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I. Background

One approach to designing experiments in the last decade considers
three essential ingredients of a well designéd’experiment expressed in
the book by Anderson and McLean (1974). These three ingredients, in
order of importance, are:

A. Inference Space

B. Randomization

C. Replication.

Inference space is a phrase to replace the term "population”,
usually used by statisticians. It has been our experience that the term
"inference space" demands more attention from the research worker.

The phrase "inference space" means the Timits to which the investi-
gator may use the results of the experiment. Common practice at present
is for the research worker to indicate how extensively he wishes the
results to apply before the experiment is set up. This requires that
he define the experimental units (such as "white rats of a certain size"
to represent all rats of this type) he is to use ih his research and
that will be the basis for the inferences. He must also define the time
interval and the geographical extent to which he wishes the results to

apply, and then decide which levels of all factors he wants controlied



in the experiment. Ordinarily more time should be spent on this phase
of designing the experiment than either of the other two (randomization
and replication) because without the fnference space clearly defined the
best so called "designed experiment" may be worthless to the investi-
gator. We define this ingredient (inference space) as a part of the
'd951§ﬁed experiment. Hence there can be no "best designed experiment"
Without a carefully defined inference space.

Randomization is the next most important ingredient in designing
experiments. It must be present in the experiment for probability
statements to be made. Fisher (1960), p. 17, expressed the idea that it
is the physical basis of the validity of the test. It is also the basis
of validity of confidence intervals.

Included in the ingredient, randomization, is another concept,
"restriction” on randomization. To understand restriction on randomi=
zation let us first exp]éin "completely randomized” which means no
restriction on randomization. This concept can bé seen by considering
a factor, t, with five levels and three experimental units treated with
each of the five levels of factor t completely at random.

Assume there are 15 randomly drawn experimental units from the
inference space to be used for the entire experiment. One way to obtain
a completely randomized design is to select a random number between 1
and 5, say 2. Then the first experimental unit must receive treatment
2 or the second level of factor t. Select another number.between 1
and 5, say 5, then the second experimental unit must receive treatment 5.
Continue sampling or drawing random numbers in this manner until the

15 experimental units have all been "treated". This sampling procedure



requires that each Tevel of factor t is represented three times in the
experiment and the design of this experiment is called "completely
randomized”.

The mathematical model for analyzing the data from such an experiment

is
y1j=u+T1- + €-;(1.)J. 1 =1,2,...,55 = 1,2,3 (1)
where
yij = the response from experimental unit j treated with level i
of factor t,
u = overall mean
Ti = effect of the ith level of factor:t,
E(i)j = the experimental errbr caused by the jth experimental unit
nested in the ith level of factor 1.
The assumptions for the analysis of the data in a model such as this
are:
a) Yij is a random variable,

b)  the variances of the responses within levels of factor t

are equal,
c) The model is additive,

d) The experimental error is NID(O,UZ), normal and independently

distributed with mean zero and variance, 02.

This complete randomization assures the experimenter that the
experimental units from the inference space have three (3) opportunities
for selection for each treatment. These three experimental units for
each treatment then allow a measure of the variation within the treat-

ments,



It follows, then, that
the test of significance on treatment effects (Ti in equation (1))
must be based on the excessive amount of variation among the means of
the treatments over the amount of variation obtained from within the
treatments where the variation within the treatments is accounted for
by the variance due to e(i)j in equation (1). Hence in equation (1)
we can indicate that € (1) is the correct error or evaluating Ti'

If, however, the sampling procedure was such that the first random
draw, level 2, was used on the first three experimental units; then the
second draw, level 5, was used on the next three experimental units and
so on, we would have a "restriction" on randomization because the randomi-
zation procedures were allowed only five times, not 15 as is required
for complete randomization. If, as is frequently the case, there tends
to be similarity between adjacent units in space or tiem, the variation
within the group of three is smaller than the variation between the groups
of three. In this design then, the variation due to treatments is not
separable from the variation between‘groupsbof three units (treatments
confounded with groups). If then there is a souce of error variation
between groups, it will not be possibly to test for treatments, and
the following model depicts this

Y.

]
where: G(i) is the "restriction" error or that random component due
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to the ith group of units (note how the subscript is identical to the

subscript to T indicating complete confounding), and
2))
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unit in the 1th group. It is the variation due
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the error due the jth
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the inference space. Hence one needs an estimate of cg to test for

in equation (2) represents only a small portion across

the effect of treatments. Of course 6(1) has no degrees of freedom,
which indicates this is a poor design and should not be used.

Using the algorithm for defiving the expected mean squares described
in Chapter 2 of Anderson and McLean (1974), we can show that the correct
error term for testing treatments is 6(1). However, there is no estimate
of this error in equation (2) unless the whole experiment is repeated.
Hence the "restriction" on the randomization has caused 5(1) which,
in turn, tells the experimenter that this sampling procedure is not a
good one even before the first observation is made. This, then, allows
the experimenter to change his design early, before he has taken data
that will not give a good analysis.

Before explaining the third 1ngfedient of designed experiments,
namely replication, a few words should be stated about special cases
where randomization may not be required. If an investigatdr can show
by actual experimentation that the results are the same whether randomi-
zation takes place or not it may not be necessary to randomize. This
will happen on extremely well controlled experiments only. We are
familiar with an example on a one cylinder engine gasoline consumption
laboratory experiment in which it did not matter whether speeds were
randomized or taken in order. The reason for this was that the controls
on speed were so precise and the set-ups so repeatable that the errors
were identical within the capabilities of the recording equipment. We
have not experienced such control, however, in biological experiments.

With this non-random possibility in mind and'knowing an experiment



cannot be designed well without knowing the inference space, we rank
inference space above randomization in importance when considering
ingredients of a well designed experiment.

Finally the third ingredient, replication, is quite often required
for an estimate of an error term, or to provide the basis for making
decisions on the importance of factofs contributing to the response
variables. In addition, as the number of observations increases on a
given treatment the more precise the estimate of the effect of the
treatment becomes, or the smaller its variance becomes. For example in
estimating the mean of the response from a treatment, the variance of

the estimated mean, y, is

7 n
where
52 = variance estimated from the sample

n = number of observations randomly obtained from the entire
inference space for y.

