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ABSTRACT. The Timit behavior of the content of a subcritical storage
model defined on a semi-Markov process is examined. This is achieved
by creating a renewal equation using a regeneration point (10,0)
of the process. By showing that the expected return time to (10,0)
is finite, the conditions needed for the basic renewal theorem are
established. The joint asymptotic distribution of the content of
the storage at time t and the accumulated amount of the unmet (lost)
demands during (0,t] is then established by showing the asymptotic

independence of these two.
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ON THE LIMIT BEHAVIOR OF CERTAIN QUANTITIES
IN A SUBCRITICAL STORAGE MODEL
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A INTRODUCTION. The present work deals with a storage model
which allows both inputs as well as releases occurring in random
amounts and at random times according to an underlying semi-Markov
process. While the reader may find other types of storage models
elsewhere in the literature (see Moran [12], Prabhu [15], Lloyd [10],
Ali Khan and Gani [1], for references) the present model is along

the Tines of Puri and Woolford [17], which itself is a generalization
of a model considered previously by Senturia and Puri ([19], [20])
and Balagopal [3]. A special case of these models can be found in

an earlier work (see Puri and Senturia [16]) which relates such
models to a live sutuation arising in biology. The purpose of

the present work is to answer a question left open by these authors
in the so-called 'subcritical' case of these models and is concerned

with the 1limit behavior of the storage level for the continuous-

time case. As will become evident, in order to prove the main
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**This research was carried out while this author was a David Ross
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results (other more direct probabilistic approaches having failed),
it was found essential to emp]dy simultaneously a battery of several
existing tools including a renewal theory argument. Needless to
say, the approach adopted here is powerful enough to be found
useful in other similar situations. To bégin with we start with
a brief description of our model.

A1l our random variables will be considered as defined on
a given underlying basic probability space (2,G,P). Let 4 be
a subset of nonnegative integers and {Xn, n=0,1,2,...} be a positive
recurrent, aperiodic, irreducible Markov chain with state space' ¢ ,
transition matrix R=(p.-) and the stationary probability measure

1J

{“1}' Let {Tn, n=0,1,2,...} be a nondecreasing sequence of random

variables with TOEO, such that for all i,j€ g,

(1.1) PRy = 35 Ty = Toop < EITguXaTyaXpa s T X =1) = AL (),

n n 1]

where Aij(t) s a nondecreasing right continuous function of t

satisfying

(1) A;500) =0

(1.2) (ii) 0< = A, (o) < 1

Pij = Ryt =
(111) ] pis =1, for i€ g,
je g

The process‘{(Xn,Tn), n=0,1,2,...} as defined above is the usual

(t))

Markoy renewal process with the semi-Markov matrix Q(t) = (Aij
(see Cinlar [5]), with the distribution function of the sojourn



times in a state 1€¢ being given by
(1.3) B, (t) = P(T, - T §_t|Xn_1 =)= ] A.(t),

and the corresponding moments by

(1.4) m, (k) ?tkdBi(t), k=1,2,...,
0

where for simplicity we shall write mi(])=m..

; Again with each

i€ 4 we associate a sequence {Un(i), n=0,1,2,...} of I.1.D. real
valued random variables, which are assumed to be independent of
{(X,,T,)s n=0,1,2,...} and of {U (3), n=0,1,2,...} for j#i, with
EIU](i)I <, Vi€ 4. With these we define for n > 1,

N
1]

max(0,Z ; + U, (X))
(1.5)

with L0 = 0. From (1.5) it easily follows that

n

Uil e (L),

N
n

max[Zo +

1

n

Z
n

Ly = 2y = Zo = T UL (X)),

n n 0 5

Note that if at time Tn we consider (Un(xn))+ as an input



into the storage and (Un(Xn))' as a demand for output from the
storage, then it follows from (1.5) that Zn represents the storage
level at time Tn and Ln represents the cumulative amount of demands
that were not met and hence lost during the time interval (O,Tn].

Finally to define these quantities for an arbitrary time t, we let

(]-7) (X(t),Z(t),L(t)) = (XM(t),ZM(t)’LM(t))’
where
(1.8) M(t) = sup{n: T, < th

Also, we let

(1.9) B = Z (L

and

(1.70) EU= ] . E(U;(1)).

We shall adopt the terminology of saying that we are in the subcri-

tical case, critical or the supercritical case according as E U
1s less than, equal to or greater than zero, In [3], [17]; [19]
and [20], various authors studied the Timit behavior of quantities

such as Z(t) and L(t) but only for the critical and supercritical



cases. The methods used by these authors did not lend themselves

to study the joint limit behavior of (Z(t),L(t)) for the subcritical
- case. Consequently this question was left open and will now be
studied using a different approach based on a renewal equation
argument. Thus throughout the paper we assume that EWU < 0.

Section 2 déa]s with some preliminary results to be used later. In
section 3, we establish the ergodicity of the process {(Xn,Zn)}.
Section 4 deals with the study of asymptotic behavior of {X(t),Z(t)}
via a renewal equation. Finally in section 5, the asymptotic
independence of Z(t) and L(t) appropriately normalized is established.
The joint asymptotic behavior of Z(t) and the normalized L(t)

follows then from those of their marginals.

2. SOME PRELIMINARY RESULTS. The purpose of this section is
v AV AV YV VP VWV W VR WV I PV vl
to present several topics and techniques that will be used in later
sections. HWell known results are presented here for the sake of
completeness, with references to where the appropriate proofs
may be found.

Let {(in,fn), n=0,1,...} be a Markov renewal process, taking
values on ¢ x [0,»), and independent of any of the variables thus

(1))

far defined. Let the associated semi-Markov matrix A(t) = AiJ

be defined for each pair i,j€ g by

(2.1) A..(t) =-:iA..(t).



Let the initial distribution of X0 be the stationary measure .

DEFINITION. {(in,fn)} as defined above is said to be the dual

Markov renewal process for {(Xn,Tn)}. Likewise {in} is called

the dual Markov chain for {Xn}.

