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ABSTRACT
A very simple necessary and sufficient condition for the existence

of adaptive procedure for testing a simple hypothésis against a
simple alternative is obtained. By definition, an adaptive test is
required to exhibit the same asymptotic behavior for several families
as do asymptotically optimal tests for each of these families. The
proofs are based on a multivariate version of Chernoff's theorem,
providing asymptotic formulas for probabilities of large deviations
for sums of 1.i.d; vectors. Some examples of adaptive tests are

given.
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1.  INTRODUCTION AND SUMMARY

Suppose Xps---5X aren independent identically distributed
observations on a random variable X which has one of two possible
distributions P or Q. Assume that a simple hypothesis P is to be
tested against a simple alternative Q.

If for é given number 8, 0 < B < 1, which does not depend on
n, a test ¢= ¢ (x],...,xn) has the guaranteed power 8, EQq_zﬁ,
then

1
(1.1)  Tim inf[E0g 1" > exp(-K(Q.P)),
N
where K(Q,P)=EQ 1og(dQ/dP) is the information number (see Chernoff
(1956) or Bahadur (1971)). The equality sign in (1.1) is attained
by the most-powerful Tikelihood ratie test of P versus Q.
| The corresponding notion.of asymptotica] thima]ity is closely related
to the idea of exéét sTope ahd gtoéhastic comparisbn 6% tests due to Bahadur.
Suppose now that the distributions P and Q are not known exactly

but only up to a finite-valued nuisance parameter o, a=1,...,8.

For instance, there are % measurement types and for each fixed
(but unknown to the statistician) type a the measurements have one
of two Rlternative distributions Pa or Qu. Another example is the
transmission of a message in one of % possible languages which use
the same alphabet, Assume that the message in unknown language is
sent n times over a noisy channel and the chocie has to be made
between two possible messages or rather between two probability

distributions which correspond to them. Thus, one has the hypothesis



Pa to be tested against Qa for each value of a.
We call a test ?, such that qu% > g for all o, to be adaptive

if for any a

1
(1.2)  Tim [E e, 1" = exp(-K(Q.P ) = exp(-K ).

o _

In other terms an adaptive test is asymptotically optimal for
any value of the nuisance parameter in the following sense: within
the class of tests which have the guaranteed power it asymptotically
minimizes the probability of the first kind error.

The existence of adaptive tests has been investigated by the
author (Rukhin (1982)). A necessary condition and a sufficient
condition for the existence of such test were obtained. In this paper
in Section 3, we show (Theorem 5) that an adaptive test exists if and
only if the information numbers for members of one family do not
exceed the information numbers for distributions in any two different
families. In other terms an adaptive test exists if and only if the
testing problem for any value of the nuisance parameter is "at least
as difficult" as the testing problems for distributions corresponding
to different values of this parameter. This condition is deduced
‘from a study of tests of a hypothesis ZwaPa against an alternative
zana for some positive weights u, and wa.which is performed in

Section 2., In Section 4 we give an example which illustrates the



main result in the case of an exponential family.
Notice that the existence of adaptive test is related to the
structure of finite hypothesis {91""’92} and'{n],...,ni} for which

%28 and

there exists a test % such that for all k=1,...,% En
K

]

Tim [E. 91" =  max exp{-K(P_ ,P_ )} = exp{-K(P ,P_ )}.

e Ok 0 T<icn ny 8y e Ok

In other words %o which is a test of composite hypothesis {e],...,el}
versus {n],...,ng}, is asymptotically as good as the most powerful
test of a simple hypothesis By against UM for any k. It is easy

to see that % is an adaptive test in the testing problem of 0,

versus Ny’ In this setting for any k

K(Pnk,Pek) = mén K(Pni,Pei),
so that according to Theorem 5 such test % always exists.

These notions of optimality have "non-local" character, i.e.,
exponential convergence to zero of the significance level is examined.
Somewhat different but»re1ated concepts for composite hypotheses
have been considered by Bahadur (1960), Brown (1971), Hoeffding (1965)
and Tusnady (1977).

Notice also that adaptation can be defined by an asymptotically optimal

behavior of thé second kind of error. Indeed if for fiXed as 0 < g <1,

EP‘PS_. o s then '|
Tim inf(1 - EQ‘G;E)n > exp{-K(P,Q)} ,
N->00

and all results of this paper (with Pa replaced by Qa) hold for the

corresponding definition of adaptation.



2. __ ASYMPTOTIC BEHAVIOR OF TESTS FOR MIXTURES

We start with the following result which is proved with the help

of & multivariate version of Chernoff's Theorem_(Groeneboom, Oosterhoff

and Ruymgaart (1979)).

