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I. OVERVIEW

Why should Industrial Engineers be interested in designing experiments?
They have looked at data from so called "experiments" for years. In some
cases the results have been confusing or the data points looked wrong when
compared to theory or preconceived ideas. In such cases people have been
known to rerun the experiment, forget the experiment completely, or even
change some data points in order to make the results Took better.

A comment we statisticians hear so often is that designing experiments
takes so much time and the engineer cannot afford to take more data. In
many instances data, often taken haphazardly, are already available and it
is not understood why the statistician cannot just analyze those data and
interpret the results, rather than take more data from a well-designed
experiment.

The main reason for taking data from a designed experiment is that
the investigator can place a given probability statement on the results,
if the experiment has been carefully designed. Also, engineers who use
data to help them draw conclusions usually want to know how widely the re-
sults will apply (Inference Space).

In almost all cases dealing with data, the experimenter wants to keep
the number of observations small. Carefully designed experiments will
allow minimum sample size for a specified problem if the variation is
known. If the variation is not known (as in almost all cases), a small
sample or a pre-experiment may be used to estimate the variation before
the overall experiment is run.

Is all of this magic? No! It requires thinking, co-operation, work
and a willingness to lTearn basic concepts such as "confounding" and "bias-

edness".



Let us Took aﬁ the past a bit and then turn our attention to a
coupte of simple design examples before delving into a few good industrial
engineering design of experiments to complete this chapter. The reader
must understand that to run experiments efficiently, he must read and
study books such as Anderson and McLean (1974) thoroughly.

For centuries "man" has run experiments to answer questions. The
idea of taking a sample to draw conclusions about a much larger group
(population) is not new. Cochran and Cox (1957), however, point out that
randomization is a relatively new concept and Anderson and McLean (1974) in-
dicate that recently too many investigators have not been careful enough in
defining how wide the results of their experiments apply (Inference Space).

To give direction in the thinking of whether investigators should
actually take care to design experiments or not, let us consider the fol-
lowing example:

In a small shop a pattern maker wanted to buy a new lathe. He had
narrowed the decision down to two brands, and these two manufacturers
offered to let him try the lathes before making the decision which to buy.
Company representatives brought the two lathes to his shop, so he set up
an experiment to help him decide between the two.

He thought 16 different patterns (requiring approximately the same
time to cut) would be enough for him to make a decision if he used the

time required to cut a pattern to specifications as the basis for his de-

cision (criterion). Of course this meant that he would buy the lathe

which required less time per pattern since the cost of the lathes was equal.
He was a "careful" experimenter and required that each pattern be used

on both machines. This would allow him to take the difference in time re-

quired to cut the pattern on each machine and make his decision easy.



To begin the experiment he flipped a coin to decide which machine
should be used first throughout the experiment. They Tayout for the ex-

periment is

Pattern
1 2 3....16
Lathe 1 1 3 5 .... 31

2 2 4 6 .... 32

where the numbers inside the table indicate the order the patterns are to
be cut on the lathes.

It has been our experience that many experiments are run this way or
they are run without the first randomization because it is easy to keep
the records straight as the investigator goes through the experiment. This
is not a very thoroughly designed experiment because if the pattern maker
learns how to make that given pattern on lathe 1, he will probably retain
some of that knowledge when he gets to lathe 2. Hence if it should turn
out that he can, in general, cut patterns faster on lathe 2, he will not
know for sure whether it was due to the lathe being "better" or his learn-
ing from the first cut on lathe 1. This is an example of "confounding".
That is, the effect of lathe and learning cannot be separated. Hence there
is a "biased" estimate of the effect of lathe.

To improve the design of this simple experiment many people would com-
pletely randomize the order of cutting the patterns. One possible layout
of the completely randomized designed experiment is:

Pattern
Fathe 1 2131415]6 71819410111 ]12)13114}151t16

1 271 9 71151241 19)10114 113 8}29 112121 }11}28 |17
2 3125} 2116122 1120131 {23f1 5126 4130|18}32




where the numbers inside the table indicate the order the patterns are to
be cut on the particular lathe. For example, the first cutting would be

pattern number 6 on lathe 2 and the Tast one (32) would be pattern number
15 on lathe 2.

While complete randomization provides a more thoroughly designed ex-
periment, one can easily see that peculiar sequences can be obtained.
Notice in this so called "completely" randomized design that lathe 2 is
used to cut the first six times and lathe 1 is used for the next nine. It
is not known whether this sequencing interferes with the correct decision
to buy the better Tathe or not, but it is known (mathematically) that com-
plete randomization does provide unbiased estimates of the effects.

Another way to run this experiment (the best way, we think) is to use

the layout
Sequence
1 2
Patterns Patterns
Cut 4 7 15 6 3 14 1 10 16 2 9 5 12 13 8 11
First Lathe 2 Lathe 1
Second Lathe 1 Lathe 2

The operational procedure for this approach is more complicated and
the need for the additional detail is hard to explain to some experimenters.
It is necessary to run the same number of patterns first on lathe 1 as on
lathe 2 in order to obtain an unbiased estimate of the difference in time
required for the two lathes. We insist on randomly assigning the various
patterns to the two different sequences so that one lathe will not be
favored over the other as the result of unsuspected differences among the
patterhs. One possible selection is the use of patterns 4, 7, 15, 6, 3,

14, 1, and 10 for Sequence 1 as is shown in the above layout. One



additional precaution must be taken in order to guard against such effects
as fatigue. This can be accomplished by randomly selecting the order in
which the patterns are actually cut. This can be done by randomly draw-
ing the numbers 1 through 16. One such sequence would be 14, 11, 6, ...,
10. Thus pattern 14 would be cut on lathe 2 and then on lathe 1, this
would be followed by pattern 11 first on lathe 1 and then on lathe 2, and
etc. (not necessarily alternating).

This Tast design is discussed in detail later and is called a "cross-
over" design.

Another example of a designed experiment (this one ill-defined) occur-
red a number of years ago in a large manufacturing company. A man work-
ing in the production area set up an experiment to test a new alloy, pos-
sibly one to replace an old one in production. He ran only one heat
(batch) of metal with the new alloy and another heat with the old one.
Taking one ingot from each heat and 30 piéces of metal from each ingot he
proceeded to test each of the 60 pieces for the property in which he was
interested. With the data he made a one-way analysis of variance (ANOVA)
on the alloys using the pieces within ingots with 58 degrees of freedom
as the error. The results showed that the new alloy was "better" than the
old one, and the experimenter convinced the vice president in charge of
production to change the production procedures so that the new alloy would
be used in the future. Since the experimenter had used a "designed experi-
ment" and had tested the data "statistically", the vice president concluded
thére could be no doubt that the new one was better.

