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ABSTRACT

RECENT RESULTS ON MULTI-STAGE
SELECTION PROCEDURES
Klaus J. Miescke (West-Lafayette)

During the past few years, several new deve]opment§ took
place in the area of sequential selection procedures. The purpose
of the present paper is to describe the major results and to
point out some open problems and interesting questions for fur-
ther research in the future.

The basic goal is to find that one of k populations which is
associated with the largest parameter of a given underlying family
of distributions. Additionally, in the control setting, one
wishes to decide whether this parameter is large enough, i.e.,
larger than a control value. A major topic of interest is. to
find procedures which are reasonably economical, i.e., which.
perform well without requiring too many observations. The tra-
ditional criterion, due to R.E. Bechhofer, which is to guarantee
the probability of a correct selection outside of a certain indif-
ference zone, combined with the criterion of keeping the expected
total sampling amount small, constitutes the main stream of.
current research. On the other hand, some work has also been
done in the decision theoretic approach, but due to the inherent
analytical difficulties, the results are rather jmcomp]ete up
to now. One promising direction of further research appears to
be the construction of procedures which are not too complicated
and, at the same time, are at least approximately optimum in a

decision theoretic sense,
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1. Introduction. The problem of how to find the best (in terms of a distri-

butional parameter) of k > 2 populations, by meansvof observations drawn from
them, has been studied by many research workers in the past. A thorough intro-
duction into the field of Ranking and Selection as well as a complete overview
over all relevant developments up to 1979 is provided by Gupta and Panchapakesan
[16]. The bibliography contained therein can be complemented with the help of
Dudewicz and Koo [7].

The purpose of the present paper is to survey recent results in the sub-
field of sequential or, respectively, multi-stage selection procedures which
are not already discussed in [16]. Moreover, severa] open problems will be
pointed out to encourage further work in this direction. The most remarkable
publication in this respect, without doubt, has been Bechhofer, Kiefer and
Sobel [1], which still serves as an inspiring source of results and ideas.

Let the populations, as usual, be denoted by w1,...;nk. From every mis @
sequence of observations xi],xiz,... is available to the experimenter. The
observations altogether are assumed to be independent. For every i, let the

X;;'s have a density fe w.r.t. a sigma-finite measure u on IR, which is the

ij .
i
Lebesgue- or a counting measure, respectively. The family of densities

F = {fe} » < R, is assumed to be known. In many papers, & is a one-

€ Q
parameter exponential family. In the continuous case, the most prominent
example consists of k normal populations with unknown means Bse-esb) ca=1DR
and a common known variance 02 > 0 (Normal Case). In the discrete case, it

consists of k Bernoulli populations with unknown success probabilities

B1s---50 € Q = [0,1]. (Bernoulli Case).

*Reserach supported by ONR Contract NO0014-75-C-0455 at Purdue University.



A multi-stage selection procedure for finding that s with ei = max{e],...,ek}
consists of four different types of decisions which have to be made anew at
each subsequent Stagem = 1,2,... . More precisely, at Stage m, based on the ob-
servations drawn up to that point, the experimenter has to decide

(a) whether or not he would like to stop (stopping rule);

(b) In case of not stopping: Which populations to eliminate from further consid-

erations (elimination rule), and what kind of observations to take at the

next following Stage m+1 (sampling rule);

—
(o]
~—

In case of stopping: Which population(s) finally to select (terminal

decision rule).

Procedures can be categorized in different ways according to their character-
istics in (a), (b) or (c), respectively. Some of the terms which are used frequent-
ly are the following.

Closed (open) sequential procedure: The number of observations which can be drawn

from L TPRPLN is a bounded (unbounded) random variable.

Truncated procedure: The number of stages is a bounded random variable.

g-stage procedure: The number of stages is a fixed constant q > 1.

Procedure with elimination: At every stage, populations (which appear to be

inferior) can be eliminated from terminal decisions. The remaining populations

constitute a subset selection. Typically, eliminated populations are excluded

also from further sampling. A justification for this will be given later
(cf. Fact 5).

