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Abstract

Arguments are given to justify three aspects of a classical
optimal stopping problem presented somewhat informally by Gilbert
and Mosteller in 1966: Why the optimal stopping rule must be of
the type they considered; why the optimal probability of best
choice decreases with increasing sample size; and how the Timit-
ing optimal best choice probability can be expressed both analyt-

ically and probabilistically.
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1. PROBLEM AND SOLUTION

This is a footnote to a classic problem which was elegantly
~presented in (Gilbert and_Mosteller 1966, section 3), but with a
few loose ends. Recently it has turned out that filling in those
gaps has been helpful for both understanding and extending the
probTem. The hope is that it will be even more helpful to have the
clarifications put down all together in one place.

Here is how Gilbert and Mosteller introduced the problem:

"One by one, a sample of n measurements is drawn from

a population with continuous cumulative distribution

F. The continuity assures that ties have probability

zero. After each draw, the player, who knows F and n,

is informed of its value, whereupon he must decide

whether or not to choose that draw. He is to maximize

the probability of choosing the draw with the largest

measurement in the sample.”
A complete solution to this problem can be described as follows:
Let the measurements be X1,X2,,..,Xn, and the optimal stopping rule
for each n. be T n=1,2,... Then there is a single sequence of

decision numbers {bm: m=0,1,2,...}, not depending on n, such that



T, = m1n1<1<n{1: X1=max(X],...,Xi) and F(Xi)ipn—i}' 7 (1.1)
Naturally bO is zero; for m > 1, the b _'s are the solutions to
1= 1Mo (1.22)
.4 3 Y m :
J
or, equivalently,
m . m
I i =1 7T we, (1.2b)
J=1 j=1

As one would expect, b] = 1/2 and the bm's are increasing to one

as m (which represents the number of draws remaining) becomes in-

finite. In fact
-1) -~ ¢ ~ .80435 (1.3)

where ¢ is the solution to

/51 = 1. (1.4)
1

't~ 8

J

Let {wn} be the probabilities of "winning"; i.e.,

W= P(XT =max{X],...,X }).

n n
n
Then
W is strictly decreasing in n (1.5)
Tin W= e - (efc-1) [ x7e™dx (1.6)
Ne 1

~ .580164.



Indeed

Tim W, = P(Z(1-T)<c<[Z+Z'/T][1-TT']) (1.7)
n-o

where Z, Z', T, and T' are mutually independent random variables
with Z and Z' each exponentially distributed with parameter one,

and T and T' each uniformly distributed on the interval (0,1).

2. OPTIMAL STOPPING RULES

Gilbert and Mosteller examined only stopping rules of the
following form:

(a) "Corresponding to each draw, assign a decision

number. As the drawing proceeds, choose as the larg-

est the first candidate [largest value seen so far]

whose value exceeds its decision number."

(b) "The decision numbers obviously decrease as we

go through the draws, because with fewer draws to go,

we have less chance of getting a high number."
The best rules satisfying constraints (a) and (b), they showed,
are given by (1.1) and (1.2). To actually demonstrate that these
are the best of all stopping rules is quite easy and rewarding to
do by following the standard method of backward induction, as ex-
plained in, e.g. (Chow, Robbins, and Siegmund 1971).

To begin with, since the distribution is known exactly, and
since the Targest measurement 1n.a sample remains the largest un-

der all monotonic transformations of its variable, we lose no



generality by assuming that F is the standard uniform: F(x)=x
on 0 < x < 1. We let r denote any stopping rule; My = 0, and, for
i=1,2,...,n,

M; = max(X],...,X.) i=1,2,...,n

n-i .

Zy = POXEM X se e sXy)

=0 iF X <M.

Now probability equals expectation of conditional probability, so
P(Xf=Mn) = EZT ,
hence

w.=max_ EZ .
n T T

It is well known that w, is attained by the stopping rule

T = min gn)}

n 1§j§n{1: 21'2-Y

where yén) = 0 and, for i=n-1,n-2,...,1,0,

)3

an) = ygn)(X],...,X.) = max

i >1

E(Z [ Xysen oK,

and that the ygn)'s obey:

ng% E{max(Zi,an))lX],..,,X{_]}

E{max(Xq'i,ygn))

| (n)
i i [Mi-l} ¥ E{Yi

1 I M. .3}
{X.I>M.i_'|} : {X_i<M_i_-|} i-1

for i=n,n-1,...,1. In particular, we get



and

Emax[X) 1™ ()]

2
o
I
=
=
1l

] _
é max[xn-],ygn)(x)]dx.

One can easily check that the solutions to these systems of equa-

tions are of the form

ygn)(x1,...,x1) S f (M) i=n-1,n-2,...,1

where

1]
—

1
x

f1(x)
(2.1)

: 1
fk.|_'|(X) = ka(X) + ){IﬂaX[yk,fk(y)]dx.

We see at once that the fk(x)'s are strictly decreasing from w, to
zero as x increases from zero to one. So for each k there is a
unique by in (0,1) such that fk(bk) = bt. Moreover the bk's are
strictly increasing in k (decreasing in n - k) because

k+1
fk+](bk) > fk(bk) > bk .

Thus

, _,(n)4,_. - )
{Zizyi"}Vfr{Xi_Mizbn—i}

which shows that the optimal stopping rule does indeed satisfy .



constraints (a) and (b).

