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1. Introduction. Although the James-Stein positive part estimator g:
of a multivariate normal mean is inadmissible it seems widely held that

the available improvement is quite small. The same view was expressed by
James and Stein (1960) concerning its precursor £,- Now known as the James-

Stein estimator £, is defined by

£ (X)) = (1 - ﬁ?)x,

where p > 3 is the dimension of the unknown mean vector us X~ 7 (un,I), and

x2= § o

i The positive part estimator is
J=1

£(x) = (1 - ﬂ;—?zhx

and dominates 56 in the sense that its risk function lies strictly below
that of go for all values of u € IRP.

What is the basis for this opinion as it pertains to g:? Surely no
part of it is by direct comparison for there appear to be no admissible
estimators in the literature known to dominate either go or”g:. There is
a powerful technique due to Stein (1973) and developed by Hudson (1978),
Berger (1980), and Hwang (1980) for constructing estimators which improve
upon a given estimator but it has been shown by Moore and Brook (1978) that
it fails for both £, and g: tovproduce a dominant estimator. In their words
"this shows that these estimators are so good that very poWerfu] methods
will be needed to obtain alternatives which dominate them". In his
original paper which proved the inadmissibility of X in p > 3 dimensions
Stein (1956) also contributed to the evidence that £, could not be greatly

improved uniformly in ||u|| large. He proved that if ¢ > (p-2)2 then no

»



spherically symmetric estimator ¢ can be found which satisfies for some AO>0

- , 2
R(z.2) < p y for all A > A , where A= [|u[| . Since
2 2 (p-2)2
R(go A) = p - (p-2) E[]/xp(x)] <p- oz any spherically symmetric

estimator, and consequently any estimator, which dominates £, will have a
risk function which comes close to that of £, at infinitely many u values as
[lul| gets large. Efron and Morris (1973) concluded that g:’was a good
estimator in its own right as one member of a class of good rules which are
minimax and have Bayesian properties. The class of rules to which they refer
is found in section five of their paper. The members of this class of
extended Stein rules have certain desirable properties including a rather
favorable comparison, in terms of Bayes risk against certain normal priors,
with an admissible minimax estimator due to Strawderman (1971).

le sought more direct evidence of the status of g: in relation to
admissible estimators which dominate it. Our results are far from definitive
but we count them as further evidence in favor of the general view that the
positive part estimator can not be greatly improved in terms of its risk
function. We prove that if an estimator ¢ dominates £, then the area
between the graphs of their risk functions plotted as a function of x > 0
does not exceed 2(p-2). This upper bound is simple but crude and numerical
computations yield smaller values, of which a selected few are given beTow.
In the case of g: the area between its risk function and that of any domin-
ating estimator does not exceed 2(p-2 + R(g:,o) - R(go,O)). Again this is
a simple but crude bound and more exact bounds are provided for certain
values of p. For example, the area between the graphs of the risk function
of g: and any estimator which dominates it does not exceed .40 in p = 3

dimensions. In order to place this figure in perspective the area bounded



by the graphs of the risk functions of ao and c: is T.12.

In addition to the global measure of improvement we preseht the
following results concerning local improvement. For any given > 0 the
maximum possible improvement on the risk of go using a bounded risk
admissible spherically symmetric (with respect to the origin) estimator
is no more than 2 units. The improvement by an admissible estimator
which dominates go would presumably be much smaller and is of course the
quantity of interest. However the bound above is the best we are cur-

rently able to provide. Denoting by

(1) - ] @ PP
A

t>0>x>0
=7 2 ’
P- 320 I r(prawg)2P/2H

the density of the non-central chi square random variable with p degrees of
freedom and non-centrality parameter A the maximal possible improvement in

. + . . .
risk over £, at a fixed point A is no more than

9.2 (P-2/p-27)
B, +2 = B()).
9,,0(P-2/p-27)

(R(,0) - R(z_,0))

The global measures also provide some additional information about local
behavior for if ¢ is spherically symmetric and dominates g: then the

Lebesgue measure m(S(&)) of the set

S(e) = 0 R(g,) < (1=e)R(E,0))
satisfies

(1.1)  m(s(e)) < [p-2+R(£],0) - R(z_,0)1/e.