PROPOSITION 2.1. Let the initial distribution of X0 be w. Then,
for all n >0 and m > 1, we have
P(Xn = g0 U (3.) €A

n+l - j]’Un+1(j1) €Ahys Thay = Ty <595

"Xn+m = I Un+m(J ) € Am’ n+m Tn+m-1 5-Sm)
- P(Xn U Un(Jo) € Am’ Xn+1 = Ip-1e Un+1(Jm-1) € Am-]’
m1 " Tn < S Kn = 3o Ynanl3o) € Ags Trun = Ty <8

where 0 < s <o, j € g, A €B, for 0 < & < m, and B denotes the

2
Borel o-field on the real line. (For a proof see Woolford [22]).

From the above proposition it can be seen that, in some
sense, the dual is a 'reversal' of the original process.

Let {in, n=0,1,...} be another Markov chain defined on
(2,G,P) with state space ¢, transition matrix P, and initial

distribution T Then, if we define T = min{n > 0: X = X},



Hoel, Port and Stone [7] have established:

PROPOSITION 2.2.v'For any initial distribution of Xo’ we have

i) T < =, a.s.

i) P(X, = dgs Xge1 = 310K = e T

P(X, = Jg»

f_g_[n_>_0,m_>_0@_gj2€§,0_<_zim.
From the above proposition, we note that after T, the chains

{Xn} and {Xn} become 'probabilistically indistinguishable'.

DEFINITION. The process {X , n=0,1,...} as defined above will be

referred to as the auxiliary Markov chain for the chain {Xn, n=0,1,.

For the rest of this section, let {Xn} be a Markov chain
which takes values in some arbitrary space (S,3 ) with homogeneous
transition probabilities
(2.2) P(x,A) = P(Xn€ AIXn—] =x), ¥n>1, x€S, Ac-3

Let P"(x,A) = P(X €AlX = x). Then for all n, we have

(2.3) { i) P"(-,A) is a measurable function on S,. VAES,

}.

ii) P"(x,+) is a probability measure on the o-field &, Vx €S.



Let ¢ be a non-trivial o-finite measure on &.

~ DEFINITION. {X.} is called ¢-irreducible if, whenever ¢(A) > 0,

for A€ 3, then § 27"P"(x,A) > 0, V¥ x €5,

n=1
DEFINITION. A o-finite non-trivial measure u on & is called
subinvariant for X, if w(A) > [ u(dy)P(y,A),; VA € 3, and called
invariant if strict equality holds.

The following theorem can be found in (Jain and Jamison [8]).

THEOREM 2.3. lf_{xn} is a_¢-irreducible Markov chain, then a

subinvariant measure p exists, where u >> ¢ .

For a fixed subinvariant measure u, define
(2.4) Sh = {A€3: 0 <yu (A) < =}.

The following Temmas can be found in (Tweedie [2]).

LEMMA 2.4. 1If {X,} is ¢-irreducible, then either

n
(1) Vinl T P"(x,A) =0, ¥x €S, VA €T, or
N o=l H

(2) . there exists a finite invariant measure. If (2) is true, we

ca11'{Xn} ergodic, and the finite invariant measure w(+) with

m(S) = 1, we call the stationary measure.




LEMMA 2.5, lf_{Xn} is ergodic, then for any A€ & with ¢(A) > 0,

there is a ¢-null set N(A) such that:Vx ¢ N(A), P( U

u X, € AIX, = x) = 1.

Let {(X,,T )} be a semi-Markov process where {X } is defined
on an arbitrary state space (S,3 ),(for details see Cinlar [6]).

Let

(2.5) POX €A T = T 1 < tfTy X ye.nsT X . o=y)

0

=P(X €A, T - T {<tiX ;=y) = Hoa(t).

n-1° "n-1

Let ¢(+) be a o-finite measure defined on (S,3 ). Then HyA(t)

must satisfy the following regularity conditions.

(1) HXA(t) as a function of x is ¢-measurable, for all
A€ & with ¢(A) >0,.V t,
ii) HXA(t) as a function of t is right continuous, nondecreasing
(2.6) < )V x €S, VA€ & with ¢(A) > 0,
| iti) H (t) <1, Vt,:¥x,, VA€ 3 with ¢(A) > 0, and
Hxs(w) =1, Vx€S,

iv) HXA(t) as a function of A is a positive, finite

. measure on (S,d ). Vx&€S, ¥V t.

Let

~
nNo
~l

o

T = dnfit > Ty: X(E)€AIX(0) = x},. VXES,, VA€ &

1 :
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Let us define

1) P(x,A) = P(X €A[X 1=x) = H p(=),
(2.8)
i1) gp"(X,A) = P(X €A, X 19 Bs....X,¥B[X = x)

Jo POGdy)P(yysdy,) .o Ply, oady, 1)P(y, _15A).

= [ o
B~ B B

Also, for all x€ S, let Yx be a random variable Such that for all t,
(2.9) P(Y

- Tn-] j_tIXn_] = X) = Hxs(t).

The following theorem appears new, as we were unable to find it

in the Titerature.

THEOREM 2.5. For a semi-Markov process {(Xn,Tn)}, if_{Xn} is

¢-irreducible, and if A€ & with ¢(A) > 0, then

(o]

n .
ET ot 5 (AC AP (x,dy)EYy),‘V x€ S.

1]
m
—<

n=1

PROOF. Let us define
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(4) E(A.a]x) =

I
O 8
(D
=
——
_|
>
v
ct
S
o
r'-
“w

i) 6,00 = Z ey (dt)

(2.10) <i11) v () = [ eo(y. > 1)t
0
iv) 5ol
€ éc"'£CGXdy1(A)ey1dy2 ety g, My a0
Then
A

t
B} : A
(2.11) P(TX > t) = P(YX > t) + AC é dey(dr) P(Ty > t-7).
Thus

(2.12)  E(A|x) = eMp(v > t)dt + [ ety
0 0 A

1)
<
—~~

-~
S’
(@]
D
a
<
~~
>
~
m
—
=
>
<
g

By iteration, we obtain

(2.13)  E(AA[x) = v, (2) + {C By (10, (1) + {c [

More generally, we have
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(n)

N
(2.14) E(A,A]x) = v, (1) + n§1 £° Aexdy(k)wy(*) +.&¢ Aeig;])(A)E(A,Aly).