LEMMA. Let”cn, n=1,2,... be a sequence of positive numbers such that
n']logcn converges to a finite 1imit L. Assume that pi,qi,i=i;...,2
are strictly positive measurable functions, Wi = exp(nbi)/[i exp(nbk)],
‘where bi are real constants, u; are positive probabilities, i=1,...,%,

which do not depend on n, and for all positive probabilites vi,i=1,...,2

Pr{§v1[109(pk(x)/qi(x)) - b1 >1}>0

for all k=1,...,2. Then

n
0 Ewk ¥ qk(xj)}]

S |—

n
Tim [Pr{zu, T p (x,) > c
N> k k 1 k™

n
Tim [Pr{z u,_ 1 p,(x.) > ¢
N> k k 1 k*™

S,
max inf exp{-z si(bi+L)}E i} [pk(X)/qi(X)] '
1<k<s Sys--«55,>0 i i

The proof of this Lemma is essentially contained in Rukhin
(1982) (with functions 95 being replaced by qieci).

We introduce now the following notation. Let fk’ k=T,...,4%,
denote the density of Qk and 9 denote the density of Pk. We assume
throughout the paper that these densities (with respect to some

o-finite measure) exist and are strictly positive. Also let



pa(b1,...,b2,L)

S.
= max inf exp{-zsi(b].+L)}EP I [fk(X)/gi(X)] T
1<k<e s],...,slzp i ¢

Now let. ¢ be the most powerful test of the simple hypothesis
n

n
iwk ¥ gkij).aga1nst the simple alternative Euk ¥ fk(xj).
THEOREM 1. For fixed positive probabilities Up s k=1,...,% and

positive probabilities w; of the form w; = exp(nbi)/[zexp(nbk)]
k

assume that the test ¢ has a fixed power g, 0 < g < 1, and

u- > max[g,1-8] where m is defined by (2.1). Then for any a, a=1,...,%

1

. P n _
Tim [Ea¢ ]] = pa(b4""’bQ’L)’

N->e0

where

(2]) L = nl21n [K(Qk’P-|) - b'l] = m'!n [K(Qmsp.i) - b'l]'
s 1 1

PROOF. It is well known that for some constants c and Yp? 05yn<1

test P has the form

¢ 1,Euk % fk(xj) > c E W, % gk(xj)
o _ n
(2.2) ¢ =‘{ YnF U T f (x5) = ¢ 2w I 9 (x3) , S
n n
kO,Zuk ? fk(xj) <cg iwk ? gk(xj).



It follows that

n n
T tu, I f.(x, T W, I g.(x.
kquk(iu1 ] 1(xJ) > C : W, ; 91(XJ))

- n n

(2.3) < B < Equk(Zu_i il fi(xj) > Cpzwy H‘gi(xj)).

k 1 S

Also notice that for any fixed m

n n
Om(§u1 ? fi(xj) > ¢ ?wi ? gi(xj))

n n
> Q (max [uk i fk(xj)] > ¢ amax [wi i gi(x.)])

- My 1 i 1 J
n n
z_mzx Qm(uk'¥ fk(xj) > ¢ oW ? gi(xj), i=1,...,2)
and
Qm(§u1 ? fi(xj) >cp §w1 ? gi(xj))
n ) n
g_Qm(zmix [u, ? fk(xj)J zﬁcnm?x Lw; ? gi(xj)])
n n
5_EQm(2uk ? fi (x5) z_cnm?XEwi ¥ 9;(x5)1)
n 21 n _
< emax Q (u, T fk(xj) >c bW ? gi(xj), i=1,



Since u_ > g formula (2.3) implies that

n n
(2.4) 1im sup max Q (u, m f,(x.;) > c_aw, T g.(x;), i=1,...,2)< 1
500 Kk m k 1 k' Ny T

and because of the inequality Uy > 1 - g one has

n n
. -1 .
(2.5) ;12 inf mﬁx Qm(uk ? fk(xj) > Co % Wy ? gi(xj), i=1,...,%) > 0.

. i . ._
For a fixed k let Yj 1og[fk(xj)/gi(xj)], i=1,...,8, j=1.2,...