Vector at a time sampligg; At every Stage m, exactly N observations are taken

from every non-eliminated population. The sample sizes NysNys... are determined
before the experiment starts.

Adaptive sampling: At every stage, the decision which observations to be taken

next depends on the data collected up to that stage. A well known example for the

Bernoulli Case is the "play the winner sampling rule" which is due to H. Robbins

(cf. [16], p. 64).



Subset selection procedure: The final decisions are subsets of {n],...,nk} of

random size. A correct selection (CS) occurs if the best population is included.

Fixed size t subset selection procedure: The terminal decisions are subsets of

{n],...,ﬂk} of fixed size t. In the case of t = 1, one calls such a procedure

simply a selection Erbceduke. A correct selection has the same meaning as before.

A1l of the terms above are used quite consistently in the literature, except
for the term adagtiVe. Some authors call their procedures, though emp]oying vec-
tor at a time sampling, adaptive because of certain other reasons. See for example
Biiringer, Martin and Schriever [5] (the nonparametric'part), Hsu and Edwards [19]

and Tong [48].

The classical approach to find reasonable procedures is the following. Let
Qk(s*) = {0 ¢ Qk]D(e[k_]], e[k]) > 6*} be the so-called preference zone and
Qk \Qk(d*) be the indifference zone, where D is a distance measure (usually to be
_ * . . ‘
e[k] e[k_-l] or e[k]/e[k_]], Y‘esp.), §* > 0 is fixed and e[]] < 9[2] <iee < e[k]

denote the ordered values of B1s000s0). In the indifference zone approach, due to

R. E. Bechhofer (cf. [16], p. 8), only those procedures are considered which satisfy

(1) inf(P,(cs)|e € 2(6%)1 > P¥,

where P* > k'] is prespecified. A 6 ¢ Qk(d*) is called a least favorable configura-

tion (LFC) if the infimum in (1) occurs at this 6. A first step towards establish-

ment of (1) for a suitable type of procedure thus is usually to find its LFC.
Among those procedures satisfying (1) one then naturally tries to find a candidate
with a small expected terminal subset size and, moreoever, with a sma11 average
sample number (ASN). |

From a decision point of view, this (minimax type) approach means that the
risk w.r.t. a 0-1 terminal decision loss should be less than 1-P* on Qk(d*) and
that, subject to this condition, objective functions (expected terminal subset

size and ASN) are tried to get small. One méjor objection to the indifference



zone approach is, however, that nothing is actually controlled if 6 ¢ Qk(d*).
Procedures based on this approach will be the main topic of Sections 3-5.
An alternative way of treating the problem is the one prescribed by the

decision theory. Hereby one has to incorporate all 1ossés due to inappropriate

decisions and costs of sampling into one (sfage-dependent) loss function, and then
to consider the risk function, i.e. the expected loss, as the objective function
which has to be minimized. Within the class of permutation invariant procedﬁres,
i.e. among those which give no apriori preference to any of the k populations,
several optimality results can be derived, especially in the Bayesian approach.

This will be described in Section 2 below.

2. The Decision Theoretic Approach. In this section we assume that & is a

one-parameter exponential family. More precisely, let

(2) & = {c(o)exp(ox)d(x), x € R} eqs Where @< R is an interval.

We consider the c]ass‘xi, say, of permutation invariant sequential procedures
with (or without) elimination, which are based on vector at a time sampling.

Let wim = Xi1 + Xip oo+ X

i denote the sufficient statistic for ei,

1(n]+...+nm)
based on all observation which are available from M up to Stagem, i = 1,...,k,

and let wm = (Wy seuonly, )y m=1,2,... .

m km)
Let Lm(g,(t],...,tm+1)) be the loss which occurs at o € Qk if a procedure
stbps at Stage m and finally selects populations tm+1(5 {n],...,nk}, after it has
eliminated at Stage j populations tjgg {myseesmeds j=1,...,m, where tyoeeentyg
is a disjoint decomposition of {myse..om b Assume that for every m, L has the

following properties:.

