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1. Introduction. The study of approximations to distributions has been

an important part of statistical investigations since‘the early part of this
century. Charlier, Chebyshev, and Edgeworth were notable contributors among
others. Though the interest initially was the approximation to empirical
distributions by theoretical functions, the focus quickly shifted to approximate
evaluation of distribution functions or quantiles of complicated distributions.
Such approximations are very useful in statistical inference, especially
in the investigation of robustness of standard tests of hypotheses and of
estimators,

Consider a sequence of statistics, {Ty}s N> 1, where N usually denotes
the sample size. The distribution function (d.f.) FN of TN is said to possess

an asymptotic expansion valid to (r+1) terms if functions AO""’Ar can be

found such that

(1.1) [Fy(x) = Ag(x) - = o(N"/?).

The expansion is said to be uniformly valid to (r+1) terms if

(1.2) sup‘FN(x) - Ag(x) - z ’ - o(N172).
X

It is to be noted that, in defining the above concepts, Wallace (1958)

P+1)/2).

requires the remainder to be O(N—( Our definition is in accord with
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NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.



Erdelyi (1956) and is used by Bickel (1974) and many other authors. An
expansion which is valid to just one term gives an ordinary limit theorem.
The higher order terms are of practical interest. The basic approximation
A0 can often be greatly improved by taking one or two additional terms of
the expansion. Further, these expansions are useful and necessary to
discriminate procedures equivalent to first order. This point has been clearly
brought out by Hodges and Lehmann (1970).

Expansions of the type (1.1) are, in general, known as Edgeworth

expansions. The related expansions of F&] are the Cornish-Fisher expansions.

Of course, there are some other expansions of interest such as the expansions
for density functions and frequency functions of Tattice random variables. In
some cases, better approximations can be obtained based on saddle point method;
however, this involves a deep knowledge of the characteristic function of FN
which may not be usually available. Our interest here is mainly confined to
Edgeworth and Cornish-Fisher expansions in which AO(x) = o(x), the standard
normal distribution function (as, in fact, the case was, when they were first
introduced). It is perhaps appropriate at this point to make a comment about
the Edgeworth series and the related Charlier's A-series. Charlier's paper
was published in 1905 and Edgeworth's in 1907. However, Gnedenko and
Kolmogorov (1968, Chapter 8) point out that both these types of expansions
appear already in the work of Chebyshev. For further historical information
about these expansions, we refer to Cramer (1972) and Sirndal (1971).

Another problem that has always been of interest is to obtain suitable
bounds for sup]FN(x) - Ao(x)| or in other words, to determine the rate of

X
convergence to AO' These bounds are called Berry-Esseen bounds. For basic

contributions to this problem, one should refer to Berry (1941), Esseen

(1942, 1945), and Bergstrom (1944, 1945, 1949). In the course of this



paper, we will refer to some recent results regarding these bounds.
Significant contributions to the theory of asymptotic expansions were

made by Rao (1960) who obtained Edgeworth expansions and Berry-Esseen bounds

for sums of 1ndepéndent random vectors. These and other related déve]opments

in thebfield including the results of B. von Bahr, R. N. Bhattacharya and

A. Bikjalis are discussed in Bhattacharya and Rao {1976).
For excellent accounts of the theory of Edgeworth expansions for sums of
independent random variables, one should also refer to Cramér

(1962), Gnedenko and Kolmogorov (1968), Feller (1971) and Petrov (1975).

There are also three fine expository papers by Wallace (1958), Bickel
(1974), and Pfanzagl (1980). Wallace has given a nice summary of the state
of the art regarding asymptotic approximations to distributions. He has
also discussed the uses of these approximations in problems such as the
Behrens-Fisher problem and in the investigation of robustness of standard
tests of hypotheses. Bickel (1974) surveys more recent work on Edgeworth
expansions for M-estimates, rank tests and some other statistics arising
in nonparametric models. Pfanzagl (1980), while developing a general para-
metric statistical theory based on asymptotic methods, has discussed the
available literature on stochastic and Edgeworth eXpansions. In particular,
he has discussed the numerical accuracy of results based on Edgeworth

expansions.