-1 -1
Yo =1 (logc +1og ¢)> v, =n (logc - Togy).

n .
. -1 i . ‘g Q _
Since n jZ] Yj converges 1in Qm-probab111ty to Em]og[fk(x)/g1.(X)]—e1.k

one has

n .
Tim sup Qm(n'1 % Vs by 4y isTiee) =

N->0

if for all i=1,...,%

bi + 1im inf Yn < &k
N>

Also

n .
1im inf Qm(n 1 ) Vs > b+ Vs i=1,...,2) =0
n->e 1

j
J



if for some i

.+ 11 > e, .
b1 Tim sup Vi > &k
N

It follows now from (2.4) and (2.5) that for any k there exists

i such that

.. -1
bi + Tim inf n " Tog €, 2> &g
n-><

and there exists k such that for all i

: -1
bi + 1im sup n ]og Cp < €ipe
N>

Therefore

max min [e1.k - bi] < 1im inf ! Tog ¢ < Tim sup n! log ¢
ki N n-w

< max min [e. - b.].
K ik i

We have proved that the sequence n'1 log ¢, converges and

A _ . .
L = Timn " log ¢ = max min [eik - b1] = min [K(Qm’Pi) - biJ
N0 ki i



For all positive probabilities q; and any k

L b qi(K(kaPi) = bi)’
1

so that

E > 0; (10gLf (X)/;(007 - by) 2 L
and for any k
Q (3 a;(1og[f (X)/g;(X)] - b;) > L) > 0.
1

Since all measures Pk and Qk are assumed to be mutually absolutely

continuous
Pk(? qi(]OQEfk(X)/gi(x)] - bi) > L) >0,
and our Lemma is applicable.

This Lemma entails

1

n n -

Tim [P (2 u, T f (x:)>caw, T g, (x:))]"
N 1
n

= 1im max [P (m fk(x
ne T<k<g %



10

and Theorem 1 is proven.

COROLLARY 1. If ¢ is a test such that ng_z_s for all k=1,...,%,
then for all real b]""’bz and L. defined by (2.1)

1

b b

max{e k]im inf [EE¢ ™ > max{e kpk(b],...,bQ,L)}.
k N0 k
n n
Indeed ¢ as a test of Ewk ? gk(xj) versus Euk ? fk(xj) has -

power B and therefore cannot have a significance level smaller than

that of ? -

THEOREM 2. For all real numbers b,,...,b there exists a test
1 2
% such that EE¢23ﬁ for all k=1,...,2 and

1
. P n _
(2.6) Tim [Ea¢2] = pa(bl""’b

N>

L)

where L is defined by (2.1).

PROOF. For any o, 1<a<t, define the constant cn(a) so that for a

test qga) of form (2.2)



As in the proof of Theorem 1 we see that

Tim n”' Tog ¢ (o) = max min [EQlog(f, (X)/g;(X)) - b;]
N0 ki

= min [K(Q_.P;) - byl
1

Now let the test €y of the form (2.2) be determined by

Cn=T;n cn(a). Then

limn™! Tog ¢ = L
N->oo n

and for all o

Q
Ec®, > B.

The conclusion of Theorem 2 follows now from Lemma.

COROLLARY 2. For any a and all real b],...,bz

(2.7) pa(bl""’bz’L) > exp{-K 1,
where L is given by (2.1)
This corollary follows directly from (1.1) and (2.6).

We prove in this section our main results.

11
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THEOREM 3. If an adaptive test exists then for all real b],...,b

(3.1) max exp(ba - Ka) > max [exp(bu)pa(b],...,bz,L)].

[0 a

If for some b1,...,b2

(3.2) exp(—Ka) Z_pu(b1,...,b ,L)

L

for a=1,...,%, then an adaptive test exists.

PROOF. Assume that ?, is an adaptive test. Then because of

Corollary 1 one has -

1

. P n, _
max {e = Tim [Ekcpa 1'} = max {exp(bk - Kk)}
k N->o0 k

by

z_mix [exp(by)oy (bys...5by5L) T,

so that (3.1) is proven.

If (3.2) is met for some b],...,bl then the test ¢y of Theorem 2
is adaptive. Indeed (3.2) and (2.5) imply that for any o

o
Tim [Efcpzln = exp(-K )

n->e *

and
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Q

a2 > B-

COROLLARY 3. If for some B, v T, = gY then an adéptive test..does not

B
exist.

=...=b,=0. Then

Indeed put b, 3

L = min K(Qk’Pi) = K(Qs’Py) =0

k,i
and
p t 53
0 (b],...,b ,L) = max inf EE 1 ( k(X)/g.(X))
¥ € T<k<f sy ...,5.>0 Y i=] !
N ], =
p % S
> inf E. 1 (g, (X)/g;(X)) ~ =1,
Spseees5,20 ¥ i=]
%
since all partialderivatives of the convex function Ez' m (g (X)/g1(X)) 1
i=1

at the origin are nonnegative:
3 Tog (g_(X)/g;(X)) > 0, i=1,...,2.
Y Y 1 -

Thus

and (3.1) cannot hold.