If, however, previous experimentation has shown certain information
is available, e.g. the variance is known or that higher order terms
in model are zero, it may not be necessary to replicate the entire
experiment. In fact there are many good experiments run with fewer
than the total number of combination of levels of the factors in a
"factorial" experiment. These experiments are called "fractional
replicated factorials" which will be described later.

- With the various well-designed experiments without complete repli-

cations in mind, the ingredient "replication" is placed in third position



behind inference space and randomization.

Before going into designs and analyses it should be understood that
the readers of this material should understand (1) basic statistical
concepts, (2) distributions such as the mean y, t, x2, F and (3) analysis
of variance [ANOVA including expected mean squares (EMS)] and regression
models.

II. Designs

‘A definition of a designed eXperiment is an arrangement of the
experimental material, including randomization of experimental units to
the treatments so that statistical tests of significance (and confidence
intervals) on the effects and interactions of the factors being studied
can be made. In order to accomplish this, care must be taken to set
up the arrangement efficiently (keep the cost reasonably low) and, at
the same time, cover the inference space. For coverage of designs,
major headfngs are used to indicate designs encountered by us in bio-
availability studes.

A. Block Designs
1. Importance of Blocking (Handling Extraneous Variables)

Many authors of books on design of experiments express the importance
of "blocking", placing all treatments or all combinations of the levels
of all factors of interest in a homogeneous group (thereby removing some
of the effect of an extraneous variable from the experimental error)
and repeating this group or block in time ana/or space with different
experimental units. To show this concept we use mathematical equations
which are to be used as the basis for analyses of the data from the

designed experiment.



Returning to the concepts of setting up equations (1) and (2)
it follows that another design of the experiment could be to arrange
three blocks of five treatments each, where the five experimental units
were randomized onto the five treatments per block. Pictorially, one
could have the following arrangement:

Blocks

Treatments Tréatments Treatments
5 2 3
2 4 1
3 1 5
1 5 4
4 3 2

It follows that the equation to be used as the basis for the analysis is:

Yij

where:yij and u have the same meaning as they did for equation (2)

=n+B, +6,.y+T. + €.
W By Sy T ij (3)

Bi = effect of block i

6(1) is similar to 6(1) in equation (2)

Tj = effect of the jth treatment

th

1€ .. = error due to the j~ treatment in block i (assuming there is

1J
is no interaction).

"Since the experimenter is interested in testing for treatment
effects only, this is an excellent design because: € i3 is the basis for
the test of Ti since the variation across treatments is compared to the
variation due to € 1.'5. If it shouild turn out that the effects of

J

B; and 6(1) are zero, B, 6(1) and: € i3 may be pooled and equation (3)

becomes equation (1). This completes the demonstration that, in general,



blocking is always worthwhile in experiments and should be used whenever

possible.

To show the effectiveness of blocking, the following simple example

is provided:

a. Block Effect Large
Blocks
1 2 3
Treatment y Treatment y Treatment Yy Treatment:
5 1 2 9 3 2 1: 4+8+8=20
2 7 4 3 1 8 2: 7+9+10=26
3 5 1 8 5 5 3: 5+10+2=17
1 4 5 8 4 3 4: 1+3+3=7
4 1 310 2 10 5: 1+8+5=14
18 38 28
ANOVA

[Reference Table 5.1.

3 p.129 of Anderson and McLean (1974)]

Source df  SS MS F EMS
Blocks 2 40.00 20.00 02+50§+50§
S -0 -- -- 02+502
8
Treatments 4  66.27 16.57 3.7 N.S. o2+34(T)
Error 8 35.33  4.42 o
Py g(-05) = 3.8

N.S. means not Qignificant at o=

.05.
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Analyzed as a completely randomized design (ignoring block effects).

Source df _SS MS F EMS

Treatments 4 66.27 16.57  2.20 N.S. o°+3¢(T)

Error 10 75.33  7.53 o2

b. Block Effect Zero

Blocks
1 2 ' 3

Treatment Yy Treatment y Treatment y

5 3 2 7 3 2
2 9 4 1 1 8
3 7 i 6 5 5
1 6 5 6 4 3
4 3 3 8 2 10

28 28 28

Treatment 1: 6 + 6 + 8 = 20
2: 9+7+10=26
3: 7+8+2=17
4: 3+1+3=7
5: 3+6+5

1]
j—
Y
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ANOVA

Source df SS MS F
Blocks 2 0 0
8 0 -- --
* Treatments 4 66.27 16.57 3.7 N.S.
Error 8 35.33 4,42
F4,8('05) = 3.8

N.S. means not significant at «=.05.

Analyzed as a completely randomized design (pooling block and error

effects)
Source _ df SS MS F
Treatments 4 66.27 16.57 4.7*%
Error 10 - 35.33 3.53
F4’10(.05) = 3.5

*significant at o=.05

¢. Conclusions

(i) The effectiveness of blocking is shown in case a. by observing the
differences in the error mean square when the data are analyzed as a
randomized complete block design as compared to a completely randomized
design (4.42 versus 7.53). Note that the mean square for treatments is
the same in both tables in case a. and that treatments are very close
to being significant when analyzed properly, i.e., as a randomized
complete block design.

(ii) The initial model used for case b. is

Yij ij

It is seen, however, that since Bi + 6(1) = 0 that one can now write

=+ B, + 8.y +T. + €
W Byt Sy T
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the model as

Yig T e T3 Sy
which gives the second ANOVA table where the F for treatments is now
4.7 as compared to 3.7 for the initial model.

(i1i)In both of the above examples the data were analyzed using the models
for the randomized complete block design and the completely randomized
design. In the first case the effect of blocking is clear and illus-
trates the power of blocking. In the second case blocking was used to

no avail but the indication of no block effects was seen in the ANOVA
table and then by pooling block and error effects the power of the signi-
ficance test was again increased.

