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Introduction

The problem considered is the estimation of the location vector
o of a spherically symmetric distribution based on an observation
X from the-distribution. - It is assumed -that the vector's
dimension p is greater than or equal to three. Initially, we consider
squared error loss, later generalizing to loss functions concave and
nondecreasing in squared error. The estimators presented are mini-
max and dominate the estimator éO(X)=X. They employ "vague" prior
information in the following sense. The "vague" prior information is
that 6 is "l1ikely" to lie in a certain convex region G. The estimate of 6
is found by shrinking values 6f X outside G:toward G. The amount of
shrinkage depends on how far X is from G. The closer X is to G,
the greater the fraction of the distance from X to G is reduced by
the shrinkage estimator.

The estimators may be defined to depend on the loss function
and the density f(|[X-e||) only through a single constant called the
shrinkage factor.

In the case of squared error loss, the shrinkage factor is

2(p-2){inf q(t)}
t>0

where



q(t) = ? uf(u)du.
t

This same factor was used by Berger (1975) to exhibit minimax
estimators which shrink to a point. There and here, attention is

restricted to the class of densities f for which

{inf q(t)} > 0.
t>0

Although the shrinkage factor 2(p-2){inf q(t)} is the best
t50

possible for the normal distribution, it is conservative for many

densities f. For instance, the factor satisfies

2(p-2){;[i:n(1; a(t)} = 2/E, oLl [X] 741

In the case of shrinkage to a ball of fixed radius centered at some

known vector the shrinkage factor is 2/Ee=0[||X||”2] if it is known

that q(t) is nondecreasing. (See Bock (1981).)

Estimators

Let G be a p-dimensional convex region in RP with twice-



differentiable boundary hypersurface M = 3G. Let N(P) be the number

of principal curvatures at the point P on M which are zero. Let

p(P) be the average of the nonzero radii of @urvature = of M at P. -

Theorem 1. Let X be a p-dimensional random vector with spherically
symmetric distribution about 6 such that E[||X-e||2] < = and

E[||X-e[l'2] <, For p > 3, under the loss

the following minimax estimator is at least as good as X:
2 -
§(X) = X = r([|X-P][%,P)/LCL{X-P]| + o(P))[[X-P|]1(X - P)
where

(a) P = P(X) is the projection of X to G, i.e.,

[1X-P[]% = dnf  ||x-q| |}
Qin &

(b) for each P on M, r(t,P) is nondecreasing and differentiable



in t on [0,») such that for t > 0,

0 < r(t,P) <a(p - N(P) - 2){ inf q(s)}
s >0

where the density of X is f(||X - 6||) and

q(s) = [ uf(u)du/f(s).

n— 38

Note: If X is in G or G, then s§(X) = X.

Remark. Of course the result is not meaningful unless {min q(s)} is
s>0

positive for the spherically symmetric distribution considered. In

the case that the distribution is a mixture of normals, then

{min q(s)} = q(0) since q is increasing. For the case of the standard normal
s>0
distribution this quantity is one. Berger [1975] has considered
this class of spherically symmetric distributions and shows that
{inf q(s)} is positive if there éxist a« > 0 and K > 0 for which
s>0 . -
h(sz) = f(s)eo‘S is nonzero and nondecreasing if 52 > K;. that is, f is
not too light tailed. For example, he considers the density f(s) =
Csmexp(—sz/Z) and- shows .that {inf q(s)} is one for m > 0.
s>0

Proof of Theorem 1. Because the estimator X is minimax with constant

risk for all values of 6, it suffices to show that A is nonpositive



for all values of o6 where the difference in risks is
p = ELfIs(X)-6] 17T - EL|1x-0] 7.
Using the definition of §, we may write
o = ELr2(|[x-P]|2,P) /1] |X-P|| + 5(P)}ZIGC(X)]
= 2ELr(||X=P| |2,P) (X-8) (X-P)/{ | |X-P|| (| [X-P|| + P 0]

since P = P(X) = X for X in G. Thus

= DO X-POO12,P00) /] [X-POX) || + B(P(X) 1P
GC

= 2r([[X-P(X)] |2,P(X)) (X-8) Y(X-P(X)) /| |X-P(X) ||
(| [X=P(X) || + p(PCXIN)IIFC]| X-0]])dV(X)

