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ABSTRACT

The problem of selecting the normal population with the largest
mean from several populations with a common unknown variance is considered.
A new simple two-stage elimination type procedure is proposed which
guarantees the same probability requirement us%ng-thé indifference-zone
approach as does the two-stage non-elimination type procedure of
Bechhofer, Dunnett and Sobel (1954). The observations in the first
stage are used not only to estimate the common unknown variance but
also to screen out non-contending populations. The proposed procedure
has some similarities with the procedure of Tamhane (1975), but uses
a new design criterion and a sharper lower bound on the probability
of a correct selection. A table of constants necessary to implement
the procedure is provided. The results of a Monte Carlo study of
comparison of the elimination type procedure with the non-elimination
type procedure are also given. The results strongly indicate that the
proposed elimination type procedure performs much better than the non-
elimination type procedure of Bechhofer, Dunnett and Sobel (1954)

in terms of the expected total sample size.



1. INTRODUCTION

Following the work of Bechhofer (1954), considerable amount
of research has been carried out for the problem of selecting the
normal population with the Tlargest mean from k(k > 2) normal
populations using the so-called indifference-zone approach.

For the case of common known variance, Alam (1970) proposed
a two-stage elimination type procedure, in which he uses Gupta's
(1956, 1965) subset selection procedure in the first stage to
screen out non-contending populations and Bechhofer's (1954)
indifference-zone approach to all populations retained in the
second stage. However, most of his work was Timited to the
special case of k=2 populations. Recently, Tamhane and Bechhofer
(1977, 1979) studied in detail a two-stage elimination type
procedure using a minimax design criterion, and they found it more
efficient than the single-stage procedure of Bechhofer (1954). For
relevant results regarding various two-stage procedures, see Gupta
and Miescke (1982 ).

For the case of common unknown variance, it is known that there
does not exist a single-stage procedure which guarantees a "minimum
probability requirement", if one adopts the indifference-zone approach.
Bechhofer, Dunnett and Sobel (1954) (henceforth referred to as BDS)
proposed a two-stage non-elimination type procedure, in which the
observations in the first stage are only used to obtain an estimate
of the common unknown variance. Tamhane (1976) proposed a three-

stage elimination type procedure, and carried out a Monte Carlo



study to compare his procedure with the non-elimination type proce-
dure of BDS (1954). Howevér, as pointed out by Hochberg and Marcus
(1981), Tamhane's avgument is not quite correct. Tamhane (1975)

also considered a two-stage elimination type procedure for the case

of common unknown variance. However, in his Monte Carlo sampling
results, the performancé of his two-stage elimination type procedure
was found to be inferior to that of the non-elimination type procedure
of BDS (1954).

In this paper, we propose and study‘a two-stage elimination
type procedure for the case of common unknown variance. In Section 2,
a precise formulation of the problem and a two-stage elimination type
procedure are given. Section 3 discusses some possible design criteria,
and the tables to implement the procedure are given. Section 4
gives the results of the Monte Carlo study in which we compare the
two-stage elimination type procedure with the non-elimination type
procedure of BDS (1954). The results show that the two-stage elimin-
ation type procedures perform much better than the non-elimination
type procedure of BDS (1954).

It is worth noting that Paulson (1964) studied a seauential
elimination type procedure for the case of common unknown variance,
and Hochberg and Marcus (1981) considered three-stage elimination
type procedures for the case of unequal and unknown variances.

For recent reviews of the literature, see Miescke (1982).



The reader is referred to the relevant book by Gupta and Panchapakesan

(1979) for a complete overview.

2. A TWO-STAGE PROCEDURE

Let w],...,nk(k;Z) be k normal populations with unknown means
Hysee el and a common unknown variance 02. The ordered values of
Hps--.sny are denoted by M1 Sk No prior knowledge is assumed
concerning the correct pairing between m; and M5 (1<i,3<k).