THEOREM 4. An adaptive test exists if and only if for any

(3.3) o (K1,...,K2,LO) = exp (-K_),

where

(3.4) LO = Ei? [K(Qk’Pi) - Ki]'

PROOF. If an adaptive test exists then

1 = max exp(K_ - K ) > max exp(K )o_(Ky,

o o

But because of (2.7) for any o

exp(Ka)pa(K],...,KQ,LO) > 1.

Therefore (3.3) holds.

If condition (3.3) is met then test ®y of Theorem 2 is adaptive.

THEOREM 5. An adaptive test exists if and only if LO=0, i.e., for

all i#k

LI

14
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PROOF. Assume first that L0=0. Then

sK

0 (K],...,K ,0) < max infe ° EZ[fk(X)/gd(X)]S f_exp(-Ku).

o % k s>0

But because of (2.7)

pa(K],...,Kz,O) z_exp(-Ka).
so that (3.3) is met and an adaptive test exists.
Because of Theorem 5.1 of Groeneboom, Qosterhoff and Ruymgaart

(1979) we have

o (Kis...sK ,Ln) = max exp{- inf K(Q,P )},

where
3, = 10 EMog(f (X)/g; (X)) > K + Ly, i=1,...,0).

The definition of L, implies that le Dk for all k. Therefore

0

(3.6) o (Kys...HK ,La) > max exp{-K(Q,,P )}.
a*1l 20_1_<_k_<__2, ko

Now if an adaptive test exists then (3.3) holds and for any i=1,...,%

(3.6) implies that
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exp(-K;) > max exp{-K(Q,,P.)}
i T 1<k<s k* i

or

K1' < m-|i<n K(kapi),
which is equivalent to (3.5).

Thus an adaptive test exists if and only if the discrimination
K(Qi’Pi) between members of one family does not exceed the discrim-
ination K(Qk’Pi)’ k#i, between members of two different families.

It is easy to see that if condition (3.5) is met theh the test

with critical region-of the form

{mgx ? ]og fa(xj) 3_m§x [nKa + g log ga(xj)] -n mgx K}
is adaptive. This. is a modified maximum likelihood ratio test with
weights of the values of the nuisance parameter o proportional to
exp(n Kd)‘

Notice that the traditional maximum 1ikelihood ratio test with

critical region of the form

n n
{mgx % Tlog fa(xj) z_mgx % Tog ga(xj)}

does not have to be adaptive. Moreover it typically fails to be adaptive
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even when adaptive tests exist.

4.  EXAMPLE
Let distributions Pk and Qk be members of an exponential family

over Euclidean space, i.e., the densities fk and I have the form
i (x) = explgpx - X(g )3,
9 (x) = expingx - X(n )}, k=1,...,2.
An easy calculation shows that
K(Q,-P;) = X(n;) - X(g) + (g, - n;)'WX(g,),

where vX denotes the vector of partial derivatives of the function X.

In particular

K, = X(n) - X(g) + (g =~ n_ )'vX(g ).

Q

Thus an adaptive test exists if and only if
(4.1) X(n,) - X(g ) + (g, - n )'X(g )

= min [X(n,) - X(g ) + (g - n )'vX(e )]
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for all a=1,...,%.
For instance, if fk and g, are multivariate normal densities
with means By and Wi respectively and common covariance matrix I,

then
X(g) = g'ze/2.
Condition (4.1) means that

) - (&,

1

)] =0,

min [(gk - n.

)'z(g, - n.
. i k
k,i

i 'ni).z(ik'n°

1

where g = z']ek, = z—1uk. Thus an adaptive test exists if and

only if for any i

As another specification of (4.1) let us consider the case when fi

and g, are univariate normal densities with parameters By 59x and

2

- -2, - 2 -2
u -y respectively. Then £y = (ck ,ekokz), g = (TkZ,Uka ) and

for £ = (v,z), v>0

1

x(&) =[sz- - (Tog v)l/2.

An easy calculation shows that (4.1) means that for a11 a= 1,...,52
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Lule 2 - 6%572)/2 + Tog(ylo,) - oo™ - 1)/ (2)

o o
- - 2
+ 62 (Gd 2 4 qu)/Z -0 u, /Tm]
-2

T
o

] ; 2
202 - of 07%)/2 + Tog(x /o)) - oyl

o

min[(u - 0 2)/(2)

k
2, -2 -2 2
ek(ck toT, )/2 - ekua/Ta]'

+
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