In reviewing the development of Edgeworth expansions in statistics; we
do not attempt to be exhaustive - neither in coverage nor in details. We
restrict our attention to some of the recent developments. These relate to

transformations of Edgeworth series (Section 2), Cornish-Fisher expansions
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(Section 3), Berry-ﬁsseen bounds and Edgeworth expansions for test-statistics
such as linear rank statistics, U-statistics; and linear combinations of
order statistics (Section 4), expansions for minimum contrast estimators and
Fisher-consistent estimators (Section 5), Edgeworth and Cornish-Fisher
expansions in selection and ranking problems (Section 6), and asymptotic

expansions for statistics with nonnormal Timiting distributions (Section 7).

2. Edgeworth Series for Sums and Tranformations of Series. Let

{Xn}, n>1, be a sequence of independent and identically distributed (i.i.d.)
random variables and let Fn denote the d.f. of the standardized sum

n
Y = iZ] (Xi-u)/o/ﬁ} where y = E(X]) and 02 = V(X]). Now, letting the
cumulants K, = crkr, r > 3, the first few terms of the Edgeworth expansion

are given by

F (x) = o(x) - A3

n 24 72

where Q(r)(x) denotes the rth derivative of o(x) with respect to (w.r.t.)

X. Cramer (1928) proved that the series is valid uniformly in x provided
that one more cumulant exists than used in any partial sum and the character-
istic function y(t) of X] satisfies the condition

(2.1) lim sup|y(t)| < 1.
It » =

This condition (commonly now called the Cramér's condition) is satisfied if
the distribution of X] has an absolutely continuous part. For discrete
distributions, the condition is not satisfied and in this case the result

is not generally valid; however, a different expansion is available. Takeuchi
and Akahira (1977) have given Edgeworth expansion of Fn when moments do not
necessarily exist but when the density can be approximated by rational

functions.



The theory of Edgeworth expansions for sums of independent random
variables is fairly well-developed and for excellent accounts one can
refer to any of the books mentioned in this regard in the previous section.

Suppose we have a sequence of distributions of random vectors approximated
to a certain order of accuracy by an Edgeworth series. Bhattacharya and Ghosh
(1978) proved that such an expansion may be transformed by a sequence of smooth
functions of the corresponding random vectors to yield a valid Edgeworth
expansion of the resulting sequence of distributions. This latter expansion
may be obtained by the so-called delta method in which the moments of a function
of a random vector are formally calculated from a Taylor series expansion of
the function. The conditions needed to be satisfied are essentially concerned
with the derivatives of the functions. Skovgaard (1981a) gives a generalization
of the Bhattacharya-Ghosh theorem. These results provide the mechanism for
Edgeworth expansipns of distributions of statistics in non-standard cases.
Skovgaard (1981b) has used this approach to obtain Edgeworth expansidn of the

distribution of maximum 1ikelihood estimators in the general (non i.i.d.) case.

3. Cornish-Fisher Expansions. Typically, in many statistical applications,

we require quantiles of a distribution. Starting with an Edgeworth expansion

of a distribution function Fn, Cornish and Fisher (1937) obtained an asymptotic
expansion of a quantile x of Fn in terms of the corresponding normal quantile z
by means of formal substitutions, Taylor expansion and identification of powers

of n. The expansion is of the form

(3.1) X =z+ + + +

where the Pi(z) are polynomials in z. We refer to Pi(z) as the ith adjustment.
Cornish and Fisher (1937) have tabled, for nine probability Tevels,
all the polynomials needed to obtain all terms through the fourth adjustment

based on the sixth cumulant. Fisher and Cornish (1960) extended the formulae and



tables to the sixth adjustment based on the eighth cumulant for ten (the earlier
nine and one more) probability levels. These are further extended to

order n”% by Draper and Tierney (1973) and to order n~6

by Hi11 (1964).
Now, we can also expand z in terms of x in a form simitar to (3.1). This

is known as the normalizing expansion. In fact, this is obtained as an

intermediate step in getting (3.1). It is also useful in itself as it provides

an asymptotic transformation of a random variable X with distribution Fn

into a standard normal random variable. Both expansions are referred to

as Cornish-Fisher expansions. For an absolutely continuous distribution

both expansions are valid for every probability level whenever the initial
Edgeworth series is valid. This can be proved by adapting the proof of Wasow
(1956) for the invertability of a special class of distribution expansions,
Incidentally, Hill and Davis (1968) obtained formal expansions which generalize
Cornish-Fisher relations to an arbitrary analytic o.