Since Aeig)(x) E_APn(x,B),fV A >0, if we Tet

M(A) = {x:P( U X € AIXo = x) = 1}, we obtain, V x€ M(A), as n » «,

n=1

n-1
Aeﬁg)(x) < PM(S) - P(m£H X, ¢ AlX, = x) > 0.

Thus, . ¥ x€ M(A), since E(A,Aly) < 1/x,.Vy, A > 0, we have

(=]

: _ (n)
(2.15)  E(Aalx) = p,(1) + PASE Aoxdy (Vv ().

Now by Tetting 2 + 0, we obtain for all x€ M(A),

(2.26)  ETy = EY, + T [ PM(x.dy)EV,. ,

1A Y

Ne~18

n

For x ¢ M(A), we have that as n » «,

APn(x,AC) =P( N

m=1

X) ¥+ ¢ > 0.

1l

n -
N (X A,

Thus, except for the trivial case for which A® = B] U B2 and where

n _ . n
AP (x,B]) ~ 0 and for all y¢€ B,» EYy = 0, we have 1im Ac AP (x,dy)EYy > 0.

N , : . @
Consequently, ETA = and ') | Pn(x,dy)EY = », s0 that (2.16)
' X n=1 AC A Y

still holds.[]
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THEOREM 2.6. If the Markov chain {Xn} is ergodic, then for

A€ 8, we have [ ETh u(dx) < EY, u(dy), for a finite invariant
A 5 .

measure u, with equality if for C = {x€ A: Tim APn(x,AC) = 0},

N-»c0

we have u(C) = u(A®).

PROOF. From Lemma 2.4, & a o-finite measure p satisfying

u(E) = fu(dy)P(y,E),. VEE 3. From (Orey [14], p.33) we have, for N>1 and E€ 3,

(2.17) w(E) =

[APTE) ule) + o P 08D u(d).
n

nHes-1=

1

[+

Thus it follows that w(E) > [ ( [ ,P"(x,E)) u(dx). Using Theorem
A n=1

2.5, we obtain

_ . 3}
(2.18)  [ET, w(dn) = JE, (0 + [0 T (TP (xdy)) w(d)JEY,

I

5‘£ EY, u(dx) + AC u(dy) EY, = é EY, u(dx).

Now, if C = {x€A%: T1im APn(x,AC) = 0} and u(C) = u(A®), it is
N-><o

easy to see that for all B€A, u(B) = [ ( J APn(X,B)) u(dx), from
A n=1

which it follows that (2.18) is a strict equality.O
Note: This result generalizes a well known result (see Orey

[14]), which states if {X,} is an ergodic Markov Chain on an arbitrary
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state space then | ETQ m(dx) = [ m(dx) = 1; and also that of Cinlar
A S

[5], which, for {(X_, Tn)}, a semi-Markov chain on a denumerable

n

., for i€ 4.

o i
state space ¢, gives m.ET. = J EY jms

je d

3. THE ERGODICITY OF {(Xn,Zn)}.

v AN UL NN

We begin by defining

-, n
5, L G
N n A
(3.1) <5 = LU0
1:
- n -
L Sn * 121 U, (X.)

Using this and (1.6) it follows that

Z =max(Z + S, max (S_ - S.)).
n 0 n 1<j<n n j

The following lemma is needed for establishing the ergodicity of

the process {(X ,Z )3.
n n

LEMMA 3.1. lf_EWU < 0, then there exists an io,n,e >0and 6§ >0

such that
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PROOF. From (Chung [4]), it follows that for an arbitrary initial
1

distribution of X , n"'S_~+ E U, a.s., as n >~ «, where E U < 0.
n n ™ it

Thus for all i, there is an n such that

(3.2) P(Sn < -ey X o= iIXO =4§) > e.

As such, there must exist a sequence j]’jZ""’jn-1 such that

(3.3) P(Sn < -g, Xn =1, Xn—] = Jn—]""’x1 = j]IXO = 1) > %,

for some n > 0. Thus, there is an m, 0 < m < n such that

(3.4) P(Sn < -g, Sm = max (S.), X =1, X = j

1<jen 377 'n n-1 eesky = 3y lXg = 1) > n/n.

n-1

It follows from (3.4) that

(3.5) P(Sn < -es X = i,...,X] = j1, ?l [Sz'smip]’ ?l[sn-sm+slfp][xo = 1)
2=m %=1
= P(Sn < -g, Ogggn (Sj) =0, X, = jm,an] = jm_],
Koom = T Xoome1 = Jnopee oy = Xy = 3) > o/
Finally, letting io = jm’ § = n/n, the lemma follows.D



COROLLARY 3.1. If EﬂU < 0, then for 10, n, e, and § as in Lemma

3.1., we have

P(S o < =eN, max (S.) =0, X =1 |X = io) > 8.

nN 0<j<nN nN 0

PROOF. Evidently, using Lemma 3.1, we have for any N

P(SnN < -eN, max (S.) =0, X, =1
0<j<nN

z_P(Sn < -g, max (S;)=0,X =1i.,S, -S < -¢,
0<j<n

max (S,
n<j<2n

max (S. S ) =0, X, =i |X =1
nN-n<j<nN  J nN-n

3 ) . oy L N
= [P(Sn < -g, OTgin (Sj) =0, X = 10|Xo 10)] > & .0

LEMMA 3.2. lf,EﬂU < 0 and X, has initial distribution 7, then

there exists an n > 0 such that for all A > 0, there is an N

A

P(max( max (S.), S+ A) =0) > n.
0<j<n J n

- 'PROOF, First, choose 10 and n as in Lemma 3.1, Then, since

16
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n']sn > EﬂU, a.s., where ENU < 0, for every vy > 0, there is a

B > 0 such that

(3.6) .P(§;?(Sj) < BIXO = io) > (1-v).

