™[R(8, 8)] for a variety of prior distributions 7. The goal
is to determine sensible choices of the truncation point
l. We also indicate that the resulting estimator has quite
small maximum component risk, a desirable feature as
discussed in Efron and Morris (1972).

In Section 3, the estimator in (1.2) is considered when
I'is chosen adaptively by the data, an appealing possibility
that obviates the necessity to consider the prior distri-
bution of the 8;. :

In this article our main concern is with results for large
dimension k. Extreme 6, are clearly more of a danger
when £ is'large. Also, when k is small the “‘loss” of di-
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mensions in going from k to / can be quite harmful, so
that truncation is less appealing.

2. OPTIMAL CHOICE OF 'fHE TRUNCATION POINT

The estimator (1.1) is the empirical Bayes estimator if
X ~ Ni(8,0%1,)and 8 ~ N(0, 721,), where 72 is unknown
(see Efron and Morris 1972). In general it is a reasonable
estimator if the 6, are thought to be independent reali-
zations from a common symmetric prior distribution
having median zero. If the common prior is symmetric
about its median p. 5 0, the estimator

(k — 20X (X - (p, . .
- k
> (X — p?
i=1

L p))

3(X) = X 2.

would be appropriate. If p is unknown (the realistic case),
replacing . in (2.1) by X = k~' 3%, X, (or some more
robust estimate if w could have heavy tails) and (k — 2)
by (k — 3) would suffice. We will be consldermg mainly
large & situations, and hence can assume that p. is known,
and, without loss of generality, is zero.

Since the estimator (1.2) is minimax (for/ =3 and sum
of squares error loss), the choice of I should be based on
the overall expected gain from use of the estimator. The
most reasonable measure of this average gain is the im-
provement in Bayes risk of the estimator over that of 5°.
Using Stein’s unbiased estimator of risk, this improve-
ment in Bayes risk can easily be shown (as in Berger and
Dey 1983) to be

ALY = r(w, 8% — r(m, 8D)

(¢ -2y
=
2 ij N Z(/)2

Jj=1

» 2.2)

where E™ stands for expectation under the marginal den-
sity of X. Note that the X; are marginally independent
(since the 6; are) with common marginal density

m(x;) = f(zw)—“za-' exp{_—(x,- — 0,)*/20%}dw(0,).
' 2.3)

Unfortunately, A, is rarely obtainable in closed form.
Since the large k cases are of primary interest, however,
reasonable approximations can be obtained by choosing
[ = [yk], where 0 < y =< 1 and [v] denotes the nearest
integer to v, and letting k — . The optimal fraction
(1 — y) of observations to be truncated can then be de-
termined in this limiting case and should prove reasonable
for more moderate k.

For use in the following, let a(y) denote the yth per-
centile of the marginal density of | X; |, that is, <
m(x)dx =y.

Theorem 2.1. For | = [ykland0 <y =<1,

a(y)

k
’Elm k—'E™ [(1_ 2)2 Z ij/\Z(l)z:l =y2/p.2, (2.4)
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where -

p2 = E"[X? N a?(y)]

a(y)
= 2L 2m(x)dx + o2(y)1 - v). (2.5)

(Note that p, < 0 if 0 <y < 1))

Proof. Given in the Appendix.
Define,

y2

a(y)
2L Cmdx + o2(y)(1 - y)

r(y) = (2.6)

Thus r(y) is the asymptotic (k — =) Bayes risk improve-
ment (normalized by o*K~!) of the truncated James-
Stein estimator over 8°. This representation for r(y) was
essentially given for a normal prior w in Stein (1981).
Lemma 2.1 indicates the behavior of #{y) near 0 and 1.
The lemma can be established by application of L'Hos-
pital’s rule (see Dey 1980 for details).

Lemma 2.1. If r(y) is defined as in (2.6) then
(i) lim r(y) = 4[m(0))?
»—0

and

v ifv <o

(i) lim r(y)
N y=l
=0 ifv = o,
where v is the marginal variance of X;.