The Eageworth and Cornish-Fisher expansions require the knowledge of
the cumulants of the distributions involved. Gray, Coberly and Lewis (1975)
showed how the general Edgeworth expansion can be suitably utilized to
eliminate the requirement of knowing the cumulants without affecting the order
of the error of approximation. McCune and Gray (1975) used this result along
with the expansions of Hill and Davis (1968) to obtain Cornish-Fisher type
expansions with unknown cumulants. However, these new expansions lack simplicity
for applications. Using a technique analogous to that used by Gray, Coberly
and Lewis (1975), a simpler expression was obtained by McCune (1977).

Finally, it should be noted that the Edgeworth and Cornish-Fisher expansions
are known to have some deficiencies which show up in tails of the distribution.
The approximations for Fn(x) are not probability distributions. Further, the
monotonicity property as well as the zero-one range property are violated in
parts of either or both tails. Correspondingly, the approximations for

quantiles are not always monotonic in the probability Tevel.



4. Berry-Esseen Bounds and Edgeworth Expansions for Certain Test Statistics.

As we have already mentioned, a reasonably complete theory of Berry-Esseen bounds
and Edgeworth expansions is available for sums of independent random variables

and vectors. In recent years, Berry-Esseen bounds and asymptotic expansions

have been obtained for several statistics occurring in statistical estimation
and tests which are of a different structure. In this section, we discuss these
results for Tinear combination of order statistics, spacings, simple linear

rank statistics and U-statistics.

In obtaining these results for statistics TN in these situations, two

methods have been used. One method is to obtain a stochastic expansion for
TN; in other words, TN is approximated sufficiently accurately by a statistic
Tﬁ which has a simpler structure. The desired results are then proved for
Tﬁlinstead of TN' In many cases that were first considered, T& is a smooth
function of a sum of independent random vectors and the problem is solved
by the use of the classical theory. In some other cases, Tﬁ is of a
different type. An important example of such T&'is a U-statistic. This

situation arises, for example, when we are dealing with one-sample linear

rank statistic and linear combinations of order statistics.

Another technique used by Albers, Bickel and van Zwet (1976) and Bickel
and van Zwet (1978) to obtain Edgeworth expansions for the one- and two-sample
problems is based on conditioning. With the right conditioning, it turns out
easier to obtain an Edgeworth expansion for the conditional d.f. of the Tinear
rank statistic TN' One can then obtain an expansion for the unconditional
d.f. of TN by taking the expected value.

Albers, Bickel and van Zwet (1976) gave a rigorous proof of Edgeworth
expansion for the d.f. of the general linear rank statistic for the one-sample
problem under the null hypothesis as well as general alternatives. They have

also shown that the expansion can be greatly simplified by considering contiguous



lTocation alternatives and smooth scores. Numerical aspects of these
expansions are considered in Albers (1974). Albers (1979) specialized
the general results to certain contiguous nonparametric alternatives and
smooth scores. Bickel and van Zwet (1978) provided the Edgeworth expansion
for the general two-sample Tinear rank statistic under the null hypothesis
as well as contiguous location alternatives. The expansion under the null
hypothesis has been obtained also by Robinson (1978). Rogers (1971) obtained an
expansion under the null hypothesis in the special case of the two-sample
w11coxon_statistic but his proof appears to be in error. A Berry-Esseen
bound in this special case was obtained by Stoker (1954),

Suppose that X1,X2,...,XN are independent random variables with density
functions f],fz,...,fN, respectively. Let Rj be the rank of Xj when the Xi
are arranged in increasing order. For sequences of real numbers CyseeesC