From Corollary 3.1 and expression (3.6), we have for m > n[%—+ 11,

(3.7) P(max(O,S],...,Sm) = Q)
> P(S < -B, max (5.) =0, X =9,
o nﬁ+ﬂ %Enﬁ+ﬂ J ME+H °
€ € €
max (S. - S ) <BIX_ =i}
i B 0 0
n[%—+ T]<i<m nfg + 11
2+ 1]
> w8 € (T-v).
0
[E—+ 1] B
Now let 2n = s 8 (1-y). Then, there is an NA > n[E-+ 17,
0

such that for m > NA’ we have

(3.8) ¥ mP(S

. > —AIX0 = 3) < n.
Jj€ §

m

Finally using (3.7) and (3.8), it follows that

P(max(max(O,S],...,Sm),Sm + A) = 0)

> P(max(0,S¢,...,S ) = 0) - P(S_ > -A) > n,
= 1 m m
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which completes the proof.O

LEMMA 3.3. If E U< 0, then for an arbitrary distribution of

(XO,ZO), there exist a § > 0 and an N such that for n > N, we have

P(Zn = 0) > 6.

PROOF. Let T=inf{n > O: Xn = Xn}.‘ Then T < », a.s., by Proposition

2.2. Now choose K]’KZ’ such that P(T > K1) < n/3 and P(ZK > K2) < n/3
1
hold, where n is as in Lemma 3.2. Then for n > K], we have

(3.9) P(Z, = 0) > P(Z, =0, T 5_K],ZK1_5 K,)
= P(max(S_ - S, +Z,, max (S -5.))=0,Tx<KZ
n K K Ky+l<izn ! 17K
> P(max(Ky + S - S, max (S -S)) =0, T<K)-P(Z > K

T Kytl<izn

Now, from the definition of a dual and auxiliary process, we have

on first using Proposition 2.2 and then Proposition 2.1,

(3.10) P(max(K, +S -S,, max (S =-S.))=0,T<K,)
2 n K] K1+]§j§p n i 1

> P(max(K, +S -5, , max (S -35.)) =0) - P(T > K;)
2 n K] K1+15j531 n 1
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Thus, for all n > N+ Kys it follows from Lemma 3.2 that

2

P(Zn =0)>q - P(ZK] > K2) - P(T > K]) > n/3.0
Now to establish that {(Xn,Zn)} is an ergodic Markov chain, we
need to appeal to the lemmas in section 2. However, to use these
we must define a ¢-measure and the state space.
Let S = ¢ x [0,=) and & be the ¢-field generated by the
sets B = ({i} x[0,x]), i€ 4, x > 0. Let

(3.11) PU((3.x),A) = PU(X»Z )EAIX = §, Z = x), for A€ 3.

0

Also, for i, of Lemma 3.1, define

(3.92)  e(w) = ] 2 B"((i_,0),0)
n=1

We then have,

LEMMA 3.4. If E U <0, then the chain'{(Xn,Zn)} is ¢-irreducible

for ¢ as defined in (3.12).

" PROOF, For every A€ 3 with ¢(A) > 0, we need to establish that

) 2~ Pn((j,x), A) > 0, for j€ g, x > 0.
n=1 .

For every j and x > 0, there 1is an ny and a B such that
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Z. <BIX; =3, =x)>0,

We denote this positive probability by Gj(x).

Then for m = n + n[%—+ 1] (where n,e, are as in Corollary 3.1), we

have

(3.13) P(X =1

By — n, 0'"o 0
>P(X =, 2 <BIX =3, 7 =x)
j j
- P(X =i ,max(B+S_ _ , max  (S_ _ -S
mhy 0 m=n; 0<i<m-n; m-N4
=6 ()P =4, max(B+S_ _, max  (S.:)) = OlX_ = i
2+

From this it follows that J 27"P"((j,x),A) > 0, for all j,x.O0
n=1

Now that we have established that there is a ¢-measure such
that‘{(Xn,Zn)} is ¢-irreducible, we have from Theorem 2.3 that

there exists a subinvariant measure u. As such, we can use the
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lemmas in section 2 to establish the ergodicity of {(Xn,Zn)}.
THEOREM 3.5. If EWU < 0, the Markov chain {(Xn,Zn)} is ergodic.

PROOF. 1In view of Lemma 2.4, we only need to show that for

some (j,x) and some A€ Bﬁ (see (2.4) for definition of 3,), that

P ((1.x),A)) > 0.

—
—
=3
——
>
!
a—d
he~13

Applying Lemma 3.1 to the dual process, choose an io such that

(3.14) P(max (S -S.)=0, X =1
0<j<n n J

= P{ max (§.) =0, X = i Ii =1i)>0.
0<j<n j n 0

Let us take (j,x) = (10,0) and A = ({10} U{1,2,...,M)x{0},

where M is such that

3
+
II.MZ

me > 1 - 8/4,

for § of Lemma 3.3.

Since ¢((10,0)) >0 from (3.14),and u>>¢ (see Theorem 2.3),
we have that ﬁ(A) > 0. Also clearly by construction ﬁ(A) < o,
s9 that A€ 7, . | '

Letting B = {10} U{l,...,M}, we pick an N such that for

n > N, we have for i€ B,



(3.15)  P(X = dlX = d ) > - s(aM+ 1)),

Let N1 be as in Lemma 3.3, so that
P(Z, = 0[X, = i_,Z =0)> s,

for n > N,. Then for n > max(N,N]), we have

(3.16) P(X €B,Z =0[X =i ,Z =0)

Z,=0) - P(X, ¢ BIX =1, Z =0)

> - [1- 7 (m - @M+ 1)1 > s/2.