The goal of the experimenter is to select the "best" population,
i.e., the one associated with the largest mean ”[k]' Following the
indifference-zone approach of Bechhofer (1954), the experimenter,

prior to the experiment, specifies two constants §*>0 and P*(1/k<P*<1)

which are incorporated into a probability requirement.
PQfCS} > P* for all g€ o(s*) (2.1)
where CS denotes the event of selecting the best population and
2(6%) = {8 = (uyseeooyps0) | ML) T M[k-1] 2 8%
The’two-stage non-elimination type procedure of BDS (1954)

and Paulson's (1964) sequential elimination type procedure satisfy

the probability requirement (2.1). However, Tamhane's (1976) three-



stage procedure needs to be re-examined for the probability require-
ment (2.1) because of the error as pointed out previously.

The following two-stage elimination type procedure ¥ can be
viewed as a generalization of the non-elimination type procedure
of BDS (1954).
Stage 1: Take n (n1;g) independent observations Xij (j=1,...ﬂn])

from each (i=1,...,k) and compute the sample means

n
1
Xgl) = 3 Xij/n] (i=1,...,k) and the pooled sample variance
j=1
; kT (1))2 |
sc =5 3 (Xi' - X3 /k(n] - 1). Determine a subset I of
i=1 g=1 7

{1,...,k} where

the symbol at denoting the positive part of a, i.e., a = max(a,0);
here d is a positive constant chosen to satisfy (2.1).
(a) If I has only one element, then stop sampling and assert

that the population associated with max X(]) is the best.
1<j<k

(b) If I has more than one element, then proceed to the second
stage.
stage 2: Take N-n, additional observations Xij from each ﬁi(ie I)

where

N = max{n;, [(hS/é*)ZJ}s



the symbol [y] denoting the smallest integer equal to or greater
than y; here h is a positive constant chosen to satisfy (2.1). Then

compute the overall sample means

><1

5

[ e P>

Xij/N (i€1)

J=1

and assert that the population associated with ﬁ@é? X% is the best.
Remark 2.1: This procedure is essentially of the same type as the
one in Tamhane (1975) even though we have a different type of screening
procedure. However, it is important to note that we are using an
improved Tower bound on Pe{CS} to determine the constants d and h
so as to satisfy the probgbi1ity requirement (2.1).
Remark 2.2: Note that in the limiting case d==, this procedure
reduces to that of BDS (1954).

In the sequel, ®(-) denotes the c.d.f. of the standard normal

172 \ith

distribution and 6 (+) denotes the c.d.f. of (x(v)/v)
xz(v) denoting the chi-square random variable with v=k(n1-1) degrees

of freedom.

Theorem 2.1. For the procedure @, we have the following inequalities:

inf %ﬂm};?{T oK T (xrdw)da(x) 1) oK1 (y+hw)da(y)1ds, (w)
a(s*) = 0 -w e v
2] [ o5 (eedwda(x)da (Wit 7T (xrhw)de(x)de_ (W)
0 - v 0-%



- (1) 5 .
Proof. Let Sy = Ukl T and let X(i) and Xi denote respectively

the first stage sample mean and the overall sample mean, i=1,...,K.
Then, from Tamhane and Bechhofer (1979), we have the following

inequalities for all 8 = (uy,....u,0) € 2(8*);

Po{CST 2

\'4

O

-~

>
P T

where U; = (Xg}; - XE;% + Gki)/ﬁ;70 and V, = (X(

. M S Mgt S
i=1,...,k-1. Since WN > hS/s* and —s,. + (d= - —=*) > d=
= o ki o o = g

for i=1,...,k-1, it folTows that for all g€ q(s*),

<@, V. < b2, i=1,...,k-11.
<4V < |

1

Q

PoCS) 2 Pyl < d

Now, conditioning on S/o = w and applying Slepian's inequality as in
Tamhane and Bechhofer (1979), we obtain the fFirst inequality in the

theorem. We note that the lower bound on Pe{CS} by the first inequa-
1ity can be written as E{Fd(w)Fh(W)} where ;A(w) = 7 @k'1(x+dw)d¢(x),

- 0

[e o]

Fh(w) = f @k-](x+hw)d¢(x) and W has cdf Gv(w). Since F g and Fj, are non-

decreasing in w, it follows from Tchebysheff's inequality (Hardy, Littlewood

and Polya (1934), Theorem 43) that



ECF(W)FL (W)} > EF (W)3ECF, (W)}

which gives the second inequality in the theorem.