where dV is the volume element in G°. Let N_ denote the outward

unit normal vector to M, the boundary hypersurface of G, at the point
P on M. Letting M be oriented with this normal, denote by Ki(P),
i=1,...,p-1, the principal curvatures of M at P. Let dA be the element
of surface area on M, With P=P(X), reparameterize X in ¢ by the

map X = P + th where t > 0 and P is in M. Thus for N(P) equal to

the number of the Ki(P)'s which are zero,



5P) = 1 (KN /(p - N(P) - 7).
1<i<p-1
Ki(P)>0

By the theorem of the Appendix, the volume element on a¢ s

p-1
dv = 1 (Ki(P)t + 1)dA(P)dt.
i=1
Thus
A= [ [r2(t2,p)/it + 5(P)Y
Pin M t>0
2 t -
- 2r(t5,P)(P + tN, - 6) Np/{t + p(P)}]
p-1
f(||P + th - of]) 1 (K. (P)t + 1)dtdA(P).
i=] /
Define

q(s) = |/ uf(u)du/f(s) for f(s) >0
s

0 for f(s) = 0



Because

o]

9

5 uf(u)du} = -f(||P + th -0{]).

{ - f
+tN -0
|{P+th o]
t
« (P+ tN -~ 8)"N_,
( p ) p

integration by parts implies that

(*)

? 2r(t2,P)(P + tN_ - e)tN /{t + o(P)}
0 P P

1
CF(LP + N - 8]
P i

(K;(P)t + 1)dt

=]
{1 =]
—

9 2 oy Pl
-2 é 5¢ [r(t™,P)/{t + p(P)}.H] (K;(P)t + 1)]
j=

q(| [P + th - e|])f(||P + th - o]|)dt

- 2r(0,P)/0o(P) ? uf(u)du.
|[P-8f]

The fact that r is nondecreasing in its first argument implies

3 2 L
57 [r(t7,P)/{t + 6(P)3 1 (K;(P)t + 1)]
i=1 |

p-1
_21 (K; (P)/{K, (P)t + 11)]
'|=

> r(t2,P)[-1 + {t + 5(P)} -

p-1

1 (K (Pt + 1)/1t + ()Y

i=1



By the Temma in the Appendix
I el
{t + p(P)}_E] (K (P)/LK;(P)t + 13) > (p - N(P) - 1).
'|=

Combining this inequality with the last inequality we have that

2 2 Nl
3¢ [r(t7,P)/(t + o(P)} 1 (K;(P)t + 1)]
i=1

2 p-1
P)(p - N(P) - 2) F]

i

zr(t (K, (P)t + 1)/1t + 5(P)I°.

Using this in (*), it is clear that

(2]

- [ 2r(t?,P)(P + N - e)th/{t + 5(P)}.

0
p-1
- f(]|P+ tN_ - 8]]) m (K.(P)t+ 1)dt
p i=1 ]
[o) 2 _ 2
< =2 é (p - N(P) - 2)r(t°,P)/{t + 5(P)}

:
«q(||P+ tN_ - o|[)F(||P + tN_-8||) T (K,(P)t + 1)dt
p p j=1 1

o0

since r(0,p)/p(P) l J ! uf(u)du is nonnegative. Thus
||p=s



Y | [rz(tz,P)/{t + 5<P)}2
P in M t>0

~2r(t2,P) (p-N(P)-2)/1t + 5(P)¥%q(| [P + th, - o[])]

p-1
« F(||P + th - 8||) R

(Ki(P)t + 1)dtdA(P).
i=1

= L L Ir(ER) - 2(p - NP - 2)a(] [P+t - 6][)]
P in M t>0

p-1
P)/CE + 3(P)IRF(| P + ty = ol1) T (K;(P)E + 1)dtan(P).
'I:

. r(t2

Because assumption (b) of the theorem implies that
2

[r(t%,P) - 2(p - N(P) - 2)q(]]|P + tNy - elP] <0,

we have

qg.e.d.

Remark: Consider the situation where {r(t,P)/t} <1 for t > 0. For

values of X not in G, if s(X) # X, then §(X) lies on a line between
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X and P(X). Thus &(X) is closer to G than X, i.e., §(X) shrinks X towards
G. For these values of X, if e is anywhere in G, then the actual loss
(rather than the expected Toss or risk) of §(X) is less than that of

X, i.e.,
2
118(X) - o] |2 < ||X - o] |2.