P1((10,0),A)) > 8/2, and in view of Lemma 2.4,
1

ne~1>

Thus lim(n']
i

this establishes that {X,sZ,} is ergodic.H

4, LIMIT BEHAVIOR OF {( (t),Z(t))} VIA A RENEWAL EQUATION.

ny VAV AV AV VAV A VAV AV VAV Y! VAV VAV AV AV VY TV T VW W VW WV Y VW VAV VAV VA VA VA VA VL VA VeV
We define

(4.1) T? L = nFLE > Tor (X(4),Z (£)€AIX(0) = 3,2 (0) = x3.

Then it can be readily seen that for 10 of section 3,

22
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(4.2)  P(X(t) = 3, Z(t) < x[%(0) = i_, Z(0) = 0)
(i_,0)
= P(X(t) = 3,2(t) < x, T, % > ¢]X(0) = 1 ,2(0) = 0)
0!
t (i_,0)
+ é P(X(t-1) = §, Z(t-1) < x|X(0) = 1.,Z(0) = 0)dP(T, ?o < 1).
0

Equation (4.2) is therefore our basic renewal equation for the
process (X(t),Z(t)).

Under some appropriate conditions, the basic renewal theorem
(see Karlin and Taylor [91), will now yield the desired asymptotic
behavior of {(X(t),Z(t))} using (4.2). As a first step, in

satisfying the conditions needed for the basic renewal theorem,

i ,0)
we prove below that E(Ti 00 )< .
0’
(i,:0)
THEOREM 4.1. If EU <0, and g < =, then ETs g < = fgr_io
—_ 0’

of Lemma 3.1 and 8 as in (1.9).

PROOF. Note that g = Jm.m., where my = [ tdB.(t), and'Bi(t)=P(Tn—Tn_15ﬁ[Xn_1=i).

0
Again the observation that {(Xn,Zn,Tn)} is a semi-Markov process
on a general state space allows us to apply the results of section 2.
In the notation used there, we define for eQery i€ ¢ and x > 0,

a non-negative variable Yix with

(4.3) PVg < 8) = P(Ty = Ty < tX ;= 4,2 y=x) =P(T - T

n n-1 n n-1=

Here we have used the fact that T, - T and‘{Zn} are conditionally

independent given {Xn}. Thus Yoo = Yiy’ for x,y > 0, so that we
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label the common value as Yi’ for each 1.
Now Theorem 3.5 guarantees the existence of an invariant
probability positive measure n for {(Xn,Zn)}, since {(Xn,Zn)}

is ergodic. Lletting A = (10,0) and applying theorem 2.6, we have

(i)
(4.4) n(igs0)ET; % < as

0o _-ﬂ X [O,W) T

X’y)ﬂ(dxsdy) = %eﬂEYiﬂ(is[Osm))= maM, < oo,

Finally, since ¢(

(i,.0) _ -1 B
ET1.O’0 5_B(w(10,0)) < w0

10,0) > 0 implies ﬂ(io,O) > 0, it follows that

We now establish the main result of this chapter, which
tells us that in the subcritical case that {(X(t),Z(t))} converges

in distribution.
THEOREM 4.2. IF ExU < 0, and g < =, then as t » «,

P(X(t) = i,Z(t) < x|{X(0) = i _,Z(0) = 0) -~ P(X = 1,Z < x),

0

for every continuity point of P(Z < x), and for some random variables

X and Z.

PROOF. From (4.2), it follows from the basic renewal theorem

(i_,0)
that if Ti 00 is non-arithmetic and
03

POX(t) = 1,2(t) < x, T, %) > £]X(0) = i_, Z(0) = 0) is directly
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Riemann integrable, then as t + «

(4.5) P(X(t) = 1,Z(t) < x|X(0) = io,Z(O) = 0)
(1090) -1 % . (1030) .
- (ET1. .0 )7 [ P(X(t) = 1,2(t) < x, T, 0 t|X0 = 1,,2(0) = 0)
0 0 . 0
dP(T(iO,O) )
. . < t).
10,0 —
(15:0) = (i,,0)
From Theorem 4.1, it follows that ET. = [ P(T, > t)dt
i 0 i L0
0 0 0
is finite. Also, since
(1500 (i,50)
(4.6) P(X(t) = i,2(t) < x,T. > t|X(0) = §_,2(0) = 0) < P(T. > t),
— 10,0 0 = 10,0

the desired direct Riemann integrability is equjva1ent to Riemann
integrability over a finite interval, since ETil?;O) <. Now,
by elementary arguments (see Royden [18]), it can be established
that if a function is right continuous, it will have a countable
number of discontinuities, which yields its Riemann integrability
over a finite interval. As such, it suffices to establish that

(i,,0)

P(X(t)=1,Z(t) < x, T, ©

X( g > tix(0) =_10,Z(D) = 0) is right continuous
o’ ' ‘

for t. To this end, we note that for t > S,
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(i_,0)
(4.7) P(X(t) = i,Z(t) < X, T11°0 > t[X(0) = i_,2(0) = 0)
09
) (10,0) o
- P(X(s) = 1,Z(s) < x, Tio,0 > s|x(0) = 1,2(0) = 0)

< P(M(t) - M(s) > 0[X(0) = i_, Z(0) = 0).

Thus, it is enough to show that

(4.8) Tim P(M(t + &) - M(t) = O[X(0) = i
e+0

O,Z(O) =0) = 1.

For this it is easily established that

(4.9) P(M(t + €) - M(t) = 0[X(0) = 1)
t
=P(Y, >t+e)+ | [ R, j(T)P(Yj >t+ e - 1),

where
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From (4.9) we immediately have

Tim P(M(t+e) - M(t) = 0|X(0) = 1))

e+0 0
t
=P(Y; >t)+ ) JdRy L(0)P(Y.>t-1) =1,
0 jego oY J

Thus, the desired right-continuity is established, which completes

the proof of the theorem for the case when the distribution of
(i,,0) _ (i,50)
Ti 0 is non-arithmetic. On the other hand, if Ti 0 is
0’ 0?
arithmetic, then by a simple argument, the behavior of {(Xn,Tn)}
A
is equivalent to {Xn}, an appropriately defined Markov chain, and

the result again follows from previous arguments.[]
THEOREM 4.3. IfEU<Oand g <=, then as t » =
P(X(t) = 1, Z(t) < x) > P(X = i,Z < x),

for every continuity point x of P(Z < x), where the random variables

X and Z are defined as in Theorem 4.2.

