A NOTE ON THE BEHAVIOR OF SAMPLE STATISTICS
WHEN. THE POPULATION MEAN IS INFINITE

by

Jeesen Chen] Herman Rub1’n2

University of Cincinnati Purdue University

Technical Report #82-24

April 1983
Revised

Department of Statistics
Purdue University

]The research of this author was partially supported by the Taft Fellowship
at the University of Cincinnati.

2The research of the second mentioned author was partially supported by
Army Research Office Contract #DAAG 29-80-K-0043.



ABSTRACT: Let X > 0 be i.i.d. random variables with E(Xi) = o, Then for
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suitable functions ¢ we have + 0 a.s. We give some applications of

this result.
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1. The Main Theorem.
Let us prove the following:
Theorem 1: lf_X], Xo» ... are i.i.d., X; 2 0. EXy ==, and if ¢ s a function

such that

(1.1)  There exist constants A and B such that a; >B,1i=1,2,...n,

implies

(1.2)  @(X) » = as X > o,
(1.3) There exist constants C, Xp and o, a < 1. Such that o (AWx)/¢(x) <C N

for A > 1, X > Xg» and ¢ (x) is bounded for x < Xg-

then

Note: (a) Following the same argument of Mulholland [4], Theorem 1, we

have: (1.1) 1is equivalent to

(1.4) there exist constants A and B and a concave function v, such that

P(x) < ¢ (x) <A y(x) forall x> B.



(b) Condition (1.3), according to the terminology of Bingham and
Goldie [3], is:

(1.5) The upper Matuszewska index of ¢ is less than 1.

For properties connected with (1.3), see Drasin and Shea [1] and Bingham
and Goldie [2], [3].
Proof:

Let d be a positive number. Let Pn be the proportion of i's, i <n,

such that Xi > d. For n sufficiently large, Py > 0. Let us assume this is

the case.
Then:
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where K, comes from condition (1.3) since (1.3) implies ¢ is bounded in any finite
interval.

Since E(X]) = o, Ty approaches 0 a.s. as n » » by condition (1.2) and the
strong law of large numbers.

Let j =np, = #'{1;xi >d, i =1,2,..., n}. Then condjtion (1.7) implies

T2 is bounded by A.



Since

(1.7) %
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Apply (1.3) and (1.8)
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Notice that since %— > P(Xi > d) a.s., it follows that if we choose d large
enough then Rn is eventually less than any positive number with probability 1,

g.e.d.

2. Some applications.
If ¢ (x) = x"L(X) where 0 < 1 < 1 and L(X) is a slowly varying function,

. . L{ax) _ ' . o
i.e. Tim X - 1 for all x > 0, then ¢ (X) satisfies (1.2), 1.3) and (1.4).

Xoreor



Theorem 2: If X;, Xy, ... are i.i.d., X; > 0, EX; = =, and ¢ (x) = x" L(x)

for some 0 < 1 < 1 and slowly varying function L then:

(2.1) R = i=1 a.s.

A4
o

‘An easy corollary of Theorem 2 is:

Corollary 3. If Xy Xos ... are i.i.d., X; 20, EXy ==, and 0 < u < 1,

then
Ly
n Lo %4
(2-2) 1;] d.S. > 0
(r 3 X
i=1
Corollary 4: If Y, Y,, are i.i.d., p>1, and EIY]Ip = o, then
n
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Proof: Let ¢ (x) =_x]/p and apply Theorem 2 to the i.i.d. random variables
|Y][p, |Y2|p, cees |Yn|p, ... . We have

)

n
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O

(2.4) L



For the special case p = 2, it is easy to see from Corollary 4 that when

the second moment of the population does not exist, the ratio of the sample

mean to the sample standard deviation approaches 0 almost surely as the sample

size increases.

It is possible to apply the theorem to compare the growth rates of some

familiar statistics.

Proposition 5: Let X1, X2, «e. X 5 ... be 1.i.d. random variabies.

then
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Applying corollary 4, we get (2.5). g.e.d.
Notice that 1 Y XX, is the U - statistic of the kernel @(x],xz) = X1%Xy5
(5) 1<i<jen 'Y
and.(%5 Z_X? is the U - statistic of the kernel %(x) = 5(x,x) = X Following

2

the same type of argument, we have the following theorem.

Theorem 6: If k > 1,
@(x], Xos +oes xk) = XyXoe s Xy

8(X) = 0(XsXs.ursX)s

Un(¢), Un(é) are the U - statistics of the kernel function @ and

~

% respectively.




ITE o (X;) = =, then

U (@)

(2.6) - 255 g,

Corollary 7. LQE_G(X],---,Xk) be a symmetric polynomial in'x1,.,.,xk; with

all coefficients < 0, and

(2.7) Q(X’IZ';"” > if X > e,
(X

Lg;_x1,...,x . be i.i.d. non-negative random variables with

.
E(3(X;)) = . Then
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Another application of Theorem 1 to compare the growth rates of statistics
is:

Theorem 8:  Let X;,X5,...,X 5... be i.i.d. with E|X]|p = » for some p > 1.

Then
n
Z IXi—Ylp
(2.9) 1;1 a.s :> 1
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where X = ﬁ- Z X_l
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{The result (2.9) does not always hold for p = 1; by a different argument

the ratio is asymptotically between 1-¢ and 2 a.s. for all e > 0).



Proof: Since
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the result follows.

Corollary 9: Let X715 Xos vnn Ko - be i.i.d., Sn be the sample standard
oy _ -
deviation. h, = ¢ Sn no, x >0.

Then
(2.12) h B8
if and only if

_2
(2.13) E|X | TN < e

Proof: For E|X;| < =.
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Hence
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Applying Theorem 2 with p = 2
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Then apply the Marcinkiewicz-Zygmund Strong Law of large numbers.

zx? 1/1422

(2.18) A RS0 iff EXY
n

Finally, if we regard Corollary 4 as a strengthened result of the
Cauchy-Schwartz Inequality under stronger conditions, the following theorem
strengthens the familiar arithmetic mean-geometric mean inequality.

Theorem 10: Let X{»X5s...5X ... be i.i.d., X; > 0, then a necessary and
sufficient condition for

1/n
(X:X5.ee.X)
]
ﬁ'.z X1
i=1
is
(2.20) E(X] - log X]) = o,



Proof:

Condition (2.20) is equivalent to

(2.21) EX; = = or E log Xy = .

If EX] = », then

(2.22) (Ko X )V = LO/RA/RA/R0/2 (12 12)1 202
n
B L
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Hence (2.19) holds.

If EX1 <« and E log X] = -, apply the strong law of large numbers to the

logarithm of the numerator, and (2.19) also holds in this case.

1/n

X, &:S:>0 0p (X1X2""’Xn) a.s._ 0;

1
n 1 1 UL XFN

Suppose (2.19) is true, then either

Ihe-13

;
applying the strong law of large numbers, we get EX1 = o or E log X1 = -,
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