Theorem 2. Let X be a spherically symmetric random vector about 6 which
is p-dimensional and assume that f(||X-e||2) is the density of X.
Let ¢ be a nondecreasing nonnegative concave function and let the

loss for estimation of o be
Ay - 2
L(e,8) = c(]|e - o]]|7).

Assume that E[||X—e||2c'(||X-e||2)] < » and E[IIX-eII'Zc'(IIX-ellz)] < o,

For p > 3, the estimator & given in Theorem 1 is minimax provided

r(t,P) < 2(p - N(P) - 2){1ng Q(s)}
5>

where

a(s) = [ uc' (u2)F(u)du/cc’ (s2)£(s) 3.
S



Remark: Q(t) < q(t) and so

inf{Q(t)} < inf{q(t)}.
t>0 t>0

Proof.of Remark

Qt) = [ uc' (u¥)F(u)du/fc' (t2)F(t)3.

ct— 8

Because ¢ is concave, ¢' is nonincreasing, and

o(t) 5_Zu[c-(t2>1f<u)du/{c'(t2)f(t)} - q(t).

Proof of Theorem 2:

2o (X) = [[x-0]1% - [15(X) - o]|%.

The difference in risks for X and & under the concave 10ss

c(]]8(X)-8]|?) is
(**)E[c(||X-8] %) - ELc(||8(X)-6]]%)]

= ELc(||X-6]1%)] - ELc(|[%-0] % - 8,(X))1.

11



12

Because ¢ is a nondecreasing concave function, for any values u

and v,
c(u) < cfv) + c'(u)(u-v).
Thus
c(l1x-6] 1% - 8,00) < e(| -0l %) + ct(]]%-0] ) (-45(X))
Therefore,

(%) > Eylc'(]]X-6][%)a,(X)1.

Let Y be a spherically symmetric random vector about 6 with density
er (] ¥-01 1) (|[v-0] %),

Then
E,Le'([1%-0][%)a, ()] = K'E L4 (V)]

According to Theorem 1, Ee[Ae(Y)] > 0. Thus (**) > 0.
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Remark: The argument of the above proof is Tike that of the proof

of a theorem of Brandwein and Strawderman [1980].

Example: Let X have the density K||X—el|mexp(—[|X-e||2/2). Let

c(sz)=s. Then c'(sz)=(25)'1 and {inf Q(s)} is one for m > 1.
s>0



Lemma. Let t and Ki’ i=1,...

Appendix

N be the number of Ki values equal to zero. Then

.i

p-1
I (K/IKt + 13)(t +

14

,p-1, be nonnegative numbers. Let

) K'-]/(lo -N-T1))>p-N-1.

kj>0
T K'/(p -N-1). Then
1§j§p—]} J
Kj>0 {
p-1 q
= 1 (KKt + 1) (E + ] K:'/(p - N - 1))
= ]ﬂﬂ%%J
K.>0
J
; -1 -1 =
= 1 (/e + KDt + K1+ [p - K7 D)
1<i<p-1
% K.>0 s
1
P R o VTR ol I S G o VL
1<i<p-1 1<T<p-1)
K.>0 K.>0 5
\ -I 1
- —— -1
'p'N']+ 2 [p_K1]/{t+K1}
<izp-1
K1>0



Observe that if p f_K;], then

implies

1 1
(t+§) - (t_I_K;-I) :

This implies

F-kh) (K7

(t+p) b (t+K;1)

15

since (3-K;') < 0. Also, if 5> K|, then t + K;' < t + 5 implies

e GG

——— , which -impliés
+K115 P

LSRR

1<j<p-1
K1>0

> 1 [ - K1+ )

~ (1<i<p-1
K1>O %

(T%5)
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from the definition of 5. Thus W %s 'greater.than or equal to -

p-N-'L o S S q.e.d.

Theorem. Let D be a p-dimensional convex region in R with twice-
differentiable boundary hypersurface M=3D. For the point Q in M,

define N tb be 'the outward unit normal to M at QQ and let M be

Q
oriented with this normal. Denote by Ki(Q)’ i=1,...,p-1, the
principal curvatures of M at Q and by dA(Q) the element of surface
area on M. For X=(X],...,Xp_]) in D¢ define P(X) to be the nearest

point of M to X, i.e.