< w) =1,

PROOF. We first need to establish that P(T(10’O)
X(0),z(0)

For this, it follows by applying Lemma 2.5 to the process'{(Xn,Zn)},

that there exists a ¢-null set N(iO,O) such that
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(i_,0)
. \ ‘. 0 - -
for (j,x)¢ N(1O,O). Clearly, P(TX(O),Z(O) < w) =1 for all

arbitrary initial distributions if and only if N(i_,0) = @. In

10,

order to establish that N(iO,O) = @, we note that since ¢(i_,0) > 0

s
0
(which implies that (10,0)¢ N(iO,O)), using a rather straightforward

argument, we have that for all (j,x)¢ N(iO,O)
(4.13) P((Xn,Zn) = (10,0), 1.0.]X0 =3j, ZO =x) = 1.

Now, for every j, there must be a Y5 with (j,yj)QJQ(io,O). Using

the facts that for every z,

(4.14)  P((X,,Z,) = (i,,0), f.0.]X = §, 7, = 2)

0’ 0

= P((X , max[z +S_, max (S_ - S.)]) = (i ,0), i.0.|X_ =3),
n 0’ yggen M 0 0

and that Sn + -=, a.5., we have

(4.15) P((X ,max[z +S_, max (S_ - S.)])

# (X ,max[y. +S , max (S - S:)1), i.0.[X = 3j)
n J " igjen M j . 0

E_P(Sn > min(-z,-yj), 1.0.|X0 = j) = 0.
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Consequently from (4.15), we have
(4.16) P((Xn,Zn) = (10,0), 1’.0.|X0 =j, I =12z)
= P((X5Z,) = (i,50), .0.]X, = 3, 2, = y;) = 1.

Thus for all j, jx[0,~)¢ N(io,O), so that N(iO,O) = @, and hence

(i,,0)
o = : . . 0y . . .
P(TX(O),Z(o) <~ ) =1, for arbitrary initial distributions.

As such, for all e, there exist K1 and K2 such that

(i,.0)
(0]
P(TX(O),Z(O) < K-l) > 1 - €, and fOl" t > K2

(4.17) [P(X(t) = §,Z(t) < x|X(0) = 10,2(0) =0) -P(X=3,Z<x)| <e,
for every continuity point x of P(Z < x). From this it follows

that for t < K] + KZ’ we have

14.18)  P(X(t) = 3,Z(t) < %, Ty/o < Ky)<P(X(t) = §,2(t) < x)

(3,-0)

where

(i450)

(4.19) P(X(t) = j,Z(t) < x, TX(O),Z(O) < K;)

K
1
= é P(X(t-t) = j,Z(t-t) < x|X(0) = i_,Z(0) = 0)dP(T
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Using (4.17), we obtain

(1,.0)
(4.20) [P(X = J,Z < Xx) - E]P(TX(O),Z(O) < K1)

(1,-0)
< P(X(t) = J,Z(t) < x, Tx(o),Z(O) < K)

) (14,0
< [P(X =3,Z <x)+ E]P(TX(O),Z(O) 5_K]).

Finally, using (4.18) and (4.20), we obtain
(4.21) P(X = j,Z < x) -2 < P(X(t) = §,Z(t) < x) < P(X =3, Z<x)+ 2,

and from this the theorem follows.

This completes the analysis of the asymptotic behavior of
{(X(t),Z(t)} in the subcritical case. For the same case the following
section deals with the joint asymptotic behavior of the storage
level at time t and the cumulative amount of the output demands

from the storage which were unmet during (0,t].

5.  SOME  FURTHER: RESULTS.
Y] LUV LUV
In this section, along with the level in the storage at time t
in the subcritical case, we examine the behavior of a random variable
L(t) which represents the cumulative amount of demands from the

system which were unmet during time (0,t] as given in (1.6) and (1.7).

From these we also note that
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(5.1) L(t) = LM(t) = Z(t) - SM(t) - Z(0).

To establish the joint behavior of L(t) and Z(t), we need a theorem
which provides conditions for the asymptotic independence of the

two variables. To this end, we define a new variable ZT(t) by

5.2 L (t) = S - S;).
B8 Sy 0 %

Note that since Z(t) = max(Z(0) + SM(t)’ 1ma}xM(t) (SM(t) - Sj)),
<J<

we have that for 05;15¢2§ﬁ,

We now prove the following lemma, which establishes a useful property

of ZT(t).

LEMMA 5.1. If EﬂU < 0 and B < =, then for every ¢ > 0, there exist

T] and T2 with T] > T2, such that P(Z(t) # ZT(t)) < g, for all

t > T] and t > T2.

PROOF. Consider the state 10 used in the previous section, and let

(5.4) N(.

i ,0)(t) = supll << m(t): (X,7,) = (1,0}

0° n° n 0
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(i_,0)
(t). Since ETi 00 < » (from section 4), it

N,. s
(10a0) 0

and Tt =T

follows from renewal theory (see Karlin and Taylor [9]) that for

all initial dsitributions of (X(0),Z(0)), as t + o,

(1550) ¢ = (i,0)
(5.5) P(t - Ty > z) > (ET, ) f P(T > x)dx.
t 0 O,0
(1,50) (1,50) .
Thus we can choose a T2 satisfying (ET O ) f P(Ti 0 x)dx < 5
T2 0
and a T] such that for t > T],
(i,.0) (i,,0) .
(5.6) P(t - T ) < (ET, ) f P(T. > x)dx + = < €.
t 7 1 0 T 10,0 2
2

Note that t - Tt 5_T2 implies there exists an x, satisfying t - T, <xzt,

such that Z(x) = 0. And since

(5:7) 2 = @0+ Sy = Sy M Gy - 5y
= S - S.) < (S - S.)) =7 (t),
x)<rane) B TS S Me-T gy e T,

we have that t - Tt 5_T2 implies Z(t) = ZT(t), for t > T,. As

such, for t > T], T > T2,

(5.8) P(Z(t) # Z (t)) <P(t -T,>T,) <e,
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which completes the proof.[O

Another useful property of ZT(t) is that ZT(t) "ignores"
the inputs and outputs which occurred before t-t, in the sense that
they do not enter into the formula for ZT(t). Because of this,
ZT(t) is conditionally independent of anything that has happened

in time [0,t-t), given XM(t-r)+ aNd TM(t-7)+1- Thus, we can estab-

+1

lish the following theorem.