The stronger version of this bound yields for exampnle the fact that in

p = 3 dimensions the measure of the set of A values at which a dominating



estimator has a risk of no more than 90% that of gg is no greater that 2.0.
Of course the calculations have all been made based upon a single p-

dimensional observation. If n independent observations are available then

the maximal improvement at a point over Eon is bounded by 2/n and that

for g:n is bounded by n']B(nA). The measure of the set in (1.1) will also

be reduced by a factor of L all areas by a factor of n~2. The

estimator Eon is defined by
e, () = (1- 22y
. ol 1511
and Eon is its positive part.

2. Preliminaries. Let X],...,Xp be independent normal random variables,
Xi N ?z(ui,l). The class of (randomized) estimators of the vector u is the
collection of all regular conditional Borel probability measures s(-|x) on
RP x RP. Denoting by G the group of orthogonal transformations on sz,

a measure v is termed invariant if it satisfies v(gB) = v(B) for all g€@

and all Borel sets B. An estimator § is spherically symmetric if for each X

§(+1X) is invariant. An estimator £ is spherically symmetric and non-

randomized if and only if there is a measurable function h such that’
2
g(x) = [1-h(][X]]%)]x

The risk function of an arbitrary estimator § is
v 2
R(s,u) = [ [ ||a-u||“s(dalx) Pu(dx).
The risk function of a spherically symmetric estimator depends only on

v
A = |[ul1? and will often be written R(s,u) = R(5,1).

Lemma 2.1  The class of non-randomized spherically symmetric admissible
estimators is a non-empty complete class in the subclass of all spherically

symmetric estimators.



Proof: We apply an elegant and powerful result of Balder (1980). The
reader is referred to sections two and three of that paper. First replace
the action space RP with a compact action space A = Iﬁp, where RP is an
Alexandroff compactification (Bourbaki (1966)). In order to preserve
the notion of invariance we choose RP to be & unit sphere in IRP+].
The homeomorphism from IRP onto ]f!p - {=} is
o(x) = (—2—) ([]x]1? 2x)

4+ x| | ’
at x€ RP. Define a loss function i on AxRP by 2(a,u) = ||¢;;;u||2 if
a#oand 2(a,u) =+ if a = @. The function 2 is Borel measurable and
in Balder's terminology a normal integrand. To each reqular conditional

probability s on IRPxIRP is associated a regular conditional probability §

0 and
(1-8(=]X)) 8(B|x).

on A x RP by setting &(« |x)
(2.1) §(¢B|x)

Given the regular conditional probability § employ (2.1) to define §

for all Borel sets B in IRP and all x such that §(=1x) < 1. If §(=|x) =1
set 6(0|x) = 1. Thus for every § E(G,u) = ﬁ(g,u) where
R(S,u) = [ 2 (a,u) 8(dalx) P (dx).

Conversely given § there is a & satisfying R(8,u) = ﬁ(a,u) if &(8,u) < w®
for all u and E(a,u) g_ﬁ(é,u) otherwise. For each g€ G define a trans-
formation ég on A by §gcp(x) = ¢ (gx) and ;g (2,0) = (2,0). Let é be the'
collection of all such transformations. The measure & is invariant under
G if and only if 5 is invariant under G.

The topological dual of the separable Banach space C(A) of continuous
functions on A is isometrically isomorphic to the set of signed Baire

measures on A and MT to the probability measures. Since the Baire sets



and Borel sets coincide in A, given moEM']F there is an associated Borel
measure v on A such that for all feC(A) < m,f > = [ fdv. Define the

set M; c MT as the image under this isometry of the invariant measures

on A. Define r(x) = M; for all xe RP.