The change cost the company $200,000, and after 2 years in the field
there was as much trouble with the product made from the new alloy as there

had been with the old product. The vice president was disgusted and called



one of the authors of this chapter to say he would never allow his com-
pany to use designed experiments again. After some discussion, the vice
president allowed the author to talk with the experimenter to find out
how the experiment was conducted.

In wanting to keep the cost of the experiment Tow, the experimenter
did not consider the possibility that the property in which he as interest-
ed varied considerably both from heat to heat and from ingot to ingot with-
in a heat. From an ANOVA point of view, his expected means squares (EMS)
should have been what is shown as follows:

ANOVA of Alloy Probiem

Source df EMS

2 2 2
Alloys 1 op + 300I + 300H + 30¢(A)
Pieces in ingots 58 cg

Total 59

Hence, rather than testing that the alloy effect was zero [¢(A)=0],
he was really testing that the total effect for ingots, heats, and alloy
was ZERO[300?+3003+30¢(A)=0]. Since the long-run production of the new
alloy did not produce the improvement seen in the experiment, ¢(A) must
equal zero. Thus it must have been that 0§ and/or oﬁ were/was not zero.
The notation utilized here is that ¢ represents a fixed effect, i.e., the
effect of two specific alloys, and o2 represents a random effect, e.g., the
ingots are a random sample from all possible ingots.

When the results were explained, the vice president was willing to
use the design of experiments again on this type of problem but insisted

upon having more than one heat for each alloy.



Still another example (an excellent one) occurred in a company fabri-
cating men's synthetic felt hats.

The manufacturer had experienced extreme difficulty in producing these
hats so that the flocking appeared on the molded rubber base in a uniform
fashion to simulate the real felt hats. In order to approach this problem,
a committee was formed consisting of a development engineer, a manufactur-
ing foreman, a chief operator, a sales representative, and a statistician.
The statistician's job was to obtain from these people all possible causes
of imperfect hats. Factors which were thrown out for discussion were as
follows: thickness of foam rubber base, pressure of molding, time of mold-
ing, viscosity of the latex used to glue the flocking to the molded rubber
base, age of the latex, nozzle size of several different spray guns, direc-
tion of spraying, condition of the flocking, speed of drying, and the effect
of location within the drying furnace.

After considerable discussion the committee finally decided that the
most serious problems were probably connected with the nozzle size and the
pressure under which the Tatex was sprayed. In arriving at these various
factors the committee essentially forced a review of the entire production
process. This in itself led to a better understanding of the production
process and an eventual solution to the problem.

In arriving at the most reasonable causes of defective hats, the com-
mittee action essentially required a critical review of all production pro-
cess factors. In this review the chief operatior brought out the standard
operating levels of the nozzle size as well as the pressure under which the
latex was sprayed. Talk with the chief operator revealed that the latex
pressure varied considerably due to the viscosity of latex, and from this

information the pressure levels were eventually obtained. Additional



inquiry ascertained that the manufacturing area had two different nozzle
sizes that had been used interchangeably; consequently, the two sizes be-
came the basis for these factor levels.

The authors feel that one is almost always able to find realistic
levels for all major factors through committee action of this type. Occa-
sionally considerable effort is needed to find out just how shoddy one's
manufacturing operation really is, and this example shows that actual pro-
duction operations will allow their process to operate at various levels
as long as it works. The determination of the optimal levels is, of course,
the desired end of the experimental investigation.

As one can imagine in the manufacturing of synthetic hats, the measur-
ing of product quality is a very difficult task. Consequently, the method
that was used in the experiment referred to above was to visually grade the
finished hat on the following items: the hungry appearance of the flock-
ing, the starchy appearance of the flocking, and the appearance of brim.
During the course of the investigation these responses were found to be
essentially independent of each other and consequently could be treated
as three separate dependent variables which could be investigated on a
one-at-a-time basis. The standards for grading each of these factors were
arrived at again through committee action which eventually resulted in a
visual disp]ay board and gave the inspectors a realistic means of grading
each of these dependent variables.

One of the most difficult problems in certain types of industrial ex-
perimentation is the specification of a dependent variable. It is usually
quite obvious what the variable should be; however, the methods of measure-
ment are sometimes quite difficult. In ideal cases this would be merely

the measured value obtained by some simple inspection tool, while in other



cases it can be a value that is almost impossible to measure and will have
to be graded by one or more inspectors.

Having agreed on the variables to analyze, the committee decided to
include six nozzle Tocations, each with a high and Tow latex viscosity and
each with a high and Tow air pressure, plus two types of base material as
factors and levels in the experiment. This required a 2]3 factorial type
experiment where all possible combinations of the 13 factors were to be con-
sidered. After some work a fractional replicated design was run requiring

only 256 of the 2'°

= 8192 combinations. This design allowed complete in-
formation on all main effects and two factor interactions. Fractional fac-
torials are described in detail in Anderson and Mclean (1974).

The experiment required certain blocking (described later in this
chapter) procedures, and the results were excellent. The company was able
to pinpoint the difficulty in the spraying mechanism, make the necessary
changes and produce a profitable product in six months. An interesting
sidelight to this experiemnt was that the company was losing about $8.00
per hat when the experiment began, and the committee was given a deadline
of one year to solve the problem or the company would discontinue the
product. With the results from that one large experiment, the company was
abie to make a profit and a competing company bought the whole process with-
in the year.

This concludes the overview section dealing with examples of designed

experiments. Next, in the background section, we attempt to describe our

present day basic philosophy that has been successfully used since 1974.

I1. BACKGROUND
One approach to designing experiments in the last decade considers

three essential ingredients of a well designed experiment expressed in the
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book by Anderson and McLean (1974). These three ingredients, in order of
importance, are:

A. Inference Space

B. Randomization

C. Replication.

Inference space is a phrase to replace the term "population", usually
used by statisticians. It has been our experience that the term "inference
space" demands more attention from the research worker.

The phrase "inference space" means the 1imits to which the investiga-
tor may use the results of the experiment. Common practice at present is
for the research worker to indicate how extensively he wishes the results
to apply before the experiment is set up. This requires that he defipe the
-experimental units he is to use in his research and that will be the basis
for the inferences. He must also define the time interval and the geograph-
ical extent to which he wishes the results to apply, and then decide which
levels of all factors he wants controlled in the experiment. Ordinarily
more time should be spent on this phase of designing the experiment than
either of: the other two (randomization and replication) because without
the inference space clearly defined the best so called "designed experiment"
may be worthless to the investigator. We define this ingredient (inference
space) as a part of the designed experiment. Hence there can be no “"best
designed experiment" without a carefully defined inference space.