The point of all of this is to demonstrate that one does not
lose by blocking in the original experiment because if the block effects
are very small one can pool to.obtain an error term that would have been
the same as if complete randomization had occurred.

2. Incorrect Use of Blocks (Treatments Used as Btlocks)

In the previous example, the effect of 6(1), the restriction error
caused by blocks, did not decrease the importance of blocking because
the experimenter was interested in the effect of blocking plus the
restriction error in reducing the estimated experimental error, € ij°
In that case,iE.ij was the basis for testing treatment effects only.

Now, one must consider the case in which the blocking concept is
used incorrectly. Consider an example in manufacturing drugs in tablet
form. The interest here was in studying disintegration of the tablets.
The experimenter wanted to use five drugs compressed with three different
pressures in the experiment.

The suggested design of the experiment was to use 15 batches of

tablet mixture, one batch (or block) for each gombination of the five
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drugs and three pressures. After the tablets were compressed from each
batch of about 500 tablets, 5 were to be pulled at random from each 500
tablet batch and the time to disintegration was to be measured in
seconds. This procedure would be carried out for all 15 batches,
making 75 tablets to be tested for disintegration time.

The analysis of the data may be summarized with the following
degrees of freedom (df) and model:

df: 75=1T+4 +2 +8 +0 + 60

model : yijk =y + Di + Pj + Dpij + S(ij) +{Ev(1j)k

i=1,2,3,4,5; j=1,2,3; k=1,2,3,4,5. (4)

where:

h th

yijk = disintegration time of the kt tablet with the j~ pressure
using drug 1,

u = overall mean

D1 = the effect of the ith drug,
Pj = the effect of the jth pressure,
DPij = the effect of the interaction of drug i, at pressure j

G(ij) = restriction error caused by all of the tablets in the
(1’,j)th drug, pressure combination being manufactured under
the same conditions. This is the only error appropriate:
for testing D, P and DP

and

< (ij)k = the experimental error caused by the tablet in the

(i,j)th cell.

Model (4) points out (by using 6( ) that one should not run the

i)
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experiment in this manner because there will be no degrees of freedom

for the appropriate error to test drugs, pressures and their interaction.
That error, of course, is the G(ij)’ This is a demonstration of using
blocks incorrectly, that is, the blocks (batches) are completely con-
founded with treatments (drugs and pressures) of interest. One could

not test for blocks separately in the previous example but one was not
interested in blocks, per se, there. When the experimenter is interested
in testing for treatments (drugs and pressures), the individual should
not use treatments as blocks.

The correct way to handle this problem is to run at least two batches
for each of the 15 combinations of drugs and pressures. Then take one
tablet per batch (some experimenters may demand to take two but for this
demonstration assume only one was used) and analyze the results of these
tablets. The two batches provide the correct error for between "batch
treatments" (drugs and pressures) and the inference space is sampled
much more effectively because there are two samples (batches) from each
bomvination rather than only one. The equation for the analysis of the
data from this design is:

Yigh = Dy + Py # DPyy + Brygyy * (k) (%)
where: i=1,...,5; j=1,2,3; k=1,2.

The analysis of variance is:
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Source: df f f r EMS

5 3 2
1 J k
D, 4 0 3 2 02+o§+6¢(D)
P, 2 5 0 2 02+o§+10¢(P)
DP 8 0 0 2  oP+o2+24(DP)
i | B
| 2 2
Bk 15 1 11 oPed

€ (i3K)
where:

the arrows (( ) indicate the F-tests, Di,Pj,DPij;E (13k) are defined
as for equation (4) and B(ij)k is the error caused by the kth batch
within treatment combination (ij), the correct error for testing D, P,
and DP.
B. Designs with Treatments on Same Experimental Units
1. Repeated Measures

The following examples use time as the treatments on the same

experimental units but this is not the only type of treatment used in

bioavailability studies:
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Drugs ( Fixed)
1 2 3 4
People People People People
(Random) (Random) (Random) (Random)
Time
(Fixed) 1 2 3 4 5 6 7 8
1
2
3
4
5
6

Quite frequently in this type experiment the research worker wants
to compare the efficacy of only those four drugs used in the experiment
on a population of people. To establish the experimental units in the
inference space, the people may be defined in terms of age, sex, race and
so on with the sample for the experiment assuemd to be random from the
indicated population. The efficacy is then investigated over six periods
of time.

One of the statistical dangers in this type designed experiment
is that the assumption of no correlation between responses may not be
met for the same person over the time periods. This has been recognized
by statisticians and methods to handle the problem are discussed by
various authors including Greenhouse and Geisser (1959), Cole and Grizzle (1966),
Winer, p. 522-524 (1971), Anderson and McLean p.. 166 and 167 (1974) and
Elashoff (1981).
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The model appropriate to analyze data from the drug experiment above

if all assumptions are met is:

... =u+D. + - L.y F + ..+ e, HOE L. 6
Yigk =¥ ¥ 05 Prayg * 8¢ig) Tt DTy * PTey 5k (ijk) (6)
where:
- .th . . th . . .
7 yijk = response of the j~ person in the k* time period using the
ith drug,

u = overall mean

th

D, = the effect of the i™" drug (fixed),

h th

P(i)j = the effect of the jt person using the i drug (random),

S(ij) = the restriction error caused by the same person responding

over time, NID(O,og),

h

T, = the effect of the i"" time period (fixed),

h

DT1.k = the effect of the interaction of the 1t drug in time period k,

h

PT(i)jk = the effect of the interaction of the jt person using

'drug i in time period k,

th

and : € (ijk) = the random error caused by the j~ person using drug i

in time period k, NID(O,oZ).