Balder's Theorem 1 and Corollary 2 apparently remain valid without

the assumption that the values of T are extremal in MT. The set M; is

manifestly convex so in order to appeal to these results it bsufﬁ'ces to

*
prove that M; is a closed subset of MT in the weak topology on M]. Since

it is metrizable it suffices to check that if m, converges to m weak*

+
I

associated measures Vs v that v is invariant. It is enough to carry

and if mne M; for all n then me¢ M;, or equivalently in terms of the

this demonstration forward for compact sets. Therefore let K be a compact
set in A. Since \A)(K) = inf{\:(o): 0 > K, Oopen} there is a sequence 0k of
open sets such that \A)(Ok) + \A)(K). The space A is normal so by Urysohn's
Temma there is a sequence of functions {f} < C(A) such that f, s one on

K, zero on OE, and 0 < fk(a) <1 for all a€A. Thus for all k

(2.2) v(K) < [ fdv < v(0,).
The functions %lk = fkd§'1 are also continuous and the inequality (2.2) holds

when K, fk’ and 0k are replaced by Q]K, ¥k’ and éok. For all k and n

(2.3) | f(fk-??k-)d&l < | f(fk-¥k)<d3-d3n)| + | f(fk-$k)d;n| = |<m-m fk;¥k>,
where we have used the fact that [ (fk-%k)d;n vanishes owing to

the invariance of \A)n. Taking the Timit in (2.3) first on n and then on k
and using (2.2) shows that v is invariant and therefore that MJIr is closed.

Let & be a given spherically symmetric estimator and § be its

associate. Balder's corollary 2 yields an invariant admissible 3* such that



~

ﬁ(g*,-) < R(8,+). Using the convexity of the loss function one can now
easily deduce the existence of a non-randomized spherically symmetric
admissible £ which satisfies ;(E,u),g E(a,u) for all u. O

Stein (1956) proved that if a spherically symmetric estimator is
admissible in the class of spherically symmetric estimators then it is
admissible in the full class. Brown (1971) proved that the admissible
estimators are generalized Bayes. Since Strawderman and Cohen (1971)
proved that a generalized Bayes estimator £ is spherically symmetric if and
only if its generalized prior is spherically symmetric we conclude that if
£ s an admissible spherically symmetric estimator then (see equation
(1.2.2) of Brown (1971))

g(x)-x = v log f*(x),

where 1.
f*(x) = [ e_”§1lx'“llzdn(u)
and 1 is a spherically symmetric positfve Borel measure on RP for which

f*(x) <= for all x€ RP.

Define the Borel measure = on IR] by w(a,b] = [ dn(yn) and
a<| [ |2

9y, (t) = é 95,5 ()dr(2).
For the cases of interest the funtion gp TT(t) will be finite for all t > 0

and possess derivatives of all orders which may be passed beneath the integral

(see Spruill (1979)). With Jj p ( ) = g (t) we have the following
lemma.
Lemma 2.2 If g(x) = [1-h( ||xl| )1x is an admissible spherically symmetric

estimator then there is a non-negative Borel measure 5 on [0,~) for which



gp’ﬂ(t) <o for all t > 0 and
g', (t)
- p=2 _,>p’n

Proof: It suffices to prove that

(2.4) v log(f*(x)) = - [E—— —E————— 1x.

Let v be uniformly distributed on the surface of the sphére of radijus r

p= {x: [[x||=r}. One can show (see Gihman and Skorohod

(1974) equation IV.2.8 for example) that the moment generating function of

in p dimensions, S

v is
22
IIWII J

J>O ) jIr(p/2+3)

$.(w) = E[e" “] = r(p/2)],

where T(+) is the gamma function. Thus

2
=X "HUII
fx(x) =e 2 [ ¥ Ve - dn(u)
SUx® L,
_ 2 -2 Xeu
= e Je 27 ds(u) dn(1)
0 S/X
- x 2
=e 2 [y (e ().
o /%
Setting llxl|2= t we have
p/2-1
) = () rlpr2)g, (1)

and (2.4) follows readily. O
Brown shows that the generalized Bayes spherically symmetric estimator £

has bounded risk if and only if there is a constant B satisfying for all t > 0

| =2 24(t) | < B/VE,



where ¢(t) = gé’“(t)/gp’"(t). Using this fact and other properties of ¢
one can show that equation (6) of section 3 of Stein (1973) can be employed

to yield, for any bounded risk spherically symmetric admissible estimator £,

R(E,1) = R(E_,\) = 4E[S6(S)+20(S)+250(5)],
where S is non-central chi-square with p degrees of freedom and non-cen-
trality parameter ) and that the final term may be integrated by parts to
yield

©o

(2.5) R(z) = Rig 248 [ (06(t)g, (D=2t (t)gy | (£))et.