Now, the constants d and h in the procedure @ can be chosen by
setting either of the two lower bounds in Theorem 2.1 to be P* so
as to satisfy the probability requirement (2.1).

Even though the second Tower bound is less sharp than the first,
it is much easier to evaluate. Furthermore, the functions in the
second lower bound are the c.d.f.'s at equicoordinate point of a
multivariate central t-distribution, which have been studied and
tabluated by Dunnett (1955), Gupta and Sobel (1957) and Krishnaiah
and Armitage (1966). Thus, we used the second lower bound to compare
our two-stage elimination type procedure ® with the two-stage non-

elimination type procedure of BDS (1954).

We note that the Tower bound on Pe{CS} we are using is sharper
than the one in Tamhane (1975), as can be seen in Section 11 of

Tamhane and Bechhofer (1977).

3. A DESIGN CRITERION

The constants nys d and h in the procedure @ can be considered



as design constants. As in the case of known 02, one might try to
minimize the maximum of the expected total sample size. However,
it can be easily seen that the maximum of the expected total sample
size w.r.t. Moo ooy depends on unknown 02 and increases indefinitely
as 02 increases. Thus, as an alternative, we might ask for the pro-
cedure P to have a high probability of including the best in the first
stage.

More precisely, we ask for the procedure P to satisfy the following

requirement in addition to (2.1): For all 8€ q(s*),

Pe{inc1uding the best in the first stage} ;=P? (3.1)
where P?(P*<P7<1) is a preassigned constant.

It can be easily shown that, for the procedure @ ,

inf "P_{including the best in the first stage}
a(sx) & -

k—1(

o x+dw)d®(x)de(w).

1 — 8

1]
O 8

Therefore, if d > 0 and h > 0 are chosen to satisfy

? ? ®k_](X+dw)d®(x)dG (w) = PT
0 -« v

(3.2)
é / @k-](x+hw)d®(x)de(w) = P¥/px,

then the procedure P satisfies (2.1) and (3.1).
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Note that the additional requirement (3.1) for the procedure
makes the choice of d and h unique once ny is given, and it can be
regarded as a design criterion for d and h.
From now on, we will denote by P1(P2) the procedure @ satisfying
(3.71) with P? = 0.99 (0.975). When P* = 0,90 Table 3.1 and Table 3.2 give the con-
stants d and h for P and Pys respectively, for selected values of N and k.
In making these tables, the integrals on the right side of '

(3.2) were computed by using the result of Hartley (1943-46) and the

Gauss-Hermite quadrature formula.

Another simple way to make the choice of d and h unique is to

assume that d=h. In such a case, d'is chosen to satisfy

@k'](x+dw)d<1>(x)dGV(w) = /P% (3.3)

O-— 8
1 — 8

Note that this is equivalent to taking Py = /P* in (3.2). In fact,
this was the choice made in Tamhane's (1975) Monte Carlo study even
though Tamhane used a 10Wer bound different from the one used in
(3.3). We will call by533 the procedure P satisfying (3.3). The
constants d(=h) in procedure @ 5 are given in Table 3.3 for selected

values of n,, k and P*.

'l’
The constants h in the procedure P(BDS) of BDS (1954) can be found

in Dunnett (1955), Gupta and Sobel (1957), Krishnaiah and Armitage (1966)

and Gupta, Panchapakesan and Sohn (1983).



Finally, we remark that we, by no means, claim that (3.2) and

(3.3) are the only possible design criteria.