Randomization is the next most important ingredient in designing ex-
periments. It must be present in the experiment for probability statements
to be made. Fisher (1960), p.17, expressed the idea that it is the physical
basis of the validity of the test. It is also the basis of validity of con-

fidence intervals.
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Included in the ingredient, randomization, is another concept, "restric-
tion" on randomization. To understand restriction on randomization let us
first expalin "completely randomized" which means no restriction on randomiza-
tion with reference to the source of the experimental unit. This concept can
be seen by considering a factor, t, with five levels and three experimental
units treated with each of the five levels of factor t completely at random.

Assume there are 15 randomly drawn experimental units from the infer-
ence space to be used for the entire experiment. One way to obtain a com-
pletely randomized design is to select a random number between 1 and 5, say 2.
Then the first experimental unit must receive treatment 2 or the second level
of factor t. Select another number between 1 and 5, say 5, then the second
experimental unit must receive treatment 5. Continue sampling or drawing
random numbers in this manner until the 15 esperimental units have all been
“treated". This sampling procedure requires that each level of factor t is
represented three times in the experiment and the design of this experiment
is called "completely randomized".

The mathematical model for analyzing the data from such an experiment

is
=T+ ey i=1,2,...,65  j=1,2,3 1
‘y'IJ U 3 8(1)3 J (1)
where
yij = the response from experimental unit j treated with level i of
factor t,

u = overall mean

h

T. = effect of the it level of factor t,

€(1)j = the experimental error caused by the jth experimental unit

th

nested in the i level of factor t.
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The assumptions for the analysis of the data in a model such as this are:

a) Yij is a random variable.

b) The variances of the responses within Tevels of factor t are equal.
c¢) The model is additive.

d) The experimental error is NID(O,GZ), normal and independently dis-

tributed with mean zero and variance, 02.

This complete randomization assures the experimenter that the experi-
mental units from the inference space have three (3) opportunities for selec-
tion for each treatment. These three experimental units for each treatment
then allow a measure of the variation within the treatments, which is the
representation of the variation across the entike inference space. It
follows, then, that the test of significance on treatment effects (Ti in
equation (1)) must be based on the excessive amount of variation among the
means of the treatments over the amount of variation obtained from within
the treatments where the variation within the treatments is accounted for
by the variance due to £(1)3 in equation (1). Hence in equation (1) the
€(1)3 is the correct error for evaluation Ti’

If, however, the sampling procedure was such that the first random
draw, level 2, was used on the first three experimental units; then the
second draw, level 5, was used on the next three experimental units and so
on, we would have a "restriction" on randomization because the randomization
procedures were allowed only five times, not 15 as is required for complete
randomization. If, as is frequently the case, there tends to be similarity
between adjacent units in space or time, the variation within the group of
three is smaller than the variation between the groups of three. In this
design then, the variation due to treatments is not separable from the vari-

ation between groups of three units (treatments confounded with groups). If
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then there is a source of error variation between groups, it will not be
possible to test for treatments, and the following model depicts this:
.. = u +T. + oy F ety
Yig Tu Tt 0y T e(h); (2)
where: 6(1) is the "restriction” error or that random component due to the
th

i”" group of units (note how the subscript is identical to the subscript to

T, indicating complete confounding), and

| . 2
E(_I)J 1S NID(O,O'El),

th th

the error due the j~ unit in the i~ group. It is the variation due to 6( )

;
that is representative of the variation across the inference space, whereas
the variation due to the EZi)j in equation (2) represents only a small por-
tion across the inference space. Hence one needs an estimate of og to test
for the effect of treatments. Of course 6(1) has noldegrees of freedom,
which indicates this is a poor design and should not be used.

Using the algorithm for deriving the expected mean squares described
in Chapter 2 of Anderson and McLean (1974), we can show that the correct
error term for testing teatments is 6(1). However, there is no estimate
of this error in equation (2) unless the whole experiment is repeated.
Hence the "restriction" on the randomization has cause 6(1) which, in turn,
tells the experimenter that this sampling procedure is not a good one even
before the first observation is made. This, then, allows the experimenter
to change his design early, before he has taken data that will not give a
good analysis.

Before explaining the third ingredient of designed experiments, namely
replication, a few words should be stated about special cases where randomiza-

tion may not be required. If an investigator can show by actual experimenta-

tion that the results are the same whether randomization take place or not
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it may not be necessary to randomize. This will happen on extremely well con-
trolled experiments only. We are familiar with an example on a one cylinder
engine gasoline consumption laboratory experiment in which it did not matter
whether speeds were randomized or taken in order. The reason for this was
that the controls on speed were so precise and the set-ups so repeatable

that the errors were identical within the capabilities of the recording
equipment. In terms of the model for analyzing the data from this experiment
[similar to equation (2)] 6(1) is approximately zero.

With this non-random possibility in mind and knowing an experiment can-
not be designed well without knowing the inference space, we rank inference
space above randomization in importance when considering ingredients of a
well designed experiment.

Finally the third ingredient, replication, is quite often required for
an estimate of an error term, or to provide the basis for making decisions
on the importance of factors contributing to the response variables. In
addition, as the number of observations increases on a given treatment the
more precise the estimate of the effect of the treatment becomes, or the
smaller its variance becomes.

If, however, previous experimentation has shown certain information
is available, e.g. the variance is known or that higher order terms in the
model are zero, it may not be necessary to reb]icate the entire experiment.
In fact there are many good experiments run with fewer than the total num-
ber of Tevels of the factors in a "factorial" experiment. These experiments
are called "fractional replicated factorials".

With the various well-designed experiments without complete replica-
tions in mind, the ingredient "replication" is placed in third position be-

hind inference space and randomization.
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Before going into designs and analyses it should be understood that the
readers of this material should understand (1) basic statistical concepts,

2

(2) distributions such as the mean y, t, x“, F and (3) analysis of variance

and regression models.

ITI. DESIGNS

A definition of a designed experiment is an arrangement of the experi-
mental material, including randomization of experimental units to the treat-
ments so that statistical tests of significance (and confidence intervals)
on the effects and interactions of the factors being studied can be made. In
order to accomplish this, care must be taken to set up the arrangement effi-
ciently (keep the cost reasonably low) and, at the same time, cover the infer-
ence space. For coverage of designs, major headings are used to indicate de-

signs encountered by us in engineering studies.