N
and Apse..sdys We define a simple linear rank statistic by

Here the a; are the scores. By taking Cp =...= ¢ = 0,

= .;= cy = 1 for T <m < N, we get the two-sample rank statistic. The
behavior of the characteristic function of a suitably standardized TN for

the large values of the argument has been investigated by van Zwet (1980).
Using this result, an Edgewérth expahsion with femainder o(N;]) was obtained
for simple Tinear rank statistics under the null hypothesis by Does (1981)

who considered scores 3 generated by a function J(t), 0 < t < 1, using

either ay = J(j/(N+1)) or a; = E(J(Uj’N)), j=1,...,N, where Uj,N denotes

the jth order statistic in a random sample of size N from the uniform
distribution on (0,1). His theorem holds for a wide class of functions J which

includes the normal quantile function, thus allowing unbounded scores.
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Berry-Esseen bounds of order O(N'2) for simple linear rank statistics
under the null-hypothesis have been obtained by von Bahr (1976) and Ho and

Chen (1978) as a by-product of their results for statistics of the form

N
) X(j,Rj) where X = {X(i,j): 1 < i,j < N} is a square matrix of random
j=1

variables with independent row vectors. Hu¥kova (1977) has obtained the

same bound under the null-hypothesis as well as under contiguous alternatives.
A11 these results were obtained for bounded scores. Recently, Does (1982b)

has obtained the same bound under the null-hypothesis for a wide class of
scores generating functions as in the case of his Edgeworth expansion mentioned
above. For these results of Does as well as asymptotic expansions under

contiguous alternatives, reference can also be made to Does (1982a).

Suppose that X1 N < X5 N <eea2 Ky oy e order statistics corresponding
to X]’XZ""’XN which are i.i.d. with distribution F. Let

-1 N .
Ty =N jZ] Cj,NXj,N’ where the cy y are known real numbers (weights).
Statistics of the form TN are linear combinations of order statistics. In
this case, Berry-Esseen bounds are given by Bjerve (1977) and Helmers

(1977, 198la,b). Edgeworth expansion for TN with smooth weight functions is
obtained by Helmers (1980) under the assumption that the underlying distribu-

tion function possesses a finite fourth moment and a certain local smoothness
property. His proof uses Theorem 4.1 of van Zwet (1977) which provides a
bound for the characteristic function of TN' For the special case in which
the underlying distribution is uniform, the above results of Bjerve, Helmers -
and van Zwet are substantially weaker than the result of van Zwet (1979).

The results of Helmers (1980) for Tinear combination of order statistics
do not include trimmed means. However, Bjerve (1974) has shown that trimmed
means admit asymptotic expansion. His proof employs a special property of
trimmed means and thus does not apply to more general trimmed Tinear combina-

tions. Expansion in the general case has been obtained by Helmers (1979).
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These and related results are -summarized in Helmers (1981b). A brief but
clear account of the results of Bjerve (1977) and Helmers (1977) is given
by van Zwet (1977).

Suppose that U],Uz,... is a sequence of i.i.d. random variables which
are uniformly distributed on (0,1). For N =1,2,..., let

U U be the order statistics. Let U =0 and U 1.

1,8 S Up oy <o Uy 0,N NHT,N
The spacings are defined by DiN = Ui,N - Ui-],N’ i=T1,...,N1. Let
Iy (0,») = R, N > 1, be a sequence of measurable functions and define

N+1 .
Ty= 1 gN((N+])D1N)’ N> 1. Does and Helmers (1980) have obtained an
i=1

Edgeworth expansion for TN’ They have also established a Berry-Esseen
bound of order O(N'%) for normalized TN but under conditions that are hard
to check. The same bound is obtained by Does and Klaassen (1981) under
conditions which are easier to check.

| Another important class of statistics are known as U-statistics. 1In

finding a TN which stochastically approximates TN at hand, a possible situation

is that Ty is a U-statistic of order k (1 < k < N). In other words,
TV= 3 ... ] h(X; 5oeesXs )
A e PRl Ty

where X]""’XN are i.i.d. random variables. One-sample linear rank statistics
and linear combinations of order statistics are known examples of such TN'
Berry-Esseen type results establishing convergence to normality of the d.f.

of a standardized TN at the rate of N'% have been given by Bickel (1974),

Chan and Wierman (1977) and Callaert and Janssen (1978). These authors

discuss U-statistics bf order 2; however, as pointed out by these authors,

all their results hold for U-statistics of any fixed order and also hold in

the multi-sample case [see Janssen (1978)].