The ANOVA for this model is:

Source daf  SS MS EMS
Drugs (D) 3 72.25 24.08 62+6c§+6c§+12¢(D)
People in D(P) 4  7.00  1.75 02+60§+6o§
S 0 none 02+6c§
*Time (T) 5 105.42  21.08  o“+an+89(T)
*DT 15 38.25  2.55 ol+ob+24(DT)
*pT 20 15.00 0.75  otoh
2

1 € 0 none c




a)

and for

b)
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*Anderson and MclLean p.166 (1974) show that if there is high
correlation between observations from time to time within
people, the df for testing Time and DT should be 1 and 3
respectively for the numerator of the F and 4 for the
denominator. The actual mean squares calculated from the

date should be used, however. Hence for testing hypotheses.

_ MS Time

Use Fr,4 = —wspT

HO: o(DT) = 0
_ MSDT
Use F3,4 = WopT

Let us consider a small experiment (for demonstration purposes

only) of this type and show the calculations one usually follows to

analyze the data.

DRUGS

Time 1 2 3 4 5 6 7 8 Totals

1 2 3 4 2 6 5 7 5 34
2 4 4 4 4 5 5 5 4 35
3 5 7 4 3 5 6 6 5 41
4 3 5 5 3 8 10 9 10 53
5 7 7 8 5 9 9 10 11 66
6 6 6 . 6 7 7 8 8 9 57
Totals 27 32 31 24 40 43 45 44 286

59 ' .55 83 89
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The first calculation should be to run a homogeneity of variance
test on all the data unless the experimenter knows the distribution of
the errors for the variable to be analyzed. In this case the investi-
gator may immediately transform the data appropriately. For example,
if it is known that the variable, y, is exponential in nature the log y
may be run without bothering to investigate the homogeneity of the
variances or the distributional properties of y.

For these data let us assume that the distributional peculiarities
are not known. To recognize the two errors in the nested factorial
design, one should run two different tests for homogeneity of varianceé
as follows:

a) Between people within drugs

(In this case there are six time periods for each person.
Hence there is a divisor of 6.)

For the four drugs

2 2
2 _ (27-32)2 . 2 _ (31-30)2 .
S-l = ."6—.2—=-|T— 2.08, 52 = Vi = 4.08,
2. (00-63)° | oo 2 (asam)?
37T 785 8y = :

g, .. = 4.3264 + 16.6464 + 5624 + .0064 : ,,
(1.4) (2.08 + 4.08 + .75 + .08)°

a0y 4)(.01) = .92 .. accept homogeneity of the variances

between people for the four drugs.
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b)  Interaction of People x Time for the four drugs:

Example: Drug 1 Drug 1:
People 2,52 2
ss Time: 28%...¥12 29
Time 1 2 Total
— N2
1 2 3 5 $S People: (27132) - 2.08
2 4 4 8
3 5 7 12
1 3 5 8 SS Total: 22 + ... + 6° - %%—
5 7 7 14
66 6 12 = 323 - 290.08 = 32.92
Total 27 32 [59 ]
S IntD: 32.92 - 25.50 = 7.42
Drug 2:
6 + 132 552 551
SS Time: - - = - 252.08
2 Y
= 22.42
SS People:
SS Total: 285 - 252.08 = 32.92
SS Int: 32.92 - 26.50 = 6.42
Drug 3: .
Drug 3. >
SS Times .. + 15 ,__§g = 33.42
SS People:
SS Total: - 574.08 = 36.92
SS Int®: 36.92 - .75 - 33.42 = 2.75
Drug 4:
2 2
SS Time: 12 - (?g) = 58.42
SS People:
SS Total: - 660.08 = 62.92
sS IntD: 62.92 - .08 - 58.42 = 4.42
q _ 55.06 + 41.22 + 7.56 + 19.54 _ 123.38 - o
(8:8) (742 + 6.42 4 2.75 + 4.42)2  (21.01)°2

A5 4)(-01) = .498 .". Accept the homogeneity of the interaction

variances:
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Next if the number of people per drug were 5 or greater, one could
run a Shapiro-Wilk W-test, Anderson and McLean (p.26, 1974), to test
for normality. Here there are only 2 people per drug so no test for
Normality can be made.

Next one may calculate the sums of squares using the original
data because no transformation is indicated from the preliminary test
on the homogeneity of variance and there is no thoery to tell the
experimenter that a transformation should be made.

Using equation (6) where i=1,2,3,4; j=1,2,; k=1,2,...,6, one can

calculate the sums of squares for the sources as:

(256 )ﬁ_ <4,§,6 >2
Y ) Yas
SSD, = % \gk 1K _ MLk Tk
) 576 7
i=1
2
_59% + 55" + 83° + 89°  286°
Vi 18
= 1776.33 - 1704.08
= 72.25
4,2 2 4,2,6 2
6 \ .. Yiik ) o ik
SST, = z 1,J [ _ 1.,
K= b T 13
k=1
342 +35% « ... +57° 286
5 13
= 105.42
6 2 2.6 2
4.2 E j1Jk 4 2 y1Jk>
SSP,iy: = ) Loy ALk T/ \



- 22 -

243224 ..+ 442 592 4 552 4 g32 4 go?
5 - ¥

1783.33 = 1776.33

_ 27

7.00

SSDT;; = - CT| - SSV; =SSPy
2 . 2, 112 2 2
55+ 65+ 11T+ L.+ 17 286
= 5 - Sgg— - SSV, - SS P,
= 1920.00 - 1704.08 - 72.25 - 105.42
= 38.25
SSPT(5)4k = 1 (SSPT(D,))
i 2,6 2 2 2 /2.6 2
where i j i
4 Lo Yijk 2\ .2y Yijk Lo Yijk
SSPT(D) = | yf,, -~k | § A , ALk
i=1 k=1
"~
6 2 2,6 2
2 Z] Yijk .Xk Yijk
y o2 .\ /.
i4 6 12
2 2, o2 2 2
C o2, 22 2 59 5° + 8%+ ... + 12 59
= [2° + 3%+ ... +6° - 5] - [ 5 - 5]
_ 2t s 32?59t
6 12
= 2.42
2 2 . 2 2 2
Y- 2 2 b5 6+ 8 + ... + 13 55
SSPT(Dy) = [4% + 2%+ ... + 7% - 337 - [ > - -1
NI T
6 2

= 5.42
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2 2 2 2
SSPT(D,) = [62+ 52 + ... +g2 -8 9 [N +10°+...15
3 12 2
R G EC
12 6 12
=2.75
2 2 2 2 2
_ 2 2 2 89 12+ 9"+ ... + 17 89
SSPT(D4)_[7 +5 +..-9 _T]-[ 2 _]2]
|45 ad® 8o
6 12
= 4,4]
Therefore
4
SSPT(i)jk = iZ]SSPT(Di) = 15,00
and _ z 2
4,2,6 , 55k Yijk
SS Total = 1 § . Yijk 15

323 + 285 + 611 + 723 - 1704.08 (from our work above)

237.92.