(3&) Lm(g’ (0(t1)’---50(tm+]))) = Lm((ec(])s--vaec(k)), (t]s---atm+1))s

where d(tj) = {o(i)]i € tj}’ j=1,...,m1, for every permutation o of

(1,...,k), and



(3b) Lm(g, (i],...,%m+1))_5 Lm(g, (t],...,tm+])), if for a certain pair (i,j)
with 65 < 05 there exist integers o < B < m+1 such that i €>t8, jet,
t, (ta\{J}) U {i}, tB = (té\{1}) U {j} and tY =,tY for v # a,B.

Condition (3a) states that Lm is permutation invariant, and (3b) states that

a better population should be eliminated later than an inferior one. It is not
dffficu]t to see that —Lm, if Lm has these two properties, can be represented

by a function of 8 and a permutation (o(1),...,0(k)) of (1,...,k) which is decreas-
ing in transposition (DT). Functions with this property have been studied by
Hollander, Proschan and Sethuraman [18], and their results can be used to derive
several optimality results in the present context.

k

Since the risk function R(¢, ®), 6 € @, of a procedure p fromx'; is permu-

tation symmetric in g, uniformly (in 6) best results in terms of the risk function

éan be derived more easily in a Bayesian approach under a permutation symmetric
prior t. Thus, let t be such a prior for the now random parameter vector o. Then
one can prove, one after another, the following facts (cf. Gupta and Miescke

[12, 14, 15]). Let m > 1 be fixed in the sequel.

Fact 1. The density of W_, defined on R¥ x o, is (DT).

Fact 2. The posterior density of @ is (DT).

Fact 3. -E{Lm(Q, (t],...,tm+]))|b_dm = w}, as_a function of (o(1),...,0(k)) and

1£

» is (DT). Hereby, {c(]),...,c(q])} = tys {o(q]+1),.r.,c(q2)} = tos and so

forth, for certain numbers L PR W with Gy <evs2Qpyq = k.

A natural terminal decision, at Stage m, selects only those populations

- among the non-eliminated ones which yield the Targest wim-va1ues, In the dis-
crete case, ties have to be split at random to get a procedure within?(I. For
one-stage procedures it is well known that this type of decision is optimum in
several senses (cf. [16], p. 42 and Miescke [30]). The next result can be con-
sidered as a generalization of the so-called "Bahadur-Goodman Theorem" (cf. [16],

p. 46).



Fact 4. FOr any p elxj,:let P* be the same procedure as p excépt for the

terminal decisions where p* uses the natural ones. Then

(4) R(6, #*) < R(8, @), uniformly in e € k.

Actually, Fact 4 remains unchanged if one assumes that, at every Stage
m, the complete vector wm has been observed. With other words, one can state

Fact 5. Observations from eliminated populations are irrelevant for terminal

decisions.
The next following, rather negative, statement may be considered, in certain
situations, as an argument against the use of adaptive sampling techniques.

Fact 6. For all situations where terminal decisions of a proceduké with adaptive

sampling are based on unequal numbers of observations from the non-eliminated

populations, there is no, uniformly in 6, optimal terminal decision.
One might now expect that, within stages where a procedure with elimination

does not stop, natural subset selections (i.e. subset selections associated with

largest wim—va1ues) have similar strong optimality properties as the natural terminal
decisions. It turns out, however, that this is only the case under certain circum-
stances. First of all, vresults analogous to Fact 4 can be proved only for strongly
unimodal exponential families &, i.e. where fé(x) or d(x), respectively, is log-
concave. The following is a key-lemma.