Actual computation of the bk's is a straightforward matter
once we know they are a monotone sequence. Either analytically,
from (2.1), or probabilistically from the fact that

My > b, 5 and 7 > i

—>
T, = first j > 1 (if any) such that Xj > Mi’
we get
Ko 1k j K-
f (x) = § 37 (5 (1-x)"x if x>b
= -
eyl
= EN I{sz}
where
k
N= 7§

I .
j=1 Xyl

Setting x = bk gives (1.2a).
Another approach, via Markov chains, rather than backward in-
duction, was given in (Bojdecki 1978).

Formulas (1.3) and (1.4) are contained in Gilbert and

-1

0 -1) so

Mosteller's paper and can be obtained by letting Cp = m(b

(1.2a) becomes

. J _
Lo T (1-m DYATE
_ i=

The square bracket terms are all bounded by one and z(j!j)'] is



convergent so the dominated convergence theorem can be employed to
show that for any convergent subsequence €, ¢ C must satisfy

k
(1.4).

3. MONOTONICITY OF OPTIMAL BEST CHOICE PROBABILITIES

That the.probabilities W, are decreasing in n was noticed
(for their tabled values) by Gilbert and Mosteller, but not proved.
It is not a trivial matter because, while the bigger n is the more
chances we have to choose, to "win" we have to choose the biggest
of a larger sample. Indeed, no direct analytic proof is known.

The following proof adapts a trick from (Chow, et al 1964)
which is also used in (Samuels 1981, page 195). The trick is to
exhibit a randomized rule, for picking the best of n, which has

success probability bigger than w but (of course) no bigger

n+l?

than W The way to do it is to first consider n + 1 observations,

and then condition on (i.e., be "told" the values of) the arrival

time, say o, of the worst (i.e., smallest) of X]”"’Xn+1’ and on
its value, XG. Now, given ¢ and XO, the other n Xi's are condi-

tionally independent, each uniform on (Xg,]), so among all stop-

ping ru]és v adapted to .o, XO and the remaining Xi's the best one
c]earTy has success probability precisely W Within this class

is the rule

n+1 if Tt # o

0]
=
+
—_—
-t
—h
—

I
Q
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which chooses the exact same observation as t except when t

n+1 n+1
chooses the worst one (this, of course, can only happen on a sub-
set of the event {0=1}) so it has a slightly greater chance than

T of choosing the best. So t is as advertised.

n+1

4. LIMITING OPTIMAL BEST CHOICE PROBABILITY

Gilbert and Mosteller obtained the numerical value .580164
for 1im W by passing to the 1imit in a formula for the probabil-
ity 02+:inning at any given draw, which led to some computer-
assisted numerical integrations. Essentially the same argument
they used to get their fdrmula can be employed to get (1.7), as
follows:

For‘convenience we consider an infinite sequence X],Xz,... of
1ndependent standard uniform random variables and let 9y and oérbe,
respectivé]y, the “arrival -times" of the lakgestiof the first n
Xi's and of the 1arge§t prior to o_; i.e.,

X =M and X+ =M_ _4 .
o n - 9y 9, 1

Then, because bn-i is decreasing in i while Mi is increasing in i,
it follows immediately that

IV 4.1
P(XTn_Mn) h P(Mn>bn-crn and Mcn-1>bn-on) (4.1)

Now we make the change of variables:

Zn = n(]-Mn) 3 T, = on/n

Zﬁ = (cn-l)(l-Mon_]/Mn) ; Ta = dh/(cn-1)
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and Tet C, = m(b%]~1) again so that (4.1) becomes

P(Xrn=Mn) = P(An an)
where

- -1
Ap = (2, (1-Tpin Cn(]-Tn))<Cn(]—Tn)}

and, letting
K =n(1-T.T') + T ,
n nn n

| P T I -
B, = (o <[Z,HT,- 1) T(1n ]Zn][1-TnTn+n (e

+T')]1 .
n n 0
Using familiar properties of the uniform distribution, one

can verify the weak convergence result
(z,,2:5T,.7) & (2,2',1,T")

where Z,Z2',T, and T' are as described following (1.7). This in
turn implies (1.7) itself.

To get from (1.7) to (1.6) we first conditionon Z =12, T = t,
and T'= t'; the conditional probability is
e-t(_c/(]-tt')-z)+ I : _
{z<c/(1-t)}
Integrating this multiplied by the exponential density of Z yields
the conditional probability given T =t and T'= t' which is

(]_t)-1e-ct/(1—tt')(]_e-c(l—t)/(1-tt')) . e;c/(1-tt-) _oc/(1-t)

The final step of integrating this expression over the unit square

requires the change of variables
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u= (1-t)/(0-tt"), v =1/(1-tt")
on all but the last term. This, with the help of (1.4) and the

identity

u ey = v Kkik
k=1

Oty =

yields the expression
= b2 1 —c(v-u)
[ [ v (v-u) e dudv.
0 0 -

Letting w = v - u and interchanging the order of integration then
Teads directly to (1.6). Numerical evaluation of (1.6) is easy

from the identity
{ x"1e™dx = |Tog c| - v - .21 (-c)/313
. J =

where vy is Euler's constant ~ .577216.
The technique just described has been used in (Petrucelli 1980 and
1982) and (Campbell and Samuels 1981) for generalizations of this

best choice problem.
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