This completes the discussion on repeated measures type designs
here. It must be understood that time is not the only treatment on the
same experimental unit that an experimenter may encounter.

2. Cross Over Designs

Another design frequently used by bioavailability research people
for noncurative drugs is the cross over design [Grizzle (1965)]. The
basic structure of the design comes from a 2x2 square called a Latin
Square because the treatments are represented by Latin letters inside
the designated row and column combinations. A reference for the Latin
Square design is Chapter 8 of Box, Hunter and Hunter (1978).

The overall structure of the cross over design is portrayed -in the

following layout:
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Groups of People

1 2
1 Drug Drug

Time of A B
Admfnistratiﬁg 2 | Drug Drug
Drug B A

where it is assumed that a random group (Group 1) of people were given
drug A and blood measures taken then a washout period was allowed before
the same group was given Drug B and a final blood measure was taken.
Similarly, another group (Group 2) was given Drug B first, measured
and allowed a washout period, then given Drug A and measured again. Hence
the two drugs (treatments) are used on the same person (experimental
unit).

This method allows an evaluation of carryover effects by looking
at Time in the analysis. The necessary assumption however, is that there
is no interaction of Groups by Time because the effect of Drug A vs.
Drug B is completely confounded with that interaction. To demonstrate

this consider the following [assume the design is completely randomized
with one observation per group so the concept of calculating interaction

(sums of squares) may be shown]:

Groups
1 2 Total
Time 1 A =25 B =10 35
2 B=17 A= 23 30

Total 32 33 65
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ANOVA
Source df ss
Groups (G) 1 .25
Time (T) 1 6.25
Interaction GxT 1 240.25
Total 3 246.75
Groups SS: (32-33)%/4 = .25
Time SS: (35-30)%/4 = 6.25
Total §5: 252 + 72 + 102 + 23% - $§213_= 246.75
GXT SS: 246.75 - .25 - 6.25 = 240.25

(A vs. B) SS: (48-17)%/4 = 240.25

Since GXT SS = 240.25 and (A vs. B) SS = 240.25 this demonstrates the
Complete confounding of the interaction of Gruops x Time with (A vs. B)
drug effect. Hence one must assume there is no interaction of GxT
before he can interpret (A vs. B) drug effect in these designs.

The usual approach to analyze cross over designs utilizing the
Latin Square and repeated measures concepts follows:

Example. An illustration of the cross over design occurred in a
problem for a drug manufacturing company. Two formulas of a drug were
given to 18 human beings selected at random from a population to which
the drug would be given. Nine random subjects were given formula one
and the other nine were given formula two. The amount of the drug in
the blood of each of the 18 subjects was measured eight hours after
administration of the drug and that amount was recorded.

After 7 days of "washout" period in which the drug supposedly was
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excreted, another blood sample was taken and all 18 subjects had zero
amount of the drug in their blood samples. The experimenter then had
the 9roup of nine who took formula one take formula two and vice versa
for the other group. This part of the experiment is called the "cross
over" part of the design.

A model for the analysis of this experiment is:

Yijk = ¥ S+ 5(1) + Tj + Fk +: e(ijk) (7)
i=1,2,...,18, j=1,2, k =1,2
where
yijk = amount of drug in the blood of the ith subject after 8 hours

given order j and formula k.
p = Overall mean

Si = the effect of subject i

6(1) = the restriction error on the ith subject due to all obser-
vations on orders and formulas coming from the ith subject

Tj = the effect of the jth time plus any effect due to restricting
the randomization at the jth time,

F, = the effect of the k™ formula

€ (i5k) ~ error, NID(O,OZ), estimated from the remaining effects
assuming all interactions are zero.
The data from this experiment are given in the following tabulation:

Subjects

Time 1 2 3 4 5 6 7 8 9

Formula One (351.7)

1 - 51.9 35.1 38.6 36.1 34.6 39.7 37.8 38.8 39.1

Seven Day Washout Period

Formula Two
2 43.5 45.4 35.4 43.7 49.8 39.9 41.4 37.5 39.5

Total 95.4 80.5 74.0 79.8 84.4 79.6 79.2 76.3 78.6
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Subjects

Time 10 11 12 13 14 15 16 17 18

Formula Two (332.0)

1 50.8 41.1 39.1 35.7 33.7 31.2 34.3 31.8 34.3
Seven Day Washout Period

Formula One _ (316.6)

2 44.2 33.4 32.7 33.1 33.4 27.1 33.1 39.5 40.1

Total 95.0 74.5 71.8 68.8 67.1 58.3 67.4 71.3 74.4

2 2 2
(683.7)° + (692.7)° _ (1376.8)° _ , ¢

SS Time = 18 36

2 2
$S Formula = 068:3) 78(708-]) - 52,624.36 = 44.00

(9518)2 + (80.5)% + ... + (74.4)°
2

SS Subjects = - 52,624.36 = 717.79

$S Total )2

(51.9)% + (35.1)% + ... + (40.1)% - 52,624.36 = 1,093.98

'SS Error = SS total - SS Time - SS Formulas - SS Subjects
= 1,093.98 --2.25-- 44.00 - 717.79 = 329.94.

The corresponding ANOVA is tabulated in the following.