Generally, r(y) will be a concave function with a max-
imum occurring between 0 and 1. To give a feeling for
the behavior of r(y), we evaluate the function when m is
a scaled ¢ distribution with p df, that is, when the X; have
marginal density

xz —(p+1)2
m(x)=C,<1+—) » D
p.p pp?

where C,, = T((p + D/2)/[Vp= T'(pl2)pl.

>

I, @7 .

Densities of this form are convenient to work with and
provide a suitably wide range of heavy-tailed distribu-
tions. They are, however, not necessarily true marginals,
in that there is probably no prior = that when used in (2.3)
results in (2.7). A heavy-tailed prior will have essentially
the same marginal tail, however; hence, to obtain a rough
idea of the effect of heavy tails, consideration of the m
in (2.7) should suffice. If a specific heavy-tailed prior
were of interest, (y) could be calculated numerically and
minimized over y.

For the densities in (2.7) it is easy to see that r(y) =
p?ri(y), where r,(y) refers to r(y) for p> = 1. Thus the
scale factor p is irrelevant for determination of the optimal
y. (This reinforces the idea that it is mainly the heaviness
of the tail of the prior, and hence m, that is of concern.)
For the cases p = 1, 2, 3, 4, and « (which corresponds
to a normal prior and hence normal m), r;(y) is as follows.
(The derivations of these can be found in Dey 1980.)
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(i} p = 1 (Cauchy marginal). Here
ri(y) = y/[@mtan(wyl2) — y + (1 — y)tan®(wy/2)].
(ii) p = 2 (¢ marginal with 2 df). Here
ri(y) = (5)y*/Mog{(1 + A1 — ¥y} - yA1 + y)].
(iii) p = 3 (¢ marginal with 3 df). Here
ri(y) = y*/l(6/m){Arctan b(y) — b(y)(1 + b*(y))}
+ 3b%(yX1 - ),
a(y) V3.
4 (¢t marginal with 4 df). Here

where b(y) =
(iv) p =
riy) = Y2 {a)e?(y) + H72P + a2(y)1 - ).
(v) p

ri(y) = y[—Q/m)'"a(y)exp{—a?(y)/2}
+y + ()1 — Y.

These five functions are graphed in Figure 1. As intuition
would suggest, the heavier the tail of the marginal (or the
prior), the smaller y should be chosen. It is, of course,
unlikely that explicit knowledge of the tail will be avail-
able, but Figure | suggests that choosing y to be about
.7 or .6 would be reasonable. The choice y = .6, for
instance, leads to a Bayes risk about 13% worse than
optimal at the extreme normal case, and about 20% worse
than optimal at the extreme Cauchy case, which is a rea-
sonable compromise between the two extremes. Of
course, these results are asymptotic results as & — « and
must be modified for smaller £. A choice of / such as

=3+ [Tk - 3)] (2.8)

seems reasonable for general use.

il

« (normal marginal). Here

Remark 1. It should be mentioned that, if a specific
heavy-tailed functional form for the prior is suspected,

1.0

rl(y)

Figure 1. ri(y) for Various Marginals.
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one might want to use an empirical Bayes estimator suit-
able for that prior instead of (1.2). For example, the nat-
ural empirical Bayes estimator for the class of ¢ priors
(with a given df) differs substantially from Stein-type es-
timators. The Stein-type estimators have the advantage
of being guaranteed to be minimax, however, which may
be an important consideration for non-Bayesians.

Remark 2. The truncated estimator given in (1.2) also
has the advantage of sharply limiting the component risks
of estimating each 0;. While the usual James-Stein esti-
mator has good overall risk R(6, 3), the risk of estimating
individual 9;, that is, R(8, 8;) = Eo(0; — 8:(X))?, can be
huge. Indeed, Efron and Morris (1972) show that this
component risk can be as large as k/4 and suggest limited
translation Stein-type estimators that have much smaller
maximum component risk while maintaining good overall
risk.