THEOREM 5.2. Let E U < 0, and 8 < =. Also Tet Y(t) and Y'(t)

be two processes such that,

(1) P(Y(t)<x) » P(Y<x) for all continuity points of P(Y<x) as t+w,

(2) Y'(t-1) - Y(t) B0, as t > =, and

(3) Y'(t-t) and ZT(t) are conditionally independent given

X and T

M(t-1)+1 — "M(t-1)+1" |
Then as t + =, P(Z(t) < x, Y(t) <y) » P(Z < x)P(Y < y), for all

continuity points x and y of the distributions of Z and Y, respec-

tively, where Z is as described in Theorem 4.2.

REMARK. Since Y'(t-t) - Y(t) R 0, we also have P(Y'(t)<y) - P(Y<y),

as t ~ =, for all continuity points y of P(Y < y). Thus in order
to obtain our result, (1) could be replaced by:

(1')P(Y'(t) <y) » P(Y < x) for all continuity points x of

P(Y < x), as t + =,
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PROOF OF THEOREM 5.2. In view of Lemma 5.1, for every € > 0,

there exist T] and T2 such that for t > T], and T > T2’

(5.9)  P(Z(t) # Z,(t)) < 5

Also, for t > T2, there exists a TT > T, such that for t > TT,

1
(5.10) P(IY(t) - Y'(t-t)| > €) < %
Thus it follows that for t > T

(5.11) P(ZT(t) <X, Y'(t-1) <y - €) - e <P(Z(t) < x, Y(t) <y)

< P(Z_(t) < x, Y'(t-1) <y *+¢e) + e.

— T —

+ +

.o _ +,. "
Now defining Ty TM(t)+1’ X¢ = XM(t)+1 and Pt(1,x) = P(Xt—1,Tt < X),
we have
(5.12)  P(Z(t) < x, Y'(t-1) <)
< , + R + .
= 1 ] Pz (t)x, ¥ (t-m)zy[Xo_p = 1.7 _=2)P,_.(i.dz)

igg t-t

[o o]

ieg t-t

+ . . ! + . _ + .
y P(Z (t)=x[X _=1,To_ =2)P(Y' (t-)<y X _ =1,T,_=2)P,_ (i.dz).
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Here the second equality follows from the fact that Y'(t-t) and
‘s . . + +

ZT(t) are conditionally independent given Xt_T and Tt-r'

Now by (gin1ar [5]1), we have for any T

(5.13) P(XI_T=k, Tt-r - (t-1) > y) » (Z?T.m.)_] ?ZTT
y

L '(pjk'Ajk(u))du’

J

as t -~ =, where pjk’ Ajk(u)’ and ms are as defined in (1.1) and
(1.4). Since B=Zﬂjmj < o, for every € > 0, we can pick a finite

set Aa ¢ such that

-1 % ,
(5.14) kze A[(Zﬂ‘jmj) éjze ;j(pjk - Ajk(u))du] > 1 - €.

Consequently, for every ¢ > 0, there exists a K] such that for

t > K],

(5.15) P(xfc’e A) > 1 - 2.

Also, for every ¢ > 0, we can choose a z > 0 such that

-1
kze A[(Zﬂjmj)

N—— 8

Y omi(p., - A (u))du] < €.
jE'ﬁT jk Jjk
Thus it follows from (5.13) that for every € > 0, there exist

Zz and K2 > K] such that for t > KZ’



36

-+

. t > z) < 2e,

(5.16) Nx;eA,T

so that using (5.15) and (5.16), we have for t > K2

(5.17) P((XI¢ A) U (x{e A, T: -t > 2)) < de.

Also, from Theorem 4.3 it follows that for every £ > 0, there

exists an L such that for ke A and t > L,

o

(5.18) |£ P(Z(t) < x|X(0) = k,Z(0) = ¥)dP((U(k))T < ¥) - P(Z < x)]| < .

Let us now choose t > L+z. Then for t > K2 + 1, from (5.12) and

(5.17), we have,

t-ttz + L , T U T
(5.19) ,z / P(ZT(t)<x|Xt_ 1,Tt_T-u)P(Y (t-T)EyIXt-T—1’Tt-T_u).Pt-T(1’du)
i€ A t-t
5_P(ZT(t)< X, Y'(t-1) < y)
t-1t+z '
= + . L
5_1% . {_T P(ZT(t) < X|Xt-r_1’ Tt-T_u)P(Y'(t'T)fyIXt-t 1,1, u)
Py (i,du) + 4c

Also, by definition of ZT(t), we have



' + .+
(5.20) P(ZT(t) 5_x|Xt_T =7, Tt_T—u)

- +

P(Z(t-u)<x|X(0)=1,2(0)=z)dP((U(i))* < z).

o 8

Since for t-t <u <t -1+ 2z, we have t-u> 1-2z>1L

from (5.18) that

Gy 1L [ R (et T
5.21 P(Z_(t)<x|X, =1i,T, =u)
i€hA t-t t-t t-t
+
. Pt_T(1,du)
t-tt+z + +
-y P(Z<x)P(Y'(t-r)<y|Xt_ -1,Tt_T=u)P
iehA t-t
so that from (5.19) we have
: t-1tz + +
(5.22)  P(Z<x)(J [ P(Y'(t-1)<y|X, =i,T, _=u)
P€A t-t = ter et
< P(Z (t)<y, Y'(t-1) < x)
t-t+z + +
<P(Z<x)(}) f P(Y'(t-1) < y[Xt_ =1,T{
ie A t-1 t

From (5.17), we have for all x, and t > K2+r,

. + .
POY! (t-1)<y|X;_ =1.T

37

, it follows

+

t-T=u)
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(5.23)  P(Z < x)P(Y'(t-1) <y) - Be < P(Z(t) < x, V' (t-1) < y)

< P(Z < x)P(Y'(t-1) < y) + 5e.