A. BLOCK DESIGNS
1. Importance of Blocking (Handling Extraneous Variables)

Many authors of books on design of experiments express the importance
of "blocking", placing all treatments or all combinations of the levels of
all factors of interest in a homogeneous group (thereby removing some of the
effect of an extraneous variable from the experimental error) and repeating
this éroup or block in time and/or space with different experimental units.
To show this concept we use mathematical equations which are to be used as
the basis for analyses of the data from the designed experiment.

Returning to the concepts of setting up equations (1) and (2) it fol-
lows that another design of the experiment is to arrange three blocks of
five treatments each, where the five experimental units were randomized onto
the five treatments per block. It follows that the equation to be used as

the basis for the analysis is:
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o= u+t B Sy FT.+ el
Yig TR TR T o) T T s ()

where: Y'j and u have the same meaning as they did for equation (2)
B, = effect of block i
g .. s . 5
6(1) is similar to 6(1) in equation (2)

effect of the jth treatment

—
1]

error due to the jth treatment in block i (assuming there is

m
1)

no interaction).
Since the experimenter is interested in testing for treatment effects
only, this is an excellent design because €43 is the basis for the test of

Ti since the variation across treatments is compared to the variation due to

25 s. If it should turn out that the effects of Bi and 5(1) are zero, Bi’

pletes the demonstration that, in general, blocking is always worthwhile in

may be pooled and equation (3) becomes equation (1). This com-

experiments and should be used whenever possible.

Latin Square designs, used correctly, merely extend restriction on ran-
domization in one more dimension. Too many engineers incorrectly use Latin
Square designs as sbecia] fractional factorials. Reference Chapter 8,
Anderson and McLean (1974). Since it is difficult to make the reader under-
stand these points in the space allowed here, we recommend that Latin Squares

not be used by the novices.

2. Incorrect Use of Blocks (Treatments Used as Blocks)

In the previous example, the effect of 6(1), the restriction error
caused by blocks, did not decrease the importance of blocking because the ex-
perimenter was interested in the effect of blocking plus the restriction
error in reducing the estimated experimental error, gij' In that case, gij
was the basis for testing treatment effects only.
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Now, one must consider the case in which the blocking concept is used

incorrectly.

Consider an example in evaluating microforms where the inter-

est was in reducing user dissatisfaction. The experimenter wanted to use

two types of projection [Front (F), Back (B)] as blocks and randomize four

screen angles (0°,45°,90°,105°) twice within each "block". The measured

variable was seconds required to read the material presented each time.

Pictorially the design was

Types of Projection

Front Back
90° | 450
0° 105°
45° 0°
90° 105°
105° 90°
0° 45°
45° 0°
105° 90°

The correct degrees of freedom and model for the analysis of the data from

this design is:

16

1+1 + 0 +3 + 3 + 8

.., = + T. + ‘ .. + A. + ..+ .. 4
Yigk ZvH Ty F80q) T Ay Thig + ey (4)

i=1,2 j=1,2,3,4; k=1,2

= seconds required to read the microform from the kth observation

th th

using the j~  angle and the i~ type of projection,

overall mean

h

effect of the it type of projection (fixed)

restriction error due to all of the angles used with the 1th

type of projection before the other type of projection is used.
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Aj = effect of the jth angle (fixed)
TAij = effect of the interaction of the 1th type with the jth angle,
©(ij)k = error due to the kth observation within the 1th type jth angle,

assumed NID(O,oZ).
The analysis of variance (ANOVA) appropriate to analyze data using

equation (4) is the following:

ANOVA
[Based on equation (4)]
Source df EMS
. . 2 2
Types of Projection (Ti) 1 o_ + 806 + 8¢(T)
Screen Angles (Aj) 3 65 + 44(A)
TA. . 3 6%+ 26(TA)
1j €
Repeats within (T-A) 8 cg

Combination E(ij)k

It is apparent from the EMS (expected mean squares) column above that there
is no test for types of projection because there is no source with an EMS

of Oi + 802. Hence this is an incorrect use of blocks. In order to obtéin
the source to estimate 02 + 802 there must be a replicate of the experiment.

This concept is demonstrated in the following section.

3. CORRECT USE OF BLOCKS
The example used in this section is a continuation of the example
used in the previous section.
To make the experiment a good one, the investigator should set up the

eight treatment combinations as follows (one possible randomization):
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m W m W m W W™ mMm

Blocks
2
45° B 105°
0° F 90°
105° B 45°
0° F 105°
90° F 45°
105° B 0°
45° B 90°
90° F 0°

The degrees of freedom and the model for the analysis of the data from

this design is as follows:

30=1T+1 + 0 +1 + 1 +3 + 3
+ 3 + 3 + 0
+ TA,, + BTA.., + ¢,..
jk ijk ~ “(ijk)
u
where: 1 =1,2; j=1,2, k=1,2,3,4
B. = effect of ith block (random),

“(ik)

This is expalined in

= same as Ti’ A

restriction error using blocks correctly,

i TAij of eq. (4)

= appropriate errors for testing (note arrows) and

they would probably pool for a common error,
residual error, not estimable with one observa-
tion per treatment combination per block.

detail in Anderson and McLean (1974).
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B. REPEATED MEASURES AND CROSS OVER DESIGNS

A research worker in an industrial plant dealing with soldering parts
on electronic equipment was interested in studying “"paced" and "unpaced"
production. He set the experiment up in a plant which used women only,
and recorded the ages of the women. He grouped the women into ages:
Young (18-23), Middie (30-35) and 01d (52-57). He was able to obtain 6
women 1in each of those age groups which allowed him to have a sequence
(selected at random) of (paced, unpaced) and (unpaced, paced) for two weeks
for three women in each group. The layout or design of the experiment can

be portrayed as follows:

Ages
Young Middle 01d
Sequence Sequence Sequence
1 2 1 2 1 2
Women | Women | Women Women Women Women

Weeks 11231 456]789}1011 1211314 15} 16 17 18

1 P u U P U

If the assumptions of the analysis of variance (ANOVA) have been met,

and ANOVA of the data (different response variables) from this experiment is:

ANOVA
(CROSS OVER DESIGN)

Source df
Ages (A) 2
Sequence (S) 1
AS 2
Females in (A-S) cells (F) 12
Weeks (W)
Paced vs Unpaced (P)
AP

ASP

1
1
2
SP 1
2
Residual 11
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Refer to Grizzle (1965), Mayers (1979) and Anderson and McLean (1974)
and for details of this type design and analysis. For designs and analyses
utilizing extensions of these designs to more sequences refer to Albert,

et al (1979) and Westlake (1979).