For example, the expected

number of populations, say Ee(M)’ to be sampled at the second stage can

be used in devising a design criterion.

may wish to minimize the supreme of Ee(M) over 2. Following the arguments

Using the minimax criterion one

in Section 6 of Tamhane and Bechhofer (1977) it can be shown that this

supreme is given by

sup E
Q

Q{M} =

K] [ee8 T (xrdw) - 57T (x-dw) ddo(x) d6_(w).
0 —w v

TABLE 3.1:

o]

Constants d and

h for the procedure P

(a) constants d P¥ = 0.99
M
k 3 5 7 9 10 15 20 25
2 5.064 | 4.140 | 3.807 | 3.660 | 3.614 | 3.490 | 3.435 | 3.404
3 5.026 4.277 4.030 | 3.917 | 3.881 | 3.782 | 3.737 | 3.712
4 4,953 | 4.330 | 4.135 | 4.045 | 4.016 | 3.935 | 3.897 | 3.876
5 4.896 | 4.368 | 4.207 | 4.131 | 4.106 | 4.038 | 4.006 | 3.988
10 4.791 | 4.502 | 4.413 | 4.370 | 4.356 | 4.316 | 4.297 | 4.286
15 4,795 | 4.596 | 4.533 | 4.502 | 4.492 | 4.463 | 4.450 | 4.442




TABLE 3.1: (Continued)

(b) constants h P* = 0.90

&

K 3 5 7 9 10 15 20 25

2 2.291 | 2.068 | 2.005 | 1.974 | 1.964 | 1.936 | 1.923 | 1.916

3 2.677 | 2.473 | 2.413 | 2.384 | 2.375 | 2.348 | 2.335 | 2.328

4 2.847 | 2.672 | 2.620 | 2.504 | 2.586 | 2.562 | 2.551 | 2.544

5 2.953 | 2.802 | 2.756 | 2,733 | 2.726 | 2.704 | 2.694 | 2.689

10 3.225 | 3.134 | 3.105 | 3.090 | 3.085 | 3.071 | 3.065 | 3.061

15 3.368 | 3.301 | 3.279 | 3.269 | 3.265 | 3.255 | 3.250 | 3.247




TABLE 3.2: Constants d

and h for the procedure F%

(a) constants d Pﬁ = 0.975
M |
K 3 5 7 9 10 15 20 25
2 4.152 .284 .087 .000 | 2.972 | 2.897 | 2.863 | 2.844
3 4.177 .553 .396 .324 | 3.301 | 3.237 | 3.208 | 3.191
4 | 4.151 | 3.675 | 3.547 | 3.488 | 3.468 | 3.415 | 3.390 | 3.375
5 | 4.139 | 3.755 | 3.648 | 3.507 | 3.580 | 3.534 | 3.512 | 3.500
10 4.178 .978 .916 .886 | 3.876 { 3.848 | 3.835 | 3.828
15 4,243 .104 .060 .038 | 4.031 | 4.010 | 4.001 | 3.995
(b) constants P* = 0.90
"
K 3 5 7 9 10 15 20 25
2 2.503 .229 .153 17 | 2.106 | 2.073 | 2.058 | 2.049
3 2.862 .619 .550 516 | 2.505 | 2.474 | 2.460 | 2.452
4 3.014 .810 .750 720 | 2.711 | 2.684 | 2.671 | 2.664
5 3.108 .934 .881 .855 | 2.847 | 2.823 | 2.812 | 2.805
10 3.356 .253 .220 .204 | 3.198 | 3.183 | 3.176 | 3.172
15 3.491 .415 .391 .379 | 3.375 3.363 3.358 | 3.355

13
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TABLE 3.3: Constants d(=h) for the procedure P3

P* = 0.90

3 5 7 9 10 15 20 25

2 3.070 | 2.610 | 2.500 | 2.449 | 2.432 | 2.386 | 2.365 | 2.353

3 3.329 | 2.963 | 2,867 | 2.821 | 2.806 | 2.765 | 2.746 | 2.735

4 3.422 | 3.132 | 3.050 | 3.011 | 2.998 | 2.963 | 2.946 | 2.936

5 3.482 | 3.241 | 3,171 | 3.137 | 3.126 | 3.094 | 3.080 | 3.071

10 3.663 | 3.528 | 3.485 | 3.464 | 3.457 | 3.438 | 3.429 | 3.423

15 3.774 | 3.677 | 3.646 | 3.631 | 3.626 | 3.611 | 3.604 | 3.600

4. RESULTS OF MONTE CARLO COMPARISON

The elimination type procedure ® in Section 2 can, in fact, be
regarded as a class of procedures, since there are many ways of choosing
the constants d and h satisfying (2.1), In particular, the procedures
Pl, Fé, F% in Section 3 can be regarded as various versions of the
elimination type procedure P. Hence, a comparison of the procedures
63, N%, F% with the non-elimination type procedure ®(BDS) can shed
light on the effect of elimination in the first stage.