Source df $S MS EMS
. 2. 2.2
subjects (5,) 17 717.79  42.22  o“+205+20%
Subject
restriction . E o 5
error (6(1)0 [ I g +206
Time (T,) 1 2.25  2.25  o2+184(T)
Fornulas (F,) 1 44.00  44.00  o2+184(F)
Residual ‘ 2
(i) 16 329.94  20.62 o

Total 35 1,093.98



- 28 -

To find the error with the most degrees of freedom from these data

we may test for time

HO: o(T) =0
2.25
Fr.16 T 2067 < |

Hence‘accept HO at o > 0.25 and pool mean squares, which actually results
in a RCBD where subjects act as blocks and formulas are treatments. The

error mean square with 17 df is

Error mean square = (])(2'25)1; (16)(20.62) . 19.54

Subjects are random and no interest other than to provide the infer-

ence space. The test on formulas is

44,00 _

17 = 19,57 = 2-25

rabled F. . @ = 0.10 = 3.03
L7 2025 = 1.42

Hence the effect of formulas is not significant at o = 0.10 level.
Take the same example and consider the layout of the experiment to be:
Groups
1 2
Subjects  Subjects
Time 1 2...9 10..18

1 Formula One Formula Two

2 Formula Two Formula One

One may think of this design in such a way that he can use the

following model:

Y . = + .+ Ty . .. R ey . ' ..
Yigh "0 7 B ¥ S0y P 0g) Y Tt ETy STyt € gy (8)
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where

Yijk> v are the same as for equation (7)

th

Gi = the effect of the i”" group of subjects

th th

S(i)j = the effect of the j~ subject in the i™" group
d(ij) = 6(1) of equation (7)
T, = Tj of equation (7)

GT1.k = the effect of the interaction of the i°V group by the Kt

h
time and/or Formulas (confounded with effect of formulas)

or
= Fi. of equation (7)

ST(i)jk =€ (i5k) of equation (7) or the effect of the interaction
of the 1th group by the kth time

:€ (1jk) = error, NID(O,oZ) (not estimable in this model)

The ANOVA for the analysis of the data using equation (8) is:

Source df
Groups (G) Co
Subjects in Groups (S(i)j) 16
(i) °
Time (Tk) 1
Formulas (GTik) 1
ST(i)jk 16
(1K) 0

One can see that this ANOVA using Equation (8) explains the error

(ST(i)jk) to be used to test formulas and the details of the workings
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of the design on formulas and time effects much better than the analysis
from Equation (7), the traditional approach. The amalgamation of the
two designs, Latin Square and repeated measures, becomes apparent in
this presentation by showing that the interaction of groups by time is
really represented by formulas (Latin Square) and time by subjects

Within groups is the real error for testing formulas (repeated measures).

Now we are ready to expand on a more recent concept in design of
these experiments. A reference for this type design is Albert et al
(1979). Consider an experiment in which three drugs A, B, and C are
to be compared. A1l six sequences of A, B, and C may be considered
when administering the three drugs to a given person. The minimum
number of subjects one should consider in an experiment of this type
is 12, two for each sequence.

If one measurement is taken for each subject-drug combination and
a sufficient washout period is allowed between drugs, one possibly
Tayout of the experiment is given in Table 1 (where subjects are

assigned at random to the sequences):

TABLE 1.
Sequence
1 2 3 4 5 6
Subjects | Subjects | Subjects | Subjects | Subjects | Subjects
1 2 3 4 5 6 7 8 | 9 10 11 12
1. B B A A B B C C C C A A
T
I o WASH OUT PERIOD >
M2 ¢ C!B B|A A|A A|lB B| C C
E
WASH OUT PERIOD >
3. A AlC C¢C|C C|B B|A A B B




- 37 -

Another possible layout of the experiment is given in Table 2.

TABLE 2.
Sequence
1 2 3 4 5 6
Subjects | Subjects | Subjects | Subjects | Subjects | Subjects
Drugs{ 1 2 3 4 5 6 7 8 9 10 11 12
A t3 t3 t1 t] t2 t2 t2 t2 t3 t3 t] t1
B t] t] t2 t2 t] t] t3 t3 tz‘ té t3 t3
C t2 t2 t3 t3 t3 t3 t1_ t1 t] ,t1 t2 t2

In order to arrive at a satisfactory method of calculating the
sums for the data from such an experiment Tet us consider the model
for the layout given in Table 1 and compare that model with the appro-
priate model for Table 2.

The model with the corresponding degrees of freedom (df) for

analyzing the data from Table 1 is:

df: 3%b=1+5 +6" +0 +2 +10 + 12 +0
modeTs Yygi = w F Q¥ Seayg * Sy T Tt Wi P STyt S agg )
‘where:
Yijk ° response from the kth time, for subject j following sequence
i (notice nothing is associated with the drug),
u = overall mean
Qi = effect of the 1th sequence (fixed)

h th

effect of the jt subject (random) following the i

(1) T
sequence
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6(ij) = restriction error due to times and drugs on the same

subject,

T = effect of the k!

K time (fixed) plus any effect due to res-

tricting the randomization at the kth time,

th kth

QT1.k = effect of the interaction of the i*" sequence and

time (includes the drug effect) similar to GT1.k of equation
(8) except that there are 2df for drugs here witha total of

10df for QT. Hence there are 8df remaining,

th

ST(i)jk = effect of the interaction the j~ subject following the

1th sequence by the kth time, and

€ (1K) = error associated with the observation on the jth

subject following the ith sequence at the Kt time; NID(O,oZ).