C. OTHER DESIGNS
There are many other designs used in industrial engineering dealing
with factorial experiménts and fractional factorials plus response sur-
face designs. References for these designs and analyses are Myers (1971),

Anderson and MclLean (1974) and Box, et al (1978).
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CHAPTER

Design of Experiments for
Industrial Engineers

VIRGIL L. ANDERSON

Purdue University

ROBERT A. McLEAN

University of Tennessee

13.4.1 OVERVIEW

Why should industrial engineers be interested in designing experiments? They have looked at data :
from so-called experiments for years. In some cases the results have been confusing, or the data ;
looked wrong when compared to theory or preconceived ideas. In such cases people have been :
known to rerun the experiment, forget the experiment completely, or even change some data in i

order to make the results look better.

A comment that statisticians hear so often is that designing experiments takes so much time and
that the engineer cannot afford to tzke more data. In many instances data, often taken haphaz- :
ardly, are already available, and it is not understood why the statistician cannot just analyze those ¢ B
data and interpret the results rather than take more data from a well-designed experiment. 4

The main reason for taking data from a designed experiment is that the investigator can place a
given probability statement on the results if the experiment has been carefully designed. Also, i
engineers who use data to help them draw conclusions usually want to know how widely the i

results will apply (inference space).

concepts such as “confounding” and “biasedness.”

Let us look at the past a bit and then turn our attention to a couple of simple design examples
before delving into a few good industrial engineering designs of experiments to complete this
chapter. The reader must understand that, to run experiments efficiently, he or she must read and

study books, such as Anderson and McLean,! thoroughly.

For centuries humans have run experiments to answer questions. The idea of taking a sample
to draw conclusions about a much larger group (population) is not new. Cochran and C
ever, point out that randomization is a relatively new concept, and Anderson and McLean
that recently too many investigators have not been careful enough in defining how wide the results

of their experiments apply (inference space).
Design Examples

A Pattern Maker

.To give direction to the thinking of whether investigators should actually take care to design
experiments or not, let us consider the following example: In a small shop a pattern maker wanted
to buy a new lathe. He had nartowed the decision down to two brands, and these two manufac-
turers offered to let him try the lathes before deciding which to buy. Company representatives
brought the two lathes to his shop, and he set up an experiment to help him decide between the

two,

-
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In almost all cases dealing with data, the experimenter wants to keep the number of observations
small. Carefully designed experiments will allow minimum sample size for a specified problem if
the variation is known. If the variation is not known (as in almost all cases), a small sample or a pre-
experiment may be used to estimate the variation before the overall experiment is run.

Is all of this magic? No! It requires thinking, cooperation, work, and a willingness to learn basic
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He thought 16 different patterns (requiring approximately the same time to cut) would be
enough for him to make a decision if he used the fime required to cut a pattern to specifications a4
the basis for his decision (criterion). Of course this meant that he would buy the lathe that required
less time per pattern since the cost of the lathes was equal.

He was a *“‘careful” experimenter and required that each pattern be used on both machines, This
would allow him to take the difference in time required to cut the pattern on each machine,
making his decision easy.

To begin the experiment, he flipped a coin to decide which machine should be used first through.
out the experiment. The lay

out for the experiment was as follows:

Pattern
Lathe 1 2 3 .. .. 16
1 1 3 5§ ..., 31
2 2 4 6 .... 32

The numbers inside the table indicate the order in which the patterns were to be cut on the lathes,
It has been the authors’ experience that many experiments are run thig way, or they are run with-
mization because it is €asy to keep the records straight as the investigator goes
through the experiment. This is not a very thoroughly designed experiment, because if the pattern
W 1o make that given pattern on lathe 1, he will probably retain some of that
knowledge when he gets to lathe 2. Hence, if it should turn out that he can, in general, cut patterng
faster on lathe 2, he will not know for sure whether it was due to the lathe’s being “better” or to
his learning from the first cut on lathe 1. This is an example of confounding; that is, the effect of
lzthe and learning cznnot be separated. He i i
gn of this simple experimen
order of cutting the patterns. One possible lay
ment is as follows:

1, many people would completely randomize the
out of the completely randomized designed experi-

Pattern
Lathe 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

1 279 7 15 24 19 1o 14 13 8 29 12 21 11 28 17
232521622120312352643018326

The numbers inside the table indicate the order in wh

ich the patterns are to be cut on the partic-
ular lathe. For example, the first cutting would be p

attern number 6 on lathe 2, and the last one
(32) would be pattern number 15 on lathe 2.
Although complete randomization provides a more thoroughly desipned experiment
easily i

, but it is known (mathematically
provide unbiased estimates of the effects.

Another way to run this experiment (the best way, we think) is to use the following layout:

Sequence -
1 2
Patterns Patterns
Cut 471563141 10 16 29512138 11
First Lathe 2 Lathe 1
Second Lathe 1 Lathe 2

The cperational procedure for this approach is more comp.
detail is hard to explain to some experimenters, It is necess
first on lathe 1 as on lathe 2 in order to obtain an unbi
required for the two lathes. We insist on randomly assignin

licated, and the need for the additional
ary to run the same number of patterns
ased estimate of the difference in time
g the various patterns to the two differ-
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Same time to cut
fa pattern to spec
'1d buy the lathe

.) Wof‘ld be ! ent sequences so that one lathe will not be favored over the other as the result of unsuspected
t}’lﬁm”o’{S as differences among the patterns. One possible selection is the use of patterns 4, 7, 15, 6, 3, 14, 1,
at requireq and 10 for sequence 1, as is shown in the preceding layout. One additional precaution must be
> used on both machj . ; taken in order to guard against such effects as fatigue. 'ﬂus can be accomplished by randon_lly :
1€ pattern on each 1nes. Thl! S selecting the order in which the patterns are actually cut. This can be done by randomly drawing . !
4Ch machine, : the numbers 1 through 16. One such sequence would be 14, 11,6, . . ., 10. Thus pattern 14 would
‘ be cut on lathe 2 and then on lathe 1; this would be followed by pattern 11 first on lathe 1 and
should be used first through. then on lathe 2; and so on (not necessarily alternating).
This last design is discussed in detail later and is called a “crossover” design.

o,

A Large Manufacturing Company

N o
Another example of a designed experiment (this one illdefined) occurred a number of years ago in :
a large manufacturing company. A man working in the production area set up an experiment to :
test 2 new alloy, possibly one to replace an old one in production. He ran only one heat (batch) of :
metal with the new alloy and another heat with the old one. Taking one ingot from each heat and :
30 pieces of metal from each ingot, he proceeded fo test each of the 60 pieces for the property in