Fact 7. If & is strongTy unimodal, then the conditional density of wm+1’ given

W, = W, which is derived from the joint distribution of 0, W,and W . ;s is (DT).
If one assumes that at every Stage m, all observations wm are known (just

to simplify the proofs), then with backward induction it is not possible to over-

come the points where decisions have to be made on how many populations to elimi-

nate. Optimal decision would utilize here all observations, including those from

already eliminated populations. The following three results, however, can at Teast

be proved.



Fact 8. Let the number of stages q, say, as well as all subset sjzes of

selections ry>r, 3,..3_rq, say, at Stages 1,2,.;.,q,be fixed. Then the procedure

which uses the natural subset selections and natural terminal decision is the unique,

uniformly in 6, best procedure in the sub-class of procedures ig?(I with these

properties.

Fact 9. Within the sub-class of fixed size t two-stage procedures 1n9(I, the

procedures'which use natural subset selections at Stage 1 and the natural terminal

decision at Stage 2 constitute an essentially complete class.

Fact 10. Assume that Lm depends on 6 only through those 61'5 which are associated

with the, at Stage'm, not eliminated populations, m = 1,2,... . If apriori,

01s...50, are independently identically distributed, then every truncated Bayes

procedure 1n?(1 uses natural subset selections at all stages, and the natural

terminal decision.

After these considerations under rather mild assumptions upon the loss func-
tions, it is now natural to Took for specific procedures which are optimal in
more concrete situations. In the control case, where ohe wishes to select the
best population, provided that it is better than the control (i.e. e[k] > eO),
two-stage procedures with elimination have been derived by Miescke [31] and
Gupta and Miescke [14]. A r-minimax approach, like the one discussed by Miescke
[32] for one-stage procedures, appears to be apprbpriate for such problems, but no
work has been done here up to now.

The difficulties. arising in concrete problems with the backward induction
in sequential selection problems are considerable (cf. Edwards [8]). It seems to
be more realistic for future work to look for simple structured procedures which
are approximately optimal in a reasonable sense. Ad hoc procedures 1like the ones
proposed by Washburn [52] may have good performance characteristics and deserve

to be studied in more detail. Washburn's procedures are open and closed procedures



without elimination. They are based on prior knowledge and use adaptfve sampling
which, as well as the terminal decision, is based on the posterior expectations
of e]""’@k' These procedures are not Bayes solutions in a decision theoretic.
sense since no overall loss is actually considered here. However, as it is shown
by Washburn [52], they perform well compared with other procedures given in the
literature.

Two papers which give more detailed Bayes solutions in concrete problems,
but which do not completely fit into the distributional framework considered so
far, are due to Ramey and Alam [41] and Gulati [9]. Ramey and Alam [41] derive
a Bayes truncated procedure for the most probable of k cells in a multinomial
model under a Dirichlet prior. Gulati [9] considers the problem of finding that
one of k uniform distributions which has slipped to the left (and has a shorter
support). He finds the Bayes solution with respect to any prior specifying the
slipped population, within the class of closed sequential procedures based on
adaptive sampling.

In the sections to come, procedures will be discﬁssed which are not derived
from the decision theoretic approach. Most of them are fixed size t (especially
t = 1) subset selection procedures. A1l of them use the natural subset selections

within stages and the natural terminal decisions.

3. The Bernoulli Case and Related Models. The case of k Bernoulli populations

with unknown success probabilities e];...,ek € @ = [0,7] will be discussed only
briefly, since two detailed publications on recent developments in this area are
readily available. The first one is Biringer, Martin and Schriever [5]. In
their book, various sequential selection procedures with vector at a time as well
as play the winner sampling and different stopping rules are studied under the
indifference zone approach in great detail. The second one is the paper by

Bechhofer and Kulkarni [2] which provides an excellent overview not only over the



k-population selection problem but also over related areas 1ike clinical trials

and multi-armed bandit prob]ems, where the 6bject1ve functions differ from those
in the selection problem. These related areas are also covered by Dudewicz and

Koo [7], where further references can be found.