To describe the results for U-statistics of order 2, define
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where the kernel h is a symmetric function of two variables with

Eh(X],Xz) = 0. Let oﬁ denote the variance of UN' Asymptotic normality of

~1,,. 2(

ay Uy was proved by Hoeffding (1948) under the sole condition that Eh“(X,,X,)

1°72
exists. Grams and Serfling (1973) showed that sup[P[o&]UN < x] - a(x)] =
X

o r/(2r+1)) when ERZ" < =; this gives O(NE *€)

when h has finite moments

of all orders. An order bound of exactly O(N'%) was obtained by Bickel (1974)
assuming that the kernel h is bounded. The same order bound was obtained by
Chan and Wierman (1977) assuming only the existence of the fourth moment of h
and by Callaert and Janssen (1978) under the assumption that the third absolute
moment of the kernel exists. Recently, Helmers and van Zwet (1982) relaxed this
moment condition even further by requiring that E|h(X1,X2)|p < = for some

2(x;) > 0, and E[g(X,)]* < =, where g(x) = E(h(X;,X)|%, = x). A

p>5/3, Eg
Berry-Esseen theorem for U-statistics when the sample size is random is given
by Ahmad (1980) when the random size is independent of the observations. A

special case of Ahmad's result is a Berry-Esseen theorem

for random sums which is also discussed by Landers and Rogge (1976); however,
the latter authors do not assume the independence between the sample observations

and the sample size but assume more stringent conditions on {Nn}, the sequence of

positive ihtegerQQalued random variables whose values are the sample sizes. The
latest of these results is that of Callaert and Aerts (1982). Their thebrem
holds for U-statistics when the sample size is random and includes the earlier
results of Landers and Rogge (1976), Ahmad (1980), and Helmers and van Zwet
(1982). When oﬁ is unknown, a Berry-Esseen bound of order O(N'%) is given by
Callaert and Veraverbeke (1982) for the studentized U-statistic N%SQ]UN where

1
SN/N2 is the jackknife estimator [see, for example, Miller (1968)] of oﬁ. An
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Edgeworth -expansion for the d.f. of 0&1UN with remainder d(N']) has been obtained

by Callaert, Janssen and Veraverbeke (1979) assuming the existence of the fifth
absolute moment of h and some regularity conditions on the kernel. The same
result is established by these authors in another paper (1980) under a set of

less restrictive but less tractable set of conditions.

Recently, Efron (1979) gave a "bootstrap" method for setting confidence
intervals and estimating significance Tevels. The bootstrap procedure is a
resampling procedure to approximate the distribution of a function of the obser-
vations and the underlying distribution. The approximation is called the boot-
strap distribution of the quantity. Bickel and Freedman (1981) have obtained
some asymptotic results regarding bootstrap pivotal quantities. Singh (1981)
has obtained Edgeworth expansions with remainder o(n']/z) for the bootstrap
approximation of the standardized sample mean in the lattice as well as non-
lattice case, under the assumption that the absolute third moment exists. He
has also obtained the convergence rates of the bootstrap approximation of the

distributions of sample .quantiles, .

Finally, for the class of Neyman's C(a) tests, Chibisov (1972a) obtained
1
the term of order N % in the normal approximation for the distributions of the
test statistics. In another paper, he (1972b) derived asymptotic expansions

for the distributions of some test criteria for testing compound hypotheses.
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5. Asymptotic Expansions for Estimators. In this section, we discuss

asymptotic expansions for a number of statistics occurring in parametric
models such as maximum 1ikelihood (m.£.) estimators and, more generally,
minimum contrast (m.c.) estimators. Of course, there could be tests based

on these estimators and thus could have been included in the previous section.

But they are considered here to emphasize their roles in estimation.

Most of these results are reviewed by Pfanzagl (1980).