[[X-P(X)[] = inf [|X-Q|].
Q in M

Reparameterize a neighborhood W of p¢ by the map

=P + tN
X P
where P=P(X) and t=||X-P||. Then the volume element on 0¢ is given
by
p-1
dv = 1 (Ki(P)t + 1)dA(P)dt.

i=1
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Proof. Fix X0 in D¢ and Let PO in M be the nearest point of M
to XO so that

0 _

X7 = P0 + tONPO.

Let (u],...,up_]) be a coordinate system for points Q in M which

are in a neighborhood of P0 such that

(24t 2Q = 5.
Buy’ By 0=r, ij

where §1j is zero if i#j and one‘otherwise. Then (t,u],...,up_])
forms a coordinate system in a neighborhood of X0 which is ortho-
normal at XO. Note that the neighborhood can be enlarged to include
PO' It suffices to prove the theorem for the chosen coordinate
system at PO because the formula for dV is independent of the choice
of u],...,up_].
The change of variables formula implies

dvV = |detX'| du]...dup_]dt



where X' is the Jacobean

matrix of X, i.e.

X
T B _p
X 3t "' 3T
X X
_1 2
Bu] u1
2% 2
Bup_y AU,
| —
- p _
p
N
= 1A st
au] Bu]
3P\t CLN
G t(—'”—au )
p-1 p-1
n

18
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The rules for expanding multilinear expressions imply that det X'
is a polynomial in t of degree at most p-1] and will be completely
determined when we find its roots and its value at t=0. Following

a similar derivation in Milnor [1969], p. 34, one may write the product

of X' and the matrix

p aP
Z=(N.,2..., )
p*auy BUp_1

as
X'Z = 1 ad
aN tN
t(=L—) "p i
Uy aN
P 3P\t 3P pyt 8P
(G 50y * ) s
Nty 13y i %Yy
t(gﬁ—E—J p
p-1
. -
For P=P

0° the vectors in Z are orthonormal and det XI!P=P equals
0



20

det X'Z|P=P . But det X'ZlP=P equals the determinant of the lower
0 0

right block of X'Z evaluated at P=P0

oN oN
3P\t P ~pyt 3P - _ __E_t aP
[(au R auJ * t(aui) auj]P=P0 [Gij * t(au.) ]P P0

The identity

oN
0 = ] (Nt aP ) - ( p)t oP + Nt 9 (BP

p auj Bu auj D du.

implies that the Tower right block of X'Z is

t 5 ,8P

0

which is singular when t'] is an eigenvalue of [N ———{ )]P p

0
oP

b BTT{ J)]P PO are the negat1ves

of the principal curvatures of M eva]uated at Po.by déefinition.

Note that the eigenvalues of [N

The multiplicity of t'] as an eigenvalue equals the multiplicity of the

‘corresponding root. So

p-1
detX |P=P0 = c(PO)ig](1+tKi(P0)).
p-1
Thus dV = c(PO) (tK.(PO)+1)du]...du 1dt. Since this formula is
i=] ! P-

valid on a neighborhood of M we may set t=0 and restrict to M to

obtain



Thus

dV|M = dA(PO) = c(PO)du]...du

dv

1

p-1

I

1

p-1

(Ki(P)t + 1)dA(P)dt.

qg.e.d.

21



22

References

Berger, James (1975) "Minimax estimation of location vectors for

a wide class of densities". The Annals of Statistics, Vol. 3,
1318-1328.

Bock, M.E. (1982) "Employing vague inequality information in the
estimation of normal mean vectors (estimators that shrink to
closed convex polyhedra)". Statistical Decision theory and

Related Topics III, Vol. 1, 169-193, Shanti Gupta and J.0. Berger,
Editors, Academic Press, New York.

Bock, M.E. (1981) "Minimax estimators that shift towards a hyper-
sphere for location vectors of spherically symmetric distributions."
Purdue University Statistics Department Technical Report #81-51.

Brandwein, Ann Cohen and Strawderman, William E. (1980) "Minimax
estimation of location parameters for spherically symmetric
distributions with concave loss". The Annals of Statistics,
Vol. 8, 279-284.

Milnor, J. (1969) Morse Theory, Annals of Mathematical Studies,
No. 51, Princeton University Press, Princeton, New Jersey.