The main topic of Bechhofer and Kulkarni [2], however, is to propose a closed
non-eliminating adaptive fixed size t subset selection procedure, which has several
optimal properties in terms of the P(CS) and the expected number of observations
taken from certain populations. Some results, which are proved for k = 2 only,
are conjectured to hold also for k > 3. In a subsequent paper, Bechhofer and
Kulkarni [3] provide additional results on the performance of their procedure.

Levin and Robbins [27] consider an open non-eliminating procedure with vector
~at a time sampling which stops if one population has r more "successes" than all the
remaining ones. Among others, a conjecture is stated for a procedure with elimina-

tion, which is proved to hold for the non-eliminating version.

The related multinomial case (note that here independence of the cell-

frequencies is clearly not given, but that the joint distribution is (DT)), where
the goal is to find the cell with the largest probability, is also treated by
Levin and Robbins [27]. A closed sequential (inverse sampling) version of their
procedure has been studies already by Ramey and Alam [40], where a conjecture
concerning the LFC for k > 3 is stated. A Bayes procedure by Ramey and Alam [41]
has been mentioned already in Section 2. Further work has been done by Hwang [24]
and Hsuang, Hwang and Parnes [22]. The latter is actually a one-stage result, but
the question of whether more sampling is more informative is certainly of rele-

vance for sequential selection problems, too.

4, The Normal Case and Related Models. The problem of finding that one of k

normal populations N(ei,cf),

i=1,...,k, which has the Targest mean in hore than

one stage has been studied under several aspects (but mainly under the indifference
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zone approach) by many research workers. In the following we shall distinguish
between three different situations depending on the status of knowledge about

o%,...,oi. The first one is the simplest one: Here, c% =,..= GE = 02 and 02

> 0
is known. For this model, Bechhofer, Kiefer and Sobel [1] proposed and studied
their, meanwhile classical, open sequential procedure without elimination which
is based on vector at a time sampling with 1 = ny = n, =... . The termina1 decision

is the natural one (which is optimum, cf. Fact 4), and the stopping rule is

k-1 |
(4) Ny = 1nf{m[1§] exp(-6%(Y g, Yy 3)) < (1-P¥)/P*

where Yim = (X11_+...+ Xim)/oz’ i=1,....k,
which establishes the procedure in the indifference zone approach (i.e. (1)). An
upper bound for the first moment of‘NBKS is given in Huang [23], and asymptotic
properties of this stopping rule, i.e. the behavior of the ASN under P* > 1 and/or
6* -~ 0 have been studied by Bechhofer, Kiefer and Sobel [1], Tong [49] and Jennison,
Johnstone and Turnbull [25].

As with the BKS-procedure, many others can be viewed, in one way or another,
as being generalizations of Wald's SPRT (cf. [16], p. 127). This 1is also the case
with that one in Mukhopadhyay [37]. It differs from the BKS-procedure only .
through its stopping rule, NM’ say.

(5) N, = inf{m|(k-])max exp(-é*(Y[k]m-Y[i]m)) < 1-P*},

M i 2k

Apparently, NBKS-i NM and EQ(NBKS) < EQ(NM)'for all e € Hlk, which implies that

the BKS-procedure is more efficient. Usually it is more difficult to compare
procedures directly in this manner and asymptotic techniques are then the only
way to do this.

Under the indifference zone approach, open sequential procedures with
elimination and vector at a time sampling, which are based on paired comparisons
of the sample means, are discussed by Swanepoel and Geertsema [44], Kao and Lai

[26], Hsu and Edwards [20], Turnbull, Kaspi and Smith [50] and Jennison, Johnstone
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and Turnbull [25]. 1In the latter two papers, however, procedures with adaptive
sampling are the main topic.