Finally, writing gp(x,t) = [ g_ .(t)dr, it can be shown that if ¢ is an

0 P
admissible estimator which dominates £, then for all x > 0

X

(2:6) [ [R(z, 2)-Re:0)1dn = -4 2 [t6%(£)gy (x,t)-2t0(t)a) (x, ) Jdt.

For details see Spruill (1979).

3. Local bounds. Denote by s the class of admissible bounded risk spheri-

cally symmetric estimators. We shall prove that, given A > 0

inf R(g,x) > R(g _,x)-2.
ced °

One can prove the following lemma (see Spruill (1980).

Lemma 3.1  Suppose that Z].>OajtJ and Zj>9bjtJ converge for all t > 0 and

a.
that for j sufficiently large bj>0' If 1im Ei = v (including y = £«
J

Jjorw

then
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Theorem 3.1. For all A > 0,

inf R(E,A) 2 R(E; ,)\)'2.
Eed ©

Proof: Let g€d. Using (2.5) and the fact that t¢290 J(t) - 2tegy ,(t)

is minimized by the choice

g 5 (t)

(3.1) o(t) = 2y

PsA

we have R(&,1) 3_R(go,x)-4Ip \

2 It
where Ip’A = f t(aﬁjzrfy) gp,x(t)dt.

(o]

Writing gé A(t) = 1/2(gp_2 A(t)-g (t)) and expanding we obtain

Ps)
1= 1-(Bye17a) T L(—y—qg 2%
PsA 4 £ tgp AT -2, (P4t
Now using tgp-z,x(t) = (p-2)9p,l(t)+xgp+2,x(t)
we have (t) (t)
o g _ t g t
I, o= 120 & [ ((RZA TR g (4)gt,
p.A g 2 () P>
psA
One can write
90, (004, (8) 1 (ADT,(VAE) 4 e
7 - 12 = ¢(/t)
9, (t) L 0AT)

where Iv is a modified Bessel function of the first kind and v = p/2-1.
Using the development in series of the product of two Bessel functions due

to Schlafli found in Watson (1962) ((5) of section 5.41) one has



N
(x/2)209) 1 (2 (p49)41)
_ 320 gUT(2v+j+1) T(v+j) T (v+j+2)
(x/2)° ™)1 (2(v4) 1)
31T (2vH§+1) T8 (v+j+1)

@(x)

j>0

The ratio of coefficients is vt which is increasing in j. By a result of

v+j+]

Lehmann (1959) ¢ is increasing in x. A consequence of lemma 3.1 is that

Tim  @(x) = 1. Thus Ip y < 1/2 and the assertion has been verified. O
X > o ’

Actual computations for p = 4,5,6,10, and 20 and » = .1,.2,.5,.7,

1,2,5,10,15,20,50 and 100 show that Ip is very close to .5 in all cases.

A
In every case it is greater than .4994.

If {hk})‘>0 is a family of functions hx: (a,b) » (0,~) satisfying
hk]<X)
e +in x for all 0 < &5 < Ay < = and if y: (a,b) » R satisfies
0
V(x) >0 for x€ (a,x0] and y(x) < 0 for x€ [xo,‘b) then

) j —T—Th*(“) j
(3.2 ph, < vh
a A hO Xo a 0

for all x» > 0 as the reader can verify.

Lemma 3.2 If a_= R(g’,0)-R(¢_,0) then & <0 and for all & > 0

g, ,(p-2vp-T)
(3.3)  R(g1,0) - R(g_,n) < 222 A
9y ,0(P-2/p-T)  °

Proof: Use Stein's (1973) formula (6) of section 3 to get

t
_2)2

p-2 2
(3.4 R(ELR(e,) = | {2+ ¢ -2p]g | (t)at.
h and y(x) = X + x-2p yields (3.3).

Using (3.2) on (3.4) with A = 9p.a

Obviously Ao <0. O

It now follows that
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9, ,(p-2vp-T)
“inf R(g,1) > R(g,2) - (2+ P a).
L Ip,0(p-2/p=T)

4. Global Bounds. We first prove that if £ is an admissible spherically

symmetric estimator which dominates £, then [ [R(go,x)-R(g,A]dA < 2(p-2).