‘tTe 1o be cut on the lathes which he was ix.lte.rested. “tith the data he made a one-way analysis of variance on the alloys, using
is way, or they are run wnh the pieces within ingots, with 58 degrees of freedorq as the error"The resu1t§ showe.d that the new
ight as the investigator oe- alloy was “.better“ than the old one, :fnd the experimenter convinced the vice president in gharge
ment, because if the pat%e $ of production to change the production proc_edures so tt'xat the new alloy would be used m.th.e
obably retain some of Lhn: future. Since the experimenter had used a “designed experiment” and had tested the data “statisti-
can, in general, cut pate a cally,” the vice president concluded that there could be no dgubt that the new one was better.
lathe’s being “’better"%rn:s The change cost the company $200,000, and after 2 years in tl_le field, there was as muc}} troubl.e
anding; that is, the effect 0? with the product made from the new alloy as there had been with the old product. The vice presi-
of the effect of the lathe dent was disgusted gnd called one of the z}uthors of this c_hapte{ to say h_e would never allow his
I completely randomize t.he : company to use.de51gned experiments again. After some dls:u§51on, the vice president allowed the
andomized designed experi- author to talk with the experimenter to find out how the experiment had been conducted.

In wanting to keep the cost of the experiment low, the experimenter had not considered the
possibility that the property in which he was interested varied considerably both from heat to heat
and from ingot to ingot within a heat. From an analysis-of-variance point of view, his expected

E mean squares should have been as follows:

—M\_ . -

2 13 14 15 16 Analysis of Variance of Alloy Problem

_—

2 21 11 28 17 Source df EMS

430 18 32 Alloys (4) 1 o2 +3002 +300% +300(4)
) . . . 2

ire 1o be cut on the partic- Fieces (p) in ingots 38 %

n lathe 2, and the last one Total 59

med experiment, one can . . - . ; X r
:d completely ra;domized Hence, rather than testing that the alloy effect was zero {o(4) = 0], he was really testing that the ¢

the 1 is used st pur total effect for ingots (1), heats (H), and alloy was zero [3007 + 300%; + 306(4) = 0]. Since the
th the correct decisior te long-run production of the new alloy did not producze the improvement seen in the experiment,
plete randomizati n to ¢(A4) must equal zero. Thus it must have been that af or ‘7121 or both were not zero. The notation
1zation does utilized here is that ¢ represents a fixed effect, that is, the effect of two specific alloys, and o2
represents a random effect, for example, the ingots are a random sample from all possible ingots.

¢ following layout: When the results were explained, the vice president was willing to use designed experiments again

on this type of problem, but insisted upon having more than one heat for each alloy. t
A Manufacturer of Synthetic Hats .
— e
Still another example of a designed experiment (an excellent one) occurred in a company fabricat-
ing men’s synthetic felt hats. The manufacturer had experienced extreme difficulty in producing
3811 - these hats so that the flocking appeared on the molded rubber base in a uniform fashion in order
, to simulate the real felt hats. In approaching this problem, a committee was formed, consisting of

a development engineer, a manufacturing foreman, a chief operator, a sales representative, and a
statistician. The statistician’s job was to obtain from the others all possible causes of imperfect
hats. Factors that were thrown out for discussion were as follows: thickness of foam rubber base,
pressure of molding, time of molding, viscosity of the latex used to glue the flocking to the molded
rubber base, age of the latex, nozzle sizes of several different spray guns, direction of spraying,
condition of the flocking, speed of drying, and effect of location within the drying furnace.

After considerable discussion, the committee decided that the most serious problems were
probably connected with the nozzle size and the pressure under which the latex was sprayed. In

need for the additional
mie number of patterns
the difference in time
“terns to the two differ-
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arriving at these factors, the committee essentially forced a review of th
which led to a better understanding of the process and to an eventual solution to the problem. In
this review the chief operator brought out the standard operating levels of the nozzle size as well as
the chief operator revealed that the

e entire production Process,

pressure levels were eventually obtained. Additional inquiry ascertain
area had two different nozzle sizes that had been used interchangeably;
became the basis for these factor levels.

The authors believe that one is almost always able to find realistic levels for all major factors
through committee action of this type. Occasionally, considerable effort is needed to find out just
how shoddy one’s manufacturing operation really is, and this example shows that actual produc-
tion operations will allow a process to operate at various levels as long as it works, The determina-
tion of the optimal levels is, of course, the desired end of the experimental investigation.

As one can imagine in the manufacturing of synthetic hats, the measuring of product quality is a
very difficult task. Consequently, the method used in the experiment just described was to grade
the finished hat visually on the following items: the hungry appearance of the flocking, the starchy
appearance of the flocking, and the appearance of the brim. During the course of the investigation,
these responses were found to be essentially independent of each other and consequently could be
treated as three separate dependent variables which could be investigated one at a time. The stan-
dards for grading each of these variables were arrived at again through committee action, which
eventually resulted in a visual display board and gave the inspectors a realistic means of grading
each variable.

One of the most difficult problems in certain types of industrial experiments is the specification
of a dependent variable. It is usually quite obvious what the variable should be; however, the
methods of measurement are sometimes quite difficult. In ideal cases the value would simply be
measured by some simple inspection tool, whereas in other cases the value might be almost impos-
sible to measure and would have to be graded by one or more inspectors.

Having agreed on the variables to analyze, the committee decided to include
each with a high and low latex viscosity and each with a high and low air pressure, plus two types
of base material as factors and levels in the experiment. This required a 213 factorjal experiment
where all possible combinations of the 13 factors were to be considered. After some work, a frac-
tional replicated design was run, requiring only 256 of the (213) 8192 combinations. This design
allowed complete information on all main effects and on two factor interactions. Fractional
factorials are described in detail in Anderson and McLean.! g 1F454% .,

The experiment required certain blocking procedures (described later in this ch
results were excellent. The company was able to pinpoint the difficulty
make the necessary changes, and produce a profitable product in 6
lizht to this experiment was that the company had been losing about
began, and the committee had been given a deadline of 1 year to solve

ed that the manufacturing
consequently, the two sizeg

six nozzle locations,

apter), and the
in the spraying mechanism,
months. An interesting side-

to make a profit, and a competing company bought the whole Process within the year.

The next section describes the authors’ basic philosophy regarding the design of experiments,
which has been used successfully since 1974.

13.4.2 BACKGROUND

One approach to designing experiments in the last decade considers three essential ingredients of a
well-designed experiment, which are expressed by Anderson and McLean,! These three ingredients,
in order of importance, are (1) inference space, (2) randomization, and (3) replication.