Finding the maximum component risk of 8 seems
quite difficult in general. An indication of its component
behavior can be obtained, however, by looking at R (6%,
3)for6* = (]61,0,...,0) andlarge]| 0 |. Although
for 3 this is not necessarily the least favorable config-
uration of 6 in terms of maximum component risk (as it
is for the James-Stein and Efron-Morris estimators), it
should indicate the magnitude of the problem. For this
configuration, very large | 6 | seem likely to be worst for
31 (also in contrast to the James-Stein and Efron-Morris
estimators). This is because, as | 0 | increases, so does
the probability that §,'” is far from X, (the cause of a
large component risk).

Lemma 2.2. If | = [yk], 0 <y < 1, then
R, = lim lim R,(6* 8,?) = 1 + y%a2(y)/p22,

k—>c0 |@]—rc0

(2.9)

where ¢(a(y)) —d(—ay)) = y, ¢ being the cumulative
distribution function of the standard normal distribution,
and :

2 = EIXZ N a2()]
= —Qm)"a(y)exp{—a’(»)/2} +y + X (y)1 - y),

the expectation being taken assuming X; is N(0, 1).
Proof. Clearly as | 6 | — « and when 6 = 0*,

(= DZy
. k
Zay + X XPNZy?

. J=2

8:(X) - X, -

the last term being independent of X, with probability
going to one, since X; will be truncated with probability
approaching one. It can thus easily be shown that

lim R,(B*, 8|(”)

18|—c

(! - 22y
2
Zoy? + 2 XPNZy
“~

J

= Eo«| Xy — - 0,
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(U - 1DZy
k 21
{2(1)2 + 2 1Y_,'2 N Z(l)z} .

Jj=2

=14 E()**

where 0** is the (k — 1)-dimensional zero vector. An
argument similar to that of Theorem 2.1 then completes
the proof of (2.9). The calculation of ., is straightforward.

Table 1 gives the limiting component risks as a function
of y. Not only are these values substantially better than
the maximum component risk of k/4 for the usual James-
Stein estimator, but they are only slightly worse than the
maximum component risk of the Efron-Morris limited
translation rules (for the choice of y leading to equivalent
Bayes risk performance with respect to a normal prior).
Of course, the values in Table 1 are not necessarily the
maximum component risk of 3, but the indication is that
3" has very satisfactory maximum component risk.

3. AN ADAPTIVE CHOICE OF THE TRUNCATION
' POINT

A very appealing possibility is to let the data select [
in the estimator (1.2). Since we are trying to maximize
(2.2), the obvious method of selection is to choose that
! = 3 (say I*), which maximizes

k
> XANZy).

Jj=1

(I —2)? @3.n
In actual use of Stein-type estimators, the positive part
versions should always be employed, so the suggested
adaptive estimator is given component-wise by

+
(* = 2)o’min{l, Zy~/ | X |}
k
2 XAN Zgs?

J=1

3FX) =11 - Xi,

(3.2)

where a* = max(a, 0).

Theoretical analysis of this estimator is immensely dif-
ficult, due to the complicated dependence of I* on X. We
did, however, perform a numerical study of R(8, 8*) for
. various 0. Table 2 presents the risk (for simplicity o is
taken to be equal to one) along a coordinate axis. The
table only goes up to | 0 | = 6, since the risk is essentially
constant beyond this point. (The first coordinate is always
being truncated.) Observe that the risk of the usual James-
Stein estimator would go to k as | 8 | — =, so 8* is per-
forming very well indeed. Of course, this is the most fa-

Table 1. Component Risks (R,)

y A y Ry
V] 1 5 2.274
A 1.685 6 2.501
2 1.858 7 2.813
3 1.950 .8 3.277
4 9 4171
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Table 2. Values of R(0,5*) for6 = (|0 ,0,...,0)".

k
|9 5 10 20 30 40 50
0 95 1.18 1.61 2.23 2.7 3.27
1 1.70 1.98 2.40 2.81 3.24 3.83
2 2.09 2.31 3.05 3.95 4.82 575
3 3.57 3.7 4.15 . 463 5.09 5.89
4 3.60 3.80 4.36 5.48 6.17 6.98
5 3.62 3.85 4.46 5.50 6.23 7.02
6 3.62 3.86 '4.46 5.51 6.23 7.02

vorable case for a truncated estimator, thus in Table 3
the intuitively least favorable case, in which 6 lies on the
diagonal (| 8 | k= ')(1, . . ., 1), is considered. (The nor-
malization by & is done so that the resulting risks can be
given as functions of | 6 |.) Table 3 provides strong evi-
dence that 8* is indeed minimax (even for small k) and
shows that 8* compares favorably with other Stein-type
estimators even when all of the 0; are similar.