This section gives the results of Monte Carlo comparisons of
the elimination type procedures Fﬁ, Fé, F% with the non-elimination
type procedure ®(BDS) in terms of the expected total sample sizes.
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We will use respectively T and M as generic notations for the
total sample size and the number of populations to be sampled in the
second stage in using the elimination type procedure. Then, the
total sample size of the elimination type procedure is given by

kn.I + M(N-n1) if M>1
T = (4.1)

kn, if M=1
where M is an integer-valued random variable which can take values
1 to k, inclusive. Now the total sample size of the non-elimination
type procedure ¥(BDS) 1is given by T=kN. Expressions for the expected
total sample sizes can be found in BDS (1954) and Tamhane (1975).

For the elimination type procedures in this simulation study,
the estimates of the expected total sample sizes Ee{T} were computed
at the so-called equal means configuration (EMC), “E}]="'=“[k]’
and at the least favorable configuration (LFC) “[1]="'=“[k-1]=“[k]'6*'
Note that E_{T} of the procedure (BDS) does not depend on ysenosl

The Mo;£e Carlo comparisons were carried out for k=5, 15,

P*=0.90 and 6*=0.5,1.0. The choice of nys the first sample
size for each population, is optional and we considered the procedures
with n]=5,10,15,20,25 to get some idea about the relationship between
Ee{T} and ny. For each (k,P*,d*,n])-combination, we considered the
c;;es of ¢=1,2,3 and 1000 simulations were carried out. In each
simulation, k independent standard normal random variables were

genevated by the random number generator of H. Rubin and C. Hinkle
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at Purdue University.' In this paper, we have reported the results only
for K = 5, 15, P* = 0.90 and 8* = 1.0 and the results for other cases indicate
similar conclusions and are available upon request.

The estimates of the expected total sample sizes of the procedures
Sﬁ, Fb, F% and P(BDS) are given in Table 4.1 along with their respec-
tive estimated standard errors. Throughout all the cases considered,
the elimination type procedures #, $é, F% have substantially smaller
E{T} values than corresponding E{T} values of the non-elimination type
procedure ®(BDS), except when the procedures stop at the first stage
(these cases are denoted by a symbol + in Table 4.1 and Table 4.2).
It can also be observed from Table 4.1 that the reduction in E{T}
by using the elimination type procedure increases with k for fixed

Ny and o.

Remark 4.1: The superiority of the two-stage elimination type pro-
cedure to the two-stage non-elimination type procedure is what one
might expect intuitively; however, this was not revealed in Tamhane's
(1975) Monte Carlo study. This can be partly explained, aside from using a
better bound on'Pe(CS), by the fact that we are considering the values of k
and 8* larger tha; those in Tamhane (1975).

From Table 4.1, we also observe that, as N increases, E{T} values
decrease at the beginning and then increase. Such a relationship
between ny and E{T} for the procedure P(BDS) has been given in

BDS (1954). A glance at the results in Table 4.1 shows what n, should

1
be for the range of o-values considered.



TABLE 4.1.
Monte Carlo estimates of the expected total sample size
The numbers in parentheses are the estimated standard errors.