It follows that the corresponding degrees of freedom and model
for analyzing the data from an experiment with the layout given in

Table 2 is:

df: 36 1+5 +6 + 0 +2 +10 +12 +0

mode] : Yije = wt Oyt S(i)j +8(iq) ¥ D, +QD;, + SD(i)jk + € (13K) (10)

s s ,(?.,:;.. .,(; .. 'E 2. Y re

in equation (9),

Dk = effect of the kth

QD1.k = effect of the interaction of the i

drug,

th sequence by the kth

drug (imbedded in this component is the effect of time with

2df),

th

SD(i)jk = effect of the interaction of the j~ subject following

kth

the 1th sequence by the drug.
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Since the design can be interpreted as two Latin Square designs
(Sequences 2, 1, 4 make up one Latin Square and Sequences 6, 3, 5 make
up the other one), the terms in equations (9) and (10) may be broken
up in a manner that allows one overall model. To show this, in equations
(9) and (10) we need look only at the within subject effects because
the sequences and subjects are identical in the two equations. From
equation (9), Tk + QT1.k =D + QD1.k from equation (10). It follows
that ST(i)jk of equation (9) = SD(i)jk of equation (10). Now, if Dy
is removed from QTik’ the remainder is exactly equal to the remainder
from equation (10) if Tk is removed from QDik'

As a result of all the above, model (11) and corresponding degrees

of freedom (df) can depict a preferred model as follows:

df: 36 1+5 +6 +0 +2 +2 +8 + 12 + 0 (11)

model:  yiso =0 F Qi * Seays T 8i5) T T T 0 Ryt Mk T Ciske)
where:
Yijke s Qi’ S(i)j’ 6(1j), Tk are defined as they are in equation (9),

D = Dk in equation (10),

L

Riky = effect of the remainder interaction of Q;, T,, and D, (fixed
and testable),

nijkg = error for testing Tk’ Dk and Rikz’ composed of parts of

interactions of ST(i)jk from equation (9) and/or SD(i)jk from
equation (10),
and |

e(ijkz) is the same as: € (1K) from equations (9) and (10).
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To show how equation (11) can be evolved from data laid out by

equations (9) and (10) the following examples are presented:

A. Layout for equation (9) is given in Table 3:
TABLE 3
Sequences
1 2 3 4 5 6
Subjects S S S S S
1 23 44{5 67 8|9 10 |11 12 | Total
T 1 3B2| 5A7}13B55€C6 | 7CA4 4 A1 52
L2 6C8| 4B2|6A7|2A5|3B1 |5¢C7 56
2 3 5A4| 5C8|9C6 | 48B3 r6 Ad | 2B5 61
Total 14 14114 17 |18 18 |11 14 {16 9 |11 13 169
whére: Letters A, B, C indicate the drugs used.
(1) sS Sequences: 26° + 3]26+ ..t 28 - (]gg)z = 17.80
(2) SS Subjects in Sequences: (]4814)2 + (]46]7) + ...+ ill%lél—-= 11.83
(3) SS Time: 52° + ?22 + 612 (1gg)2 = 3.39
(4) SS Sequences x time (from Table 3):
Sequences
1 2 3 4 5 6 Total
T 1 5 12 8 11 11 5 52
L2 |11 6 13 7 512 56
Z 3 9 13 15 7 10 7 61
Total 28 31 36 25 25 24 169
s subtotal: [Bt12° et T (]gg)z = 98.14]
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SS Subtotal - SS Sequences - SS Time
SS Sequences x Time = 98.14 - 17.80 3.39 = 76.95
(5) SS Subjects in Sequences by Time:

i. SS In Sequence T (Subjects x time) (from Table 3):

Subjects
1 2 Total
T 91 3 215
I
M 2 6 8 14
E 3 5 4 9
_ Total| 14 14 28

2 + 5

3+ 22

+ 6% + g2

2 2 2 142 4 2 2
2, 42 _ (22) i (]48141" N + ;4 + 9% _ (28) 1= 3.00

ii. SS Sequence 2 (Subjects x Time)

2 2 2, 62, 122
52+ 72 v 422052 4 g2 - BN (1117 p12% 6% 4137 ()% o

2 6

iii. SS Sequence 3 (Subjects ¢ Time) = 7.00

iv. SS Sequence 4 (Subjects ¢ Time = 4.00

If

v. SS Sequence 5 (Subjects x Time) = 0.333

1)

vi. SS Sequence 6 (Subjects x Time) = 10.333
SS Subjects in Sequence by Time = 3.00 + 7.00 + 7.00 + 4.00 + .333
+ 10.333 = 31.67

From all these calculations, one obtains Table 4:



table from the design given in Table 2.

b.

Layout for equation (10) is given in Table 5 which is the data

ANOVA using equation (9)

TABLE 4

- 36

Source df _SS _ M
Sequence Q 5 17.80 3.56
Subjects in Sequence (S) 6 11.83 1.97
s O -——-
Time (T) 2 3.39 1.70
*QxT 10 76.95 -——
**Drugs 2 63.39 31.70
Remainder (QxT) 8 13.56 1.70
SXT 12 31.67 2.64
Total 35 141.64

Subjects in Sequence, Time, Drugs, and (Subjects by Time) in Sequence

which may be called (Subjects by Drugs) in Sequence are the same.

To

The sums of squares for Sequence,

show the calculations of the sums of squares when drugs replace time one

may set up Table 5:

Drugs

- Total

TABLE 5
Sequence
1 2 3 4 5 6
Subjects  Subjects Subjects Subjects Subjects Subjects
o1 2 3 4 5 6 7 8 9 10 11 12 Total
5 4 5 7 6 7 2 5 6 4 4 1 56
3 2 4 2 3 5 4 3 3 1 2 5 37
6 8 5 8 9 6 5 6 7 4 5 7 76
14 14 14 17 18 18 11 14 16 9 11 13 169
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*QxT is really a mixture of many sources of variation because of the Latin
Square peculiarities of this design (Refer to Table 8.1.3, p.215 of
Anderson and McLean (1974)) but the one source of interest is drugs.
(Refer to Table 1 for the original design of the experiment and to Table 3

for the data arrangement associated with drugs A, B, and C).