Linnik and Mitrofanova (1965) obtained asymptotic expansions for the
distributions of m.£. estimators. Mitrofanova (1967) extended the result
for vector parameters. As pointed out by Pfanzagl (1973a, p. 998) and
Bickel (1974, p. 11), her proof contains serious gaps. Chibisov (1973 a,b)
extended the work of Linnik and Mitrofanova (1965) to a wider class of m.c.
estimators for a single parameter under progressiye]y much weaker conditions.

Pfanzagl (1973a) also deals with Edgeworth expansions for m.c. estimators for

a single parameter. Earlier, Michel and Pfanzagl (1971) and Pfanzagl (1971)
established the order of the error of the normal approximation for m.c.
estimators. In another paper, Pfanzagl (1973b) showed that, for m.c. estimators
of vector parameters, the approximation by normal distribution holds with
an error of order O(N_%) uniformly over the class of all convex sets. For a
discussion of the results of Linnik and Mitrofanova (1965), Pfanzagl (1971,
1973a), and Michel and Pfénzag] (1971), reference should be made to Bickel
(1974).

Skovgaard (1981b) has discussed the method of computing the Edgeworth
expansions of the distributions of m.£. estimators in the non i.i.d. case.
He has also given the first four terms of the corresponding stochastic expan-
sion,

Edgeworth expansions of distributions of Fisher-consistent estimators
for curved exponential family of parent distributions (assumed to be dominated

by the Lebesgue measure) are obtained by Ghosh, Sinha and Subrahmanyam (1979).
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This result leads to second-order efficiency of the m.£. estimator w.r.t. any
bounded, bowl shaped Toss function. The formal Edgeworth expansions here are
not valid without the assumption of the dominating Lebesgue measure.

Another type of results, though not concerned directly with the
distributions of estimators, is the rate of convergence to normality of
stopping times associated with sequential estimation. One such result is

given by Ghosh (1980).

6. Edgeworth and Cornish-Fisher Expansions in Selection and Ranking

Procedures. We will restrict our attention here to the so-called subset
selection procedures. For an overall view of the theory, we refer to
Gupta and Panchapakesan (1979) and Gupta and Huang (1981). A typical problem

associated with many classical subset selection rules is the evaluation of

the constant d, d > 0, such that P[ max (X;-Xy) < d] = P* where P* is
1<i<k

specified and XO’ X],...,Xk are i.i.d. random variables with the real
line as the support, or the evaluation of the constant c, ¢ > 1, such that

P[ max (Xi/XO) < c¢] = P* where X,, X

1""’Xk are i.i.d. random variables
1<i<k

0,
with the positive real axis as the support. We will now discuss one such
problem.

Let XO’ X],...,Xp be i.i.d. normal random variables with mean u and

variance 02. Let 55 be an estimator of 02 which is independent of the Xi
such that vs\z)/o2 has a chi-square distribution with v degrees of freedom.
Define Y = (X[p]-XO)/sV, where X[p] = max(Xl,...,Xp). The statistic Y
arises in the problem of selecting a subset of normal populations (with a
common unknown variance 02) which contains the "best" popu]ation with
probability at 1least P*. This problem was studied by Gupta (1956). For
implementation of his procedure, we need to evaluate appropriate percentage

points of the distribution of Y. This statistic also appears in a few
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other selection problems [see Gupta and Sobel (1957)]. The probability
PLY < y] can be evaluated by using an Edgeworth expansion of standardized
Y. For evaluating the percentage points of Y, we can use Cornish-Fisher
expansions. We will jllustrate this method of evaluation and discuss some

numerical results.

For r < v, we can write u;, the rth moment of Y in the form

[X]
2 (r.y (20)!

.) ——=—"— a s s
" je0 27 pd5 Tpr-2j

S

Xp 9-X
(6.1)  w= e[ Ry - A

where [r/2] is the integral part of r/2, 4§ is the ith moment of the

2

largest of p independent standard normal random variables, and

(6.2) (Cysy . 6
6.2 A, = E[(PF1= — 2
RN AR

provided that B > -v.