(a) k =5, 6*=1.0, P* = 0.90

) _ E{T} ELFC{T} EEMC{T}
1 BDS) P] PZ PS P] (PZ
1 54.58 | 35.40 | 33.94 | 33.25 | 39.51 | 39.69 40.84
(0.52)} (0.38)] (0.37)| (0.41)] (0.39)| (0.43) (0.54)
5 2 210.70 1148.27 [152.00 {164.89 {152.49 |158.93| 177.77
(2.09)] (1.78)| (2.08)| (2.63)] (1.71)] (1.98) (2.55)
3 470.74 1340.84 1358.02 1406.26 |344.06 |364.42 | 418.22
(4.64)] (3.75); (4.38)| (5.76)| (3.68)| (4.29) (5.
1 54.27 | 50.07 | 50.11 | 50.09 | 50.24 | 50.471 50.
(0.21 | (0.02)| (0.03)] (0.03)| (0.04)| (0.05) (O.
10 2 196.48 [127.16 [121.93 [123.44 |139.67 [140.22 [147.
. (1.31)] (1.30){ (1.50)| (1.88)] (1.18)| (1.41) (1.
3 441.76 | 309.84|316.83 {346.34 [319.76 [330.52 |366.
(2.98)] (2.95)| (3.51)] (4.53)] (2.70)]| (3.21) (4
1T 7/5.02 | 75.00 | 75.00 { 75.00 | 75.00 { 75.00 { 75.
(0.01)] (0.00)} (0.00)| (0.00)] (0.00)| (0.00) (0.
15 5 192.64 [119.17 |114.86 |113.16 |[134.06 {132.92 {136.
(1.03)] (1.03)] (1.12)] (1.34)] (0.95); (1.12) (1.
3 430.63 [289.97 (284.76 |295.71 [307.90 [312.37 {335.
(2.23)] (2.50); (3.06)| (4.04)f (2.20); (2.72) (3.
17 ]100.00 1100.00 {100.00 {100.00 [100.00 {100.00 {100.
(0.00)f (0.00)| (0.00)| (0.00)| (0.00)| (0.00).(0.
20 0 191.39 {120.44 [117.62 {116.23 |134.88 |134.36 |136.
(0.88)} (0.68)| (0.70)| (0.81)] (0.72)} (0.82) (1.
3 426.21 1274.68 {263.81 [266.61 |300.35 {301.03 316.
(1.91)] (2.38)] (2.79)| (3.64)] (2.06)| (2.51) (3.
1+ 125.00 ]125.00 {125.00 {125.00 |125.00 |[125.00 {125.
(0.00)] (0.00)} (0.00)¢ (0.00)f (0.00){ (0.00) (O.
o5 2 192.48 [132.87 |131.81 [131.51 [141.72 |143.15 |145.
(0.79)] (0.38){ (0.39){ (0.47)] (0.50)| (0.57) (0.
3 425.19 }264.75 |253.33 [252.59 ]295.78 [292.60 {303.
(1.69)] (2.28)] (2.67)] (3.33)] (1.93)] (2.37) (3.
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TABLE 4.1. (Continued)

Monte Carlo estimates of the total expected sample size

b) k=15, 6*=1.0, P* = 0.90

E(T) T E T Eryct 1)
F(BDS) 2 R, P 7 A 2

210.78 126.81 117.35 | 112.85 | 146.52 | 138.25 | 134.
(1.13) (1.16) (1.13){ (1.16) | (3.14) ) (1.20)] (1.

808.71 597.24 589.65 | 607.75 | 611.84 [ 612.0T | 640.
(4.66) (4.93) (5.85) | (7.90)| (4.62){ (5.55)] (6.

1821.95 1411.98 1438.80 [1550.68 [1422.77 {1455.05 |1576.
(10.60) (9.96) (11.76) | (14.88) | (9.75) | (11.43)| (14.

203.87 | 152.77 152.13 | 151.92 | 158.21 | 157.59 [ 157.
(0.74) (0.19) (0.16) | (0.17)| (0.32){ (0.29)| (oO.

795.60 536.59 504.62 | 493.40 | 578.50 | 559.16 | 561.
(3.10) (4.20) (4.81)] (5.60)| (3.60)| (4.26)| (5.

1769.78 1323.44 1314.81 [1367.52 (1347.80 [1350.95 {1413.