An open Sequentia] procedure without elimination based on vector at a time
sampling is proposed by Tong [48] in a more general setting including the normal
case. To avoid the indifference zone approach, the single stage P(CS) is hereby
estimated stage by stage (by replacing the unknown parameters by estimators), and
the procedure stops as soon as this estimate is greater or equal to P*. It would
“(

be interesting to derive a probability guarantee for the P(CS) in @ (8*). In

Qk \ Qk(G*), however, one has to encounter (similar as with the BKS-procedure) a

large ASN (cf. McCulloch [28]).

Even if the ASN is finite, there remains the uncertainty of how long it
actually takes until an open procedure eventually stops (see also Bechhofer and
Kulkarni [2], 2.2). From a practical point of view, truncated and g-stage proce-
dures with elimination seem to meet more 1ikely the needs of practioneers. A
two-stage procedure with elimination and vector at a time sampling is proposed by
Tamhane and Bechhofer [47]. The elimination hereby is made by means of Gupta's
maximum means rule (cf. [16], p. 232):

(6) select m, if yin'] > Vign, - d, i=T,....k,
where d = d(&*,P*, nys nz) fh the present context. A multi-stage procedure
which is a direct generalization of Tamhane and Bechhofer's procedure is proposed
by Tamhane [46].

‘Several optimality properties of Gupta's subset selection rule have been
pointed out recently by Gupta and Miescke [11], Miescke [29], Gupta and Kim [10]
and Bickel and Yahav [4]. Thus the use of this rule at the first stage is intui-

tively justified. No theoretical results, however, which support this idea are

known at present.
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In a conservative approach, Tamhane and Bechhofer [47] use a lower bound
for the P(CS) to find a most economical pair (n],nz) in the indifference zone
approach. Their conjecture that the slippage configuration e[]] =...= e[k_]]
= e[k] - 6* is the LFC has been proved to be correct for k = 3 by Miescke and
Sehr [33]. The case of k > 3 is still unproved. Techniques for finding LFC's
as well as results for other procedures are given in Gupta and Miescke [13].

For the control problem, several two-stage procedures are considered and

discussed in Gupta and Miescke [14] and Miescke [31].

The second situation, where still 0? =...= oE = 02, but 02 > 0 is now

unknown, is also considered by Kao and Lai [26] and Jennison, Johnstone and
Turnbull [25].

Open sequential procedures without elimination based on vector at a time
sampling are studied by Wackerley [561] (in a more general approach) and by
Mukhopadhyay and Chou [38]. The latter perform a similar analysis as before
Mukhopadhyay [37] has done before. Mukhopadhyay [36] deals with the case of k = 2.

The third situation, where o?,...,ci are unknown and possibly unequal,
is the most difficult one. It is questionable, however, whether it is still
reasonable to Took for a population with the largest mean which perhaps might
also have the largest variance.

Two-stage procedures without elimination, based on the classical Stein-
technique (cf. [16], p. 23) to determine the common sample size at Stage 2 in
dependence of the estimated variances at Stage 1, are considered by Rinott [42]
and Mukhopadhyay [34] under the indifference zone approach. A three-stage proce-
dure employing the Stein approach, followed by elimination via Gupta's rule at
Stage 2, is proposed by Hochberg and Marcus [17] in the indifference zone approach.
Eor the case of k = 2 populations, other procedures have been considered by

Mukhopadhyay [35]. Procedures are also given by Swanepoel and Geertsema [44].
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For the control case, open and closed sequential procedures with elimination

and vector at a time sampling are proposed by Hsu and Edwards [19].

5. Other results. For the problem of finding the normal population with the

smallest variance, Mukhopadhyay and Chou [39] give an open sequential procedure
without elimination based on vector at a time sampling. The basic construction
is the same as before in Mukhopadhyay [37]. For the 1inear regression model,
another type of sequential procedure is proposed by Hsu and Huang [21].

Finally, several papers dealing with nonparametric sequential procedures
are presented by Swanepoel and Venter [45], Swanepoel [43], Carroll [6],

Bliringer, Martin and Schriever [5] and Hsu and Edwards [20].
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