Let 02 be the variance of Y. Let y(P*) and ys(P*) denote the 100 P*
percentage points of the distributions of Y and YS = (Y'“i)/d’ respectively.
Let o, = Kr/Or, where K is rth cumulant of Y. The Cornish-Fisher expansion

for yS(P*) is given by

2 3
(6.3) ys(P*) = z{(P*) + [a31c] + [a4Id + a3IC2] + [aSIe + a3a4ICd + a3IC3] +

2 2
Logle + aguglog + 0‘zﬂdz* agagl 5

2 2
[a-I  + a.a.1 + a,0:] + aqal + o0, 1 +
7°g 36 cf 45 de 375 2e 374 2

C cd

3 5
agngl 3+ a3l g1+ [agly + agayl o+
cd c

I + 2I + Za I + a a0p] +
%0% df T % o2 %3%g 25 3%4%5" cde

+ oyl +...,

3" 5
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where z(P*) is the standard normal deviate corresponding to P* and

I, 1

c are tabulated in Table II of Fisher and Cornish (1960) for

I osee
o

p* = .5, .75, .90, .975, .99, .995, .9975, .999 and .9995. Now, y(P*) =

d!

“i + oys(P*). For calculating u; using (6.1), the values of ap ; are

available in Ruben (1954) for i = 1(1)10 and p = 1(1)50.

Gupta and Sobel (1957) tabulated the y(P*)-values correct two decimal
places using four adjustment terms. Their table ranges over the following
values: P* = 75, .90, .95, .975, .99; p = 1,4,9(1)15(2)19(5)39,49;

v = 15(1)20,24,30,36,40,48,60,80,100,120,360,~. The y(P*)-values can also

be obtaineq from the tables of Krishnaiah and Armitage (1966) for P* = .95,
.99; p = 1(1)10 and v = 5(1)35. These latter tables were computed using
Gauss-Hermite and Gauss-Laguerre quadrature formulas. The two tables agree
well in all the common cases.

~ Another method of evaluating the percentage points of Y is based on
the result of Hartley (1943-46), who obtained the probability P[Y < y] as
a solution of certain difference-differential equation. This result can

be stated in the form
(6.4) PLY < y] = I4(y) + j%—[yz{lz(y)-lo(y)} - yI;(¥)]

1 1 4

- %—y3{13(y)-3I1(y)}

where
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It should be noted that IO(VQH) is the probability that the maximum of p
equally correlated standard normal variates with the correlation equal to
0.5 does not exceed H. This probability for several values of H and the
values of H corresponding to several probability levels are tabulated by
Gupta, Nagel and Panchapakesan (1973).

In Table 1 below we give the values of y(P*) obtained in different
ways for P* = .90, .95; p =1, 4, 9 and v = 17, 18, 20, 60. For each
combination of the values of P*, p and Q, the first three entries.
correspond to the values obtained by taking four, six and eight adjustment
terms, respectively, 1h the Cornish-Fisher expansion. The Tast entry is
obtained by evaluating P[Y < y] in (6.4) using Gauss-Hermite quadrature
formula and bisection method. A1l these computations except those based
on Cornish-Fisher expansion with four adjustment terms are new with this
paper. TABLE 1

VALUES OF y(P*) OBTAINED BY CORNISH-FISHER EXPANSION WITH 4, 6,
AND 8 ADJUSTMENT TERMS (LINES 1, 2 AND 3) AND HARTLEY'S EXPANSION
WITH TWO ADJUSTMENT TERMS (LINE 4)

px = .90
T 1 4 9
vV
1.89 2.75 3.18
17 1.88824 2.75879 3.19306
1.86438 2. 53829 2.62070
1.88570 274894 3.18010
1.88 2.74 3.17
1.88323 2.74729 3.17778
18 1.86846 2.59753 2.78203
1.88147 2.74023 3.16854
1.87 2.72 3.15
1.87525 272949 3.15419
20 1.86881 2.65339 2.95164
1.87433 2.72557 3.14908
1.83 2.64 3.04
60 1.83257 264050 3.03672
1.83256 2.64018 3.03602
1.83257 2.64048 . 3.03670
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TABLE 1 (cont.)