(6.61) (7.88) (9.75) | (12.47){ (7.27){ (9.17)} (M
226.05 225.00 225.00 | 225.00 | 225.00 | 225.00 [ 225.
(0.14) (0.00) (0.00) | (0.00)| (0.00)| (0.00)| (0.
787.41 485.11 447.10 | 430.15 | 543.54 | 514.51 | 503.
(2.33) (3.86) (4.04) ] (4.35)] (3.18)| (3.73)] (4.
1772.42 1276.49 1233.22 [1234.36 [1324.92 {1303.19 (1328.
(5.50) (7.65) (9.59) ] (11.90) [ (6.69) | (8.52)| (10
300.00 300.00 300.00 | 300.00 [ 300.00 | 300.00 } 300.
(0.00) (0.00) (0.00) | (0.00)| (0.00){ (0.00)| (O.
785.07 458.84 426.93 | 412.68 | 530.50 | 500.33 | 485.
(2.12) (3.10) (2.97) | (3.02)] (2.72)f (2.99)] (3.
1757.37 1199.67 1133.44 {1118.41 |1281.32 |1239.73 [1245.
(4.49) (8.30) (9.71) [ (11.36) | (6.66)| (8.42)] (10.
375.00 375.00 375.00 | 375.00 | 375.00 | 375.00 | 375.
(0.00) (0.00) (0.00) | (0.00)| (0.00){ (0.00)| (O
784.77 465.40 444,78 | 433.39 | 532.02 | 508.85 | 496
(1.85) (2.25) (2.07) | (2.07)1 (2.16)] (2.24)| (2.
1753.50 1136.27 1061.76 {1027.48 [1241.22 [1185.11 [1172.
(4.03) (8.13) (9.27) ] (10.73)| (6.43)] (7.91)[ (9.
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To summarize the comparison, we computed the estimated relative
savings RSAVE expressed in percentages in using an elimination type
procedure ¥ over the non-elimination type procedure #(BDS), i.e.,

RSAVE (¥ |®(BDS)} = E{Téﬁ?ﬁéésif”'“

x 100(%)

These values are based on Table 4.1, and are given in Table 4.2.

It is observed from Table 4.2 that there is a more pronounced
improvement of the elimination type procedure over the procedure
©(BDS) at the LFC than at the EMC. In fact, it can beshown that, for

2

fixed ¢, Ee{T} of the elimination type procedure is maximized at the

EMC when Q?Eﬁ],...,uk,o) varies over the whole parameter space. Thus,
even greater savings can be obtained by using the elimination type
procedure than those indicated by the values in Table 4.2. Finally,

it should be pointed out that the superiority of one procedure over
others among the procedures ©, Fb, F% are not quite clear from Table
4,2. Thus, it is recommended that the choice of d and h satisfying
(2.1) may be made to depend on the experimenter's other requirements
such as those described in Section 3. In this respect, we have computed

the expected numbers of populations to be sampled in the second stage,

E{S}, as by-products of a simulation study, which are given in Table 4.3.
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TABLE 4.2.

Estimated relative savings expressed in percentages in using procedures
P], Pz, P3 over the procedure P(BDS).

(a) k = 5, 6*=1.0, P* = 0.90

LFC EMC
1o P P, P, Py R, Py
1 35.1 37.8 39.1 27.6 27.3 25.2
5 | 2 | 29.6 27.9 21.7 27.6 24.6 15.6
3| 27.6 23.9 13.7 26.9 22.6 11.2
1 7.7 7.7 7.7 7.4 7.1 6.7
10 {2 353 37.9 37.2 28.9 28.6 24.9
3 | 29.8 28.2 21.5 27.5 25.1 16.9
11 o0.03 0.03 0.03 0.02 0.02 0.02
15 | 2 | 38.1 40.4 11.3 30.4 31.0 29.1
3| 32.7 33.9 31.3 28.5 27.5 22.0
1" 0.0 0.0 0.0 0.0 0.0 0.0
20 | 2| 371 38.5 39.3 29.5 29.8 28.7
3| 35.6 38.1 37.5 | 29.5 29.4 25.6
1"l 0.0 0.0 0.0 0.0 0.0 0.0
25 | 2| 3.0 31.5 31.7 26.4 25.6 244
3| 377 40.4 40.6 30.4 31.2 28.6
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TABLE 4.2. (Continued)

Estimated relative savings expressed in percentages in using procedures

Prs 5, P, over the procedure #(BDS).