Thus, to combine (5.11) and (5.23), we need to choose

T > max(L+z,T2), and T > max(TT,K2+T), for Tz’Tr as in (5.9) and

(5.10). With these it follows, using (5.11) and (5.23), that for

t>T,

(5.24) P(Z < x)P(Y(t) <y - 2e) - 7e < P(Z < x)P(Y'(t-1) <y - ¢) - 6¢
< PZ(t) < x, Yi(t-1) <y - e) - e < P(Z(t) < x, Y(t) <)
§_P(ZT(t) <X, Yi(t-1) <y #e) + e < P(Z<x}P(Y'(t-1) <y + €) + 6¢
< P(Z < x)P(Y(t) <y + 2¢) + 7e,

which completes the proof of the theorem.[d

Before establishing the main theorem of this section, we need

to define

(5.25) ty = inf{n > 0: Xn = 10}.
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To establish the joint asymptotic behavior of Z(t) and L(t),
we use Theorem 5.2 to establish the asymptotic independence of the

two random variables, which yields the following theorem.

THEOREM 5.3. If EHU <0, B <=, and
t

1
2 2 .
of = ELCT (U;(X)) + T, (EU)JTIX=1T < =,
0 1 1

then for arbitrary distributions of X(0) and Z(0), as t -+ =, we

have for all continuity points x of P(Z < x),

Ml

P(Z(t) < x, L(t) + ta  (E V) < y(tn, 87'o% )

0 0

)+ P(Z<x)e(y).

PROOF. To appeal to Theorem 5.2, we define

(5.26)  Y(t) = (tm, 87102 )7E (L(t) + t(E U)ET),
0 0
(5.27)  Y'(t) = ((t+T)ﬂ108-10§0 )~ 2 (~Sy(e) * (t+e) (£ U)87).

Puri and Woolford [17] have shown that as t - «, P(Y'(t)<y)+o(y).
Thus in view of the remark following Theorem 5.2, and of the fact
that Y'(t-t) and ZT(t) are by construction conditionally independent
I_T, T:_T, we only need to show that Y(t)-Y'(t-t) B o in
order to complete the proof of our theorem. For this since

given X

L(t) = Z(t) - Sy(t) - Z(0), it is easy to see that Y(t) - Y'(t-t) Ro

is equivalent to
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ol

(5.28) 7 (Syii 1y - Sycgy) B o.

For Ni (t)=N(i [0 m))(t),as in (5.4), from (Puri and Woolford [17]),
0 O’ L)

Wik

it follows that if g < =, then t 2 (S - S, ) B0, as t > .
Ni (¢ M)
0

Also, by Lemma 5.4, established below, we have

1
-3 - p o i i -
t (SNi (t) SNi (t—r)) % 0, as t ~«. Finally using the repre
0 0
sentation
! -3 -2
(5.29) 7% (Syrp_o)Smt)) =t ® (Sppor) SN, (1-0))*t (SNi (t-r)-SNi (t))
0 0 0

ol

+ t_ (SNi (t)-SM(t))
0

1
2

: - _ P
it follows that t (SM(t'T) SM(t)) % 0, and hence the proof.C

Dl

oo - - R o)
LEMMA 5.4. If g < =, then t (SNi (t) SNi (tog)) 50> a8 t > =
0 0

PROOF. Remembering that ti=inf{n>1: X =i}, it is clear that if

X(O)=10, we have the renewal equation

(5.30) P(SN (t) - S

' ) < x[X(0) = i)
i

o 0



41

) 0
Since E(Tt |X(0)=io) = -1 B <, by an argument identical to
1 0
that for Theorem 4.2, we can show that P(—SNi (t+T)§x, Tt] > t]X(0)=1

(0]

is directly Riemann integrable. Consequently

P(SNi (t) - SNi (t+7) < x|X(0) = io) + P(W < x), as t » o, if Ty

0 0 T

is non-arithmatic. Once again, if Tt is arithmetic, we can show
1

that {(Xn,Tn)} has behavior equivalent to a Markov chain {yn}’
and a straightforward argument yields that

P(S ) < x|X(0) =i ) >P(W<x), as t .

Ny (£) 79N (4 0
0 0

To establish that P(S < x) > P(W < x) as

N () ° SNio(t+T) < =

t > », for an arbitrary distribution of X(0), an argument based
on the waiting time for the first visit to 10, very similar to the
one used in Theorem 4.3, yields the desired result. Thus, we have

shown that

0
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)) B oast+ =, and the proof is complete.[J

Il ~135

Y.(X.;) and,

REMARK. The above Temma is valid as long as Sn = 5 UKy
1

;
for every je g, {Yn(j), n=1,2,...} is an i.i.d. sequence, such that

{Yn(j)} is independent of {Y (i)}, for j7i.

- SONGLUDLNG, BEWOBS -

The approach adopted here of using conditions such as those of
Tweedie [21] to establish ergodicity followed by the use of a
renewal equation argument appear to be more generally applicable
to models defined on semi-Markov processes. However,.the creation
of the measure ¢ and the selection of an appropriate 'recurrent point'
appear to be the major problems, and must be tackled with due
considerations of the model at hand. It should be pointed out that
under certain conditions, if no recurrent point is available, a
special (recurrent) set may suffice for the establishment of the
needed renewal equation in order to follow through the present

approach (see Athreya, McDonald and Ney [2] and Nummelin [13]).
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