Inference Space

“Inference space” is a term that replaces the term usually used by statisticians, “population.” It
has been the authors’ experience that “inference space™ demands more attention from the<re-
searcher. Inference space means the limits to which the i i

experiment. Common practice at present is for researchers to indicate
up, how extensively they wish the results to apply. This requires that
units that they are to use in the research and that will be th
also define the time interval and the geographical area to w
must then decide which levels of all factors they want controlled in the experiment. Ordinarily,
more time should be spent on this phase of designing the experiment than on either of the other
two phases (randomization and replication), because without the inference space clearly defined,
the so-called best-designed experiment may be worthless to the investigator. We define this ingre-
dient (inference space) as a part of the designed experiment. Hence there can be no “best-designed
experiment” without a carefully defined inference space.

, before the experiment is set
they define the experimental
e basis for the inferences. They must
hich they wish the results to apply and
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Randomization : .

Randomization is the next most important ingredient in designing experiments. It must be present
in the experiment for probability statements to be made. Fisher® expressed the idea that it is the
physical basis of the validity of the test. It is also the basis of the validity of confidence intervals.

Included in the ingredient of randomization is another concept, “restriction” on randomization.
To help the reader understand this concept, let us first explain “completely randomized,” which
means having no restriction on randomization with respect to the source of the experimental unit.
This concept can be seen by considering a factor, ¢, with five levels and three experimental units
treated with each of the five levels of factor t completely at random.

Assume there are 15 randomly drawn experimental units from the inference space to be used for
the entire experiment. One way to obtain a completely randomized design is to select a random
number between 1 and 5, say 2. Then the first experimental unit must receive treatment 2, or the
second level of factor ¢. Select another number between 1 and 5, say 5; then the second experimen-
tal unit must receive treatment 5. Continue sampling or drawing random numbers in this manner
until the 15 experimental units have all been “treated.” This sampling procedure requires that each
level of factor t be represented three times in the experiment; the design of this experiment is com-
pletely randomized.

The mathematical model for analyzing the data from such an experiment is

yig=u+Tite; =1,2,...,8 =123 Q)

where yi= the response from experimental unit j treated with level i of factor ¢
u = overall mean
T; = effect of the ith level of factor ¢
€)= the experimental error caused by the jth experimental unit nested in the ith level of
factor t .
The assumptions for the analysis of the data in a model such as this are:

1. yjisa random variable.

2. The variances of the responses within levels of factor t are equal.

3. The model is additive.

4. The experimental error is normal and independently distributed, with mean zero and variance
o2, or NID(0, ¢2).

This complete randomization assures the experimenter that the experimental units from the
inference space have three opportunities for selection for each treatment. These three units for
each treatment then allow a measure of the variation within the treatments, which is the represen-
tation of the variation across the entire inference space. It follows, then, that the test of signifi-
cance on treatment effects (T; in equation 1) must be based on the excessive amount of variation

among the means of the treatments over the amount of variation obtained from within the treat-

ments, where the variation within the treatments is accounted for by the variance due to e(;);in
equation 1. Hence in equation 1 the €()j is the correct error for evaluating 7.

If, however, the sampling procedure were such that the first random draw (level 2) were used on
the first three experimental units, the second draw (level 5) on the next three experimental units,
and so on, we would have a restriction on randomization because the randomization procedures
were allowed only 5 times, not 15 as is required for complete randomization. If, as is frequently
the case, there tends to be similarity between adjacent units in space or time, the variation within
the group of three is smaller than the variation between the groups of three. In this design, then,
the variation due to treatments is not separable from the variation between groups of three units
(treatments confounded with groups). If, then, there is a source of error variation between groups,
it will not be possible to test for treatments, as is depicted in the model

yij= m* T+ 83y + €(i)j @

where 5(;) is the “restriction” error, or that random component due to the ith group of units
(note how the subscript is identical to the subscript to T, indicating complete confounding) and
€()jis NID(O0, 03'), the error due the jth unit in the ith group. It is the variation due to ;) that is
representative of the variation across the inference space, whereas the variation due to the e'(,-)j in
equation 2 represents only a small portion across the inference space. Hence one needs an estimate
of og to test for the effect of treatments. Of course &(;) has no degree of freedom, which indicates
that this is a poor design and should not be used.

Using the algorithm for deriving the EMS described in Chapter 2 of Anderson and McLean,! we
can show that the correct error term for testing treatments is 8 (;). However, there is no estimate of
this error in equation 2 unless the whole experiment is repeated. Hence the restriction on the ran-

EUR
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domization has caused 8(i), which in turmn tells the experimenter that this sampling procedure is
not a good one even before the first observation is made, This, then, allows the experimenter to
change the design early, before taking data that will not give a good analysis.

Before explaining the third ingredient of designed experiments, namely, replication, a few words
should be said about special cases where randomization may not be required. If an investigator can
show by actual experimentation that the results are the same whether randomization takes place
or not, it may not be necessary to randomize. This will happen on extremely well controlled
experiments only. We are familiar with an example of a laboratory experiment on one cylinder
engine gasoline consumption in which it did not matter whether speeds were randomized or taken
in order. The reason for this was that the controls on speed were so precise and the setups so
repeatable that the errors were identical within the capabilities of the recording equipment. In
terms of the model for analyzing the data from this experiment (similar to equation 2), () is
approximately zero.

With this nonrandom possibility in mind, and knowing an experiment cannot be designed well
without knowing the inference space, we rank inference space above randomization in importance
when considering ingredients of a well-designed experiment.

Replication

The third ingredient, replication, is quite often required for an estimate of an error term or to
provide the basis for making decisions on the importance of factors contributing to the response
variables. In addition, as the number of observations increases on a given treatment, the more pre-
cise the estimate of the effect of the treatment becomes, or the smaller its variance becomes.

If, however, previous experimentation has shown that certain information is available, for exam-
ple, that the variance is known or that higher-order terms in the model are zero, it may not be
necessary to replicate the entire experiment. In fact, there are many good experiments run with
fewer than the total number of levels of the factors in a “factorial” experiment. These experiments
are called “fractional replicated factorials.”

Because of the various well-designed experiments without complete replications, the ingredient
replication is placed in third position behind inference space and randomization.

Readers of the material on designs and analyses in the next section should understand (1) basic

statistical concepts, (2) distributions such as mean ¥, t,x%, and F, and (3) analysis of variance and
regression models.

13.4.3 DESIGNS

A definition of a designed experiment is an arrangement of the experimental material, including
randomization of experimental units to the treatments, so that statistical tests of significance (and
confidence intervals) on the effects and interactions of the factors being studied can be made. To
accomplish this, care must be taken to set up the arrangement efficiently (keep the cost reasonably
low) while covering the inference space. In the following coverage of designs, major headings are
used to indicate designs encountered by the authors in engineering studies.