(b) k = 15, §* = 1.0, P* = 0.90

LFC ENC

o I P, ?, P, d P, P,
1| 39.8 44.3 46.5 30.5 34.4 36.0
5 | 2| 26.1 27.1 24.9 243 24.3 20.8
3 | 22.5 21.0 14.9 21.9 20.1 13.5

1 25.1 25.3 25.9 22.4 22.7 22.9
0|2 ] 326 36.6 38.0 27.3 29.7 29.5
3 | 25.2 25.7 22.7 23.8 23.7 20.1

1| o.5 0.5 0.5 0.5 0.5 0.5
15 | 2 | 38.4 43.2 45.3 31.0 34.7 36.0
3 | 28.0 30.4 30.4 25.2 26.5 25.1
11 0.0 0.0 0.0 0.0 0.0 0.0

20 | 2 | 4.6 45.6 47.4 32.4 36.3 38.1
3| 31.7 35.5 36.4 27.1 29.5 29.1

1" 0.0 0.0 0.0 0.0 0.0 0.0

25 | 2 | 41.0 43.3 44.8 32.2 35.2 36.7
3 | 35.2 39.4 41.4 29.2 32.4 33.2
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TABLE 4.3.
Monte Carlo estimates of the expected number of populations to be
sampled in the second stage. The numbers in parentheses are the esti-
mated standard errors.

(a) k =5, 6* = 1.0, P* = 0.90

ny | o E L pct™ Eepct™
3 ™ 5 > Iz i
: 516 770 T.06 380 300 .10
(0.06) | (0.05) | (0.08) | (0.04) | (0.05) | (0.05)
s [ 5 [ 450 T 356 T.69 137 3.9
(0.03) | (0.08) | (0.05) | (0.02) | (0.03) | (0.04)
S [ 4.6 757 111 T.87 761 T.78
(0.02) | (0.03) | (0.04) | (0i02) | (0.03) | (0.03)
: 0.39 0.76 0.03 T.99 0.92 0.20
(0.03) | (0.02) | (0.01) | (0.05) | (0.04) | (0.02)
o |7 37 3.03 738 138 3,87 3,19
2 | (0.08) | (0.05) | (0.05) | (0.03) | (0.04) | (0.05)
S [ 647 117 3,60 166 T.3% 3,06
(0.03) | (0.04) [ (0.05) | (0.02) | (0.03) | (0.04)
T 0.03 0.00 0.00 | 0.53 0.03 0.00
(0.01) | (0.00) | (0.00) | (0.03) | (0.01) | (0.00)
5 | 5 | 2.8 717 T.51 301 371 7.6
(0.05) | (0.05) | (0.05) | (0.04) | (0.05) | (0.05)
S [ &6 3,67 3.07 153 117 3.60
(0.03) (0.04) (0.05) (0.02) (0.03) (0.04)
F[0.00 .00 0,00 0.01 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0 | 5 1198 T34 0.87 319 566 T°85
(0.05) | (0.05) | (0.04) | (0.08) | (0.05) | (0.05)
S | 3:80 3.5 750 T.37 3.88 327
(0.04) | (0.05) | (0.05) | (0.03) | (0.04) | (0.04)
¥ 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00)
s | 5 | 1.36 0.79 0.7 3.20 726 T.36
(0.05) | (0.08) | (0.03) | (0.05) | (0.05) | (0.04)
S | 340 577 07 718 3.50 7.97
(0.05) | (0.05) | (0.05) | (0.03) | (0.04) | (0.05)
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(Continued)

TABLE 4.3.
Monte Carlo estimates of the expected number of populations to be sampled

in the second stage.

1.0, P* = 0.90

15, s§*

b) k

(0.09)

T.65
(0.06)
10.63
(0.09)

5.65

9.66
(0.10)

1.3
(0.0

(0.1

Erpc M
1225
(0.08)

7.75
(0.10)
17.43
(0.09)

5.43
(0.09)

13.52
(0.06)
(0.10)
12.97
(0.07)
8.77
(0.10)

12.48
(0.08)
9.70
(0.10)
8.36
(0.11)
2.06
(0.07)

)

1T.43
(0.09)
(0.11)
3.29
(0.09)
(0.11)

FLpc ™
T0.T3

14,29
(0.04)
0.17

(0.02)
12.90
(0.07)
17.88
(0.10)
Z.95
(0.11)
10.78
(0.10)

-l'i'

25
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