Px = .95
N 1 4 9
v
2.46 3.29 3.72
- 2.47450 3.32350 3.76197
2.41414 3.30553 3.90291
2.46047 3.29995 3.73373
2.45 3.28 3.70
18 2.46248 3.30146 3.73310
2.42389 3.30025 3.84884
2.45258 3.28516 3.71421
2.44 3.25 3.67
20 2.44463 326891 3.69093
2.42682 3.27674 3.76500
2.43929 3.26042 3.68176
2.36 3.12 3.50
50 2.36268 3.12065 3.50159
2.36264 3.12092 3.50225
2.36267 3.12065 3.50162

We can see from Table 1 some general indications about the effect of
increasing the number of adjustment terms. It appears that

(1) the approximations based on four adjustment terms are generally
quite good, certainly to two decimal places;

(2) adding additional terms may not produce desirable results for small
values of v, large values of p, and P* values closer to 1;

(3) as v gets larger than 20, the terms in the expansion stabilize
faster and more so for small p; and

(4) the values obtained by using Hartley's result with two adjustment

terms seem to be adequate.
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7. Concluding Remarks. In the previous sections, we discussed asymptotic

expansions for the distribution functions of random variables which have a limit-
ing normal distribution. However, there are test statistics of practical im-
portance which have nonnormal limiting distributions, for example, the statis-
tics that arise in likelihood ratio, goodness of fit, Kolmogorov-Smirnov,
Cramér-von Mises and Pearson chi-square tests. We will briefly refer to ex-
pansions in some of these cases.

Let X have a continuous d.f. F(x) and let Fn(x) denote the empirical dis-
tribution corresponding to n independent observations on X. Define D; =

sup vn (Fn(x)-F(x)) and D = sup /n | Fn(x)-F(x)]. Smirnov (1944) studied

=00 X <™ -0 X <00

the distribution of D: and showed that, for 0 < x < 0(n1/6),

2
(4.1) of(x) = PIDTex] = 1 - ™ [1+ 23+ o(hy.

3vn n
This result was improved by Li-Tsian Chan (1955) who added two more terms for

the same range of x; he showed that

2 2 2
+ -2X 2X 2X 2X
(4.2) o (x)=1-¢e [1+ + (1- )+
n 31/YT 3n 3
2 4
4x 1 19x 2X \q -2
-5 (7 - + =31+ 0(n 7).
9n3/2 5 15 3

These results are discussed in Gnedenko, Koroluk and Skorokhod (1961). Later,
Lauwerier (1963) gave the following expansion for @Z(x):
(4.3) B0 = 1 - et e T g /2

. ne VZmn j=0
where the symbolic expression fj(H) stands for a polynomial fj(t) in which the
powers t™ are replaced by the Hermite polynomials Hm(2x). The polynomials fj
are determined by certain generating series. Li-Tsian.Chan (1956) obtained
2).

also an expansion for the d.f. of Dn with a remainder Q(n"~ Another
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reference in this connection is Borovkov (1970), who treated these as special
cases of more general problems of first passage times of random walks.

For the Tikelihood ratio criterion, Hayakawa (1977) gave a formal expan-
sion. This was later justified by the results of Chandra and Ghosh (1980),
who gave valid expansions for the 1ikelihood ratio statistic as well as Wald's
and Rao's statistics under contiguous alternatives. The general results of
Chandra and Ghosh are obtained under a set of conditions in an earlier paper
of theirs (1979) besides Cramér's condition and smoothness conditions on

moments.

Robinson (1980) has obtained an asymptotic expansion for permutation tests
with several samples. Let Vn denote the standardized sum of squares of the
means of r+1 random samples of sizes 5035120+ Sy (n = Sg te..t sr) taken
without replacement from n numbers. The asymptotic expansion for the d.f. of
Vn has the d.f. of a chi-square random variable with r degrees of freedom

as the first term and has an approximation error which is generally of smaller

order than n'].

An excellent exposition of Edgeworth and saddle-point approximations for
the densities of sums of independent random vectors has been given by Barndorff-
Nielson and Cox (1979). Besides an earlier paper by Daniels (1954), some
recent papers dealing with saddle-point approximations are Phillips (1978)
and Daniels (1980).
Finally, it is important to remind ourselves that there is no usefyl
numerical bound for the error term. Any general error bound which might
become available is expected to be a gross overestimate. The only way to
assess the degree of numerical accuracy is to study the actual errors in

particular examples.
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