Block Designs

Importance of Blocking

Many authors of books on the design of experiments express the importance of “blocking,” or
placing all treatments or all combinations of the levels of all factors of interest in a homogeneous
group (thereby removing some of the effect of an extraneous variable from the experimental error)
and repeating this group or block in time and/or space with different experimental units. To show
this concept, we use mathematical equations that are to be used as the basis for analyses of the
data from the designed experiment.

Returning to the concepts involved in setting up equations 1 and 2, it follows that another design
of the experiment is to arrange three blocks of five treatments each, where the five experimental
units are randomized onto the five treatments per block. It follows that the equation to be used as

the basis for the analysis is
Yij=utBi+b)+Ti+e 3)

where y;; and 4 have the same meaning as they did in equation 2, §; is similar to 8(;) in equation
2, and

B; = effect of block {
Tj = effect of the jth treatment
€jj = error due to the jth treatment in block i (assuming there is no interaction)
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Since the experimenter is interested in testing for treatment effects only, this is an excellent
is for the test of T; since the variation across treatments is compared to
the variation due to ej’s. If it should turn out that the effects of B; and Bﬂ,-) are zero, then Bj,
(i), and ¢;; may be pooled, and equation 3 becomes equation 1. This completes the demonstra-
tion that, in general, blocking is always worthwhile in experiments and should be used whenever
possible.

Latin square designs, used correctly, merely extend restriction on randomization in one more
dimension. Too many engineers incorrectly use Latin square designs as special fractional factorials
(see Chapter 8 in Anderson and McLean!). Since it is difficult to enable the reader to understand
these points in the space allowed here, we recommend that Latin squares not be used by novices.

Incorrect Use of Blocks

In the previous example, the effect of §(;), the restriction error caused by blocks, did not decrease
the importance of blocking because the experimenter was interested in the effect of blocking plus
the restriction error in reducing the estimated experimental error, ?ij- In that case ’e‘,-j was the basis
for testing treatment effects only. :

One must consider the case in which the blocking concept is used incorrectly. Consider an exam-
ple in evaluating microforms, where the interest was in reducing user dissatisfaction. The experi-
menter wanted to use two types of projection (front, F, and back, B) as blocks and to randomize
four screen angles (0°, 45°, 90°, 105°) twice within each block. The measured variable was seconds
required to read the material presented each time. Pictorially the design was as follows:

Types of Projection

Front Back
90° 45°
0° 105°
45° 0°
90° 105°
105° 90°
0° 45°
45° 0°
105° 90°

The correct degrees of freedom and the model for the analysis of the data from this design are

16=1+1+0+3+3+8

\

y,-jk=p+T,-+5(,')+Aj+TA,-j+€(,'j)k i=1,2; j=1,2,3,4; k=12

@

seconds required to read the microform from the kth observation using the jth angle

and the ith type of projection
u = overall mean
T; = effect of the ith type of projection (fixed)
8() = restriction error due to all of the angles used with the ith type of projection before
the other type of projection is used
Aj = effect of the jth angle (fixed)
TA;j = effect of the interaction of the ith type with the jth angle
€(ij)k = error due to the kth observation within the ith type jth angle, assumed NID(0, o?).

where yjjg =

The analysis of variance appropriate for analyzing data using equation 4 is as follows:

L8
Source df EMS
Types of projection (T}) 1 02 + 802 + 8¢(T
Screen angles (4;) 3 of+ 225/4)
TAy 3 o2 +20(TA)
8 052

Repeats within (T ~ 4) S
Combination €(jj)k

It is apparent from the EMS column that there is no test for types of projection because there is
no source with an EMS of o2 + 80Z.

Hence this is an incorrect use of blocks. To obtain the source




1348 QUANTITATIVE METHODOLOGIES FOR INDUSTRIAL ENGINEERS

to estimate ag + Sag, there must be a replicate of the experiment. This concept is demonstrated in
the following section. R

Correct Use of Blocks

To make the experiment described in the preceding section a good one, the investigator should set
up the eight treatment combinations as follows (one possible randomization):

Blocks
1 2
F 45° B 105°
B 0° F 90°
B 105° B 45°
F 0° F 105°
B 90° F 45°
F 105° B 0°
B 45° B 90°
F 90° F 0°

The degrees of freedom and the model for the analysis of the data from this design are as follows:
30=1+1+ 0 +14+ 1 +3+ 3 + 3 + 3 + 0
eiy = +B:+8\+T; + I 4 P S '+BTA + Py
Yijie = #+ Bi+ 8y + Tjy BT+ Ak + Blusc + Tk + BTAijic * <(ijk)
i=1,2; j=1,2; k=1,23,4
where

B; = effect of i th block (random)
&(;) = restriction error using blocks correctly
Ti’ Ay, TAI,-k = same as T, Aj, TA,'J- of equation 4
BTyj, BAjx, BTA ik = appropriate errors for testing (note arrows), which would probably pool for a
COmMOon error
€(ijx) = residual error, not estimable with one observation per treatment combination
per block

This is explained in detafl in Anderson and McLean.!
Repeated Measures and Crossover Designs

A researcher in an industrial plant dealing with soldering parts on electronic equipment was intes-
ested in studying paced and unpaced production. He set up the experiment in a plant that used
women only and recorded the ages of the women. He grouped the women into ages as follows:
young (18-23), middle (30-35), and old (52-57). He was able to obtain six women in each of these
age groups, which allowed him to have a sequence (selected at random) of (paced, unpaced) and
(unpaced, paced) for 2 weeks for three women in each group. The layout of the design of the
experiment can be portrayed as follows:

Ages
Young Middle Old
Sequence Sequence Sequence
1 2 1 2 1 2
Women Women Women Women Women Women

Weeks 123 456 789 10 11 12 13 14 15 16 17 18
1 P U U P U P
2 U P P 10) P U
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If the assumptions of the analysis of variance have been met, the analysis of variance of the dat
(different response variables) from this experiment, which uses a crossover design, is as follows:

Refer to Grizzle,?

Source df
Ages (4) 2
Sequence (S) 1
AS 2
Females in (4 - S) cells (F) 1

Weeks (W) 1
Paced versus unpaced (P) 1
AP 2
SP 1
ASP 2
Residual 11

Myers,5 and Anderson and McLean! for details of this type of design and

analysis. For designs and analyses utilizing extensions of these designs to more sequences, refer to
Albert et 2.6 and Westlake.”

Other Designs

There are many other designs used in industrial engineering that deal with factorial experiments
and fractxonal factorials plus response surface designs. For these designs and analyses, refer to

Myers,® Anderson and McLean,!

and Box et al.?
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