(0]

Suppose that zo(x), z](x), . . . are positive, increasing, differentiable

functions, {b3}3>o > {dj}jzp are sequences of positive constants and the

i>0%j z5(x), ZJ>O 5250005 ZJ>0 325020, ZJ>0 525(x) a1l converge for

x in an interval I contained in the domain of all the zi's. One can prove

sums J .

(see Spruil1(1979) that if bj/dj is monotone non-decreasing in j and

ag-ﬁn zJ(x) is monotone non-decreasing in j for each x € I then the function
YioqbsZ:(x)

(4.1) f(x) = _JZQAlAl_
zJ>O J J(x)

is monotone non-decreasing in x. Let gp(t) = 1lim g_(x,t).
X > o

Lemma 4.1 If & is a spherically symmetric estimator satisfying

R(g,1) §_R(go,x) for all A > 0 then

® ® g'(t) 2
(4.2) [ [R(£ 1) - R(E,2)1dAr < 4 g t(gﬁ(fy) g, (t)dt

0
Proof: According to (2.6) and (3.1) for all x > 0

X = g (x:t) ,
(4.3) g [R(a?,x)-R(a,x)]dx < 4 g t(ggrgjfy—) a,(xt)dt
For t fixed
) .(x)<-‘?-)J ]
tg, o (x,t)  £5>0 "§NET §1 T(p/2+3-T)

g (x,t)

]
P Liso ny(X)(z o) 3! T/
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X . b.
where n.(x) = [ Me™M2 gy, Identifying z.(x) = n.(x), al-= P4 5-1in(ad)
J 0 , J J j 2
tg _,(x,t) g’ (x,t)
. , -2 . . . .
it follows that ~§§(;:Ey—— is non-decreasing in x. Thus §§T§:f7 is non-

decreasing in x for t fixed. Let Ix(t) be the indicator function of the
set {t: g&(x,t)>0}. We have
9'(Xat) 2

I (t) (EE(;:fy) gp(x,t)

P

non-decreasing in x for t fixed. The monotone convergence theorem now
yields the desired result upon taking the 1imit as x -~ » on both sides
of (4.3). O

Theorem 4.1 If g is a spherically symmetric estimator which satisfies
R(g,1) < R(g_,A) for all A > O then / [R(&O,)\)-R(g,)\)]d)\<2(p-2).

0
Proof: We have

£y
9,(t) = (3) e zjio(f) r(p/2+3)

t/2
and g ,(t) = (5 / ZJ>~](§0 r(p/2+3)
© g -g ® -
-2 D B p/2-2 e 2 1
! g 9t J ) ez g, o
| w (P/2-2,-t/2 i -1

4 v(p/2 _
< —?Tégﬁ:%j' = 2(p-2).

The assertion now follows directly from (4.2). O

Corollary. If g is a spherically symmetric estimator which satisfies
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R(g,1) j_R(g;,A) for all A > 0 then

z +
(4.5) [ [R(g_.2)-R(g,2)]dA < 2(p-2+a ).
0
Proof: We also have R(&,2) j.R(EO,A) and expressing the integrand on

the left hand side of (4.5) as the sum of R(go,k) - R(g,r) and

R(g:,x) - R(go,x) it suffices to prove

< +
(4.6) j [R(go,x) - R(go,x)]dx < 28,
0 00
Using (3.3) and | gp,x(to) dx > ngJJ (to) where t, = p-2/p-1 verifies

(4.6). O

Numerical evaluation of (4.4) provides the entries in the first row

of table 1 which are the bounds on [ [R(go,x) - R(g,x)]dx whenever
0

R(g,)) §_R(50,A) for all A > 0. The areas [ [R(EZ,A)-R(EO,A)JdA were

numerically evaluated utilizing (3.4) with gp N replaced by gDand appear

in the second row of the table. The final row is the difference and

is an upper bound on | [R(g:,x)-R(g,A)]dA for any spherically symmetric
0
estimator & which satisfies R(g,1) < R(g:,x) for all x> 0.

Acknowledgement: I thank the referees whose comments contributed to
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