These risks were calculated by simulation, with be-
tween 1,000 and 2,000 random vectors being used for each
value of | 6 |. The standard errors of the values found for
the risk were found to be about .05.

APPENDIX: PROOF OF THEOREM 2.1

Define U,',k = AX_,-Z AN Z(1)2 and Vj = ij N az(y). Ob-
serve that :

| Uik = Vi = Zi? - o*(y) |,

and that | Z)*> — a?(y) | = 0 almost surely as k — = (cf.
Rao 1973). Also, by the strong law of large numbers
k R
i 21 U;— p2 almost surely as k— =, (A.1)
j=
From these facts it follows that
|

p > Ujr— w2 almost surely as k — . (A.2)

Ji=1

Next, choose 0 < A < a?(y) such that eAB/y < 1, where

Table 3. Values of R(0,5*) for6 = k=2 @] (1,...,.1)".

k
| 6] 5 10 20 30 40 50
0 .95 1.18 . 1.61 2.23 271 3.27
1 235 2.70 3.35 3.91 4.45 4.95
2 321 3.62 4.31 497 5.71 6.76
3 4.07 4.89 7.13 9.01 10.82 12.66
4 4.39 5.59 8.66 11.65 14.43 16.92
5 457 6.47 10.51 14.57 18.62 22.35
6 4.68 7.10 11.57 15.60 19.99 24.96
8 4.80 7.99 14.00 21.10 27.05 32.05
10 4.86 9.23 17.03 = 23.96 30.33 36.50
12 4.90 9.43 17.77 25.35 32.18 38.56
14 492 9.57 18.25 26.40 33.92 40.41
16 4.93 9.66 18.62 27.15 35.12 42.25
18 4.95 9.72 18.88 27.68 36.01 43.62
20 4.96 9.76 19.07 28.09 36.70 44.67
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B = 2Q2m)~'2 ¢~ 1. Then, since 2,_1 XAPNZy? =
— D Zy?, itis clear that, when Z,)2 > A,

ok k c
Ujr = = =<,
PR Ty v e

(k

(A.3)

: where ¢ is a constant = k/(k — I) for all k. Using (A.1)
through (A.3) and the dominated convergence theorem,
and defining g(z) = m(z) + m(-—2z), establishes that

F
U;
.L(nbk 2 Sk ]

Jj=1

f k
Z(2<A |

k
I1 (e(z)dz) = 2=t P(Zy?> > N),
i=1

(A4)

k k
> uj,k H [g(z;)dz;]
j=1 j=1

= f
Z(H2<A

Furthermore, letting G(z) = [§ g(¢)dt and observing from
(2.3) that g(z) = B, it follows that

k
2
clz !
.[Z(1>2<)~ [ 0

k
[c/zy?] T Lez)dz]. (A.5)
j=1

111 [22)dz,]

1 BN '
= (T'—T)C'_Izkfﬁ J; 27 [G@Y M1 - GV~ g(2)dz
ck! K l

- (AB)' 2B, (A.6)

< . —_

k=D I (I1-2
Using Stirling’s approximation for {! and the fact that
e\Bly <1, it is easy to show that the expression in (A.6)
goes to zero as k — ., Combining this with (A.4) and
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(A.5) and letting A — 0 proves that

E’."[ EU,k]—)I/p,z as k— o,
1

Equation (2.4) follows immediately. The representation
for p., follows from the definition of a(y).

[Received November 1982. Revised April 1983.]
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