**SS Drugs: (

i) + (8)% + (2002 (z a11)? _ 56% + 37% + 76°  (169)2
¥

T3 2 "3 - 633
Sequence
Drug 1 2 3 4 5 6 Total
A 9 |12 |13 7 {10 5 56
B 5 6 8 7 4 7 37
C| 14 [13 |15 |11 {11 |12 76

SS Sequence x Drugs:
SS Subtotal - SS Sequence - SS Drugs
= 98.14 - 17.80 - 63.39 = 16.95
The analysis of variance for this new arrangement of the responses

is gfven'in Table 6:
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TABLE 6
ANOVA using equation (10)

Source df _ss ws

Sequence (Q) 5 17.80 3.56

Subjects in Sequence (S) 6 11.83 1.97

S 0 0

Drugs (D) 2 63.39 31.70

*QxD 10 16.95 1.70
Time 2 3.39 1.70
Remainder (QxD) 8 13.56 2.64

**SxD 12 31.67

Total | 35 141.64

*QxD is really a mixture of many sources of variation because of the Latin
Square peculiarities of this design. In fact after removing time from
this source the remainder has the same SS as for the remainder (QxT) in
Table 4. This remainder has DxT, QxT, QxD, QxTxD pieces of interactions.
**%SxD is also a mixture of SxD, SxT and SxDxT because of the Latin
Square arrangement.

It is seen that Table 4 and Table 6 give the same analysis. The

preferred way to write the ANOVA 1is given in Table 7:
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TABLE 7
ANOVA (Preferred)

Source df SS MS
Sequence (Q) 5 17.80 3.56
Subjects in Sequence (S) 6 11.83 1.97

5 o [ ———

Times (T) 2 3.39 1.70
Drugs (D) 2 63.39 31.70%*
Remainder Interaction 8 13.56 1.70
Error 12 31.67 2.64
Total 35 141.64

In general for this type problem one should use equation (11),
which will Tead to the correct analysis as demonstrated in Table 7. The
results of Table 7 could be further analyzed using an accepted multiple

comparison test on the drug means.

If the number of sequences is too large for the experimenter to run
he may make use of a balanced incomplete block design (BIBD) Westlake (1974).
Two other approaches to evaluate bioequivalence are (1) to use confidence
bands on differences of means, Westlake, (1979), and (2) to use a Bayesian
methods, Selwyn, Dempster and Hall (1981). Mandallaz and Mau (1981) compare
different methods for decision making in bioequivalence evaluation.

Kirkwood (1981) presents a case against Westlake's bioequivalence method
and Westlake (1981) responds. A note by the editor follows those two comments.

A supp]ement.to the Biometrics March 1982 journal covers topics in

Biostatistics and Epidemiology in honor of Jerome Cornfield.
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C. Other Designs
Bioavailability research personnel should also be aware of designs of
experiments that may be used when many factors must be evaluated simul-
taneously. Only factors with two levels are described here to give the

reader a synopsis of the techniques. A detailed coverage of designs with

different number of levels of the factors and with more than two equal
number of levels of factors is given in Chapters Box, Hunter and Hunter
(1978).

For demonstration purposes only consider an experiment in which
there are two factors (a,b) each at two levels (0,1), where 0 represents
the Tower level and 1 represents the upper level of each factor. One
possible layout for this completely randomized design is

b
0 1

0 00 or (1) |01 or b

1 110 or a 11 or ab

which allows the reader to use two notations to describe the factorial
treatment combinations. In this case 00, 01, 10, 11 represents the

treatment combinations (ab) as

00 = Tow level of a, low level of b
01 = Tow level of a, high level of b
10 = high level of a, Tow Tevel of b
11 = high Tevel of a, high level of b.

The second notation (1), b, a, ab defines the treatment combinations in

the same order identically as the other notation. Notice that this
notation, however, uses (1) when all factors are at the low level, the
letter is missing when the low level of one factor is used in the treatment
combination and the letter is present when the high level of the factor

is present.
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The ANOVA of the data from such an experiment is shown in Table 8.
TABLE 8
ANOVA of 2x2

Source df
A 1
B 1
AB 1
Total 3

The usual method for calculating sums of squares is

s Lo+ ab)® (1) + 5)2  (a+ ab - () )

which is identically equal to

(a+ab - (1) - b)°
i)

9

a much more efficient procedure.

It follows that SSB and SSAB may be calculated directly as:

ssp. (b + ab . (1) - a)z,

| 2
ssap: (1) *ab-a-b)

This idea of using plus and minus signs on the yields comes from

expecting the high levels of the factors to have the higher yields. It
does not matter, however, if the yields actually reverse because the SS
will still account for the effects of the treatments in all cases and all
estimates of the treatment effect will have the correct sign. The nicety
of this method of obtaining SS is that interactions may be calculated

directly from the data, not subtracting the main effects (m.e.) SS from



- 42 -

the subtotal SS to obtain the two factor interaction (2 f.i.) SS as is
the usual practice. It must be understood, however, that this differencing
process is only applicable for two-leveled factorials. Whenever the number
of levels is three or larger one must resort to the usual procedure to
find the SS.

Table 9 summarizes the plus, minus notation.

TABLE 9

2

Treatment Combinations and Effects in 2

Treatment Combination

Effect (1) a b ab
A - + - +
B - - + +
AB + - - +
Mean + + + +

Notice that the mean uses all pluses and, of course, would require a
division of the total yield by 4 here. Also notice that AB signs are
obtained by multiplying the signs of A by those of B for each column or
treatment combination. This methodology generalizes for any number of
factors if all have two levels.

The most important value of this notation is to allow easy 1hvest1-
gation of experiments with several factors in which the number of treat-
ment combinations is too large to be run under one condition. This situation
demands blocks of treatment combinations that do not contain all the com-

binations for the experiment or "incomplete" blocks. Also if the number
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of factors is large enough and certain higher factor interactions can be
assumed zero, fewer than all the treatment combinations may be run and
still allow a very good experiment. This type design is called a "fractional
factorial" design.

For demonstration purposes let us show the incomplete block and

3 factorial. If only 4 of the 8

fractional factorial concepts using 2
treatment combinations can be run under homogeneous environmental conditions,
there must be 2 blocks of four treatment combinations in each block. The
experimenter must recognize that for this condition, the df for blocks
must be confounded with one of the seven main effects or interactions
from the factorial because each of A, B, AB, C, AC, BC, and ABC has one
df and adds to the total of 7 df. In other words there must be a loss
of information if fewer than all treatment combinations are run at one
time or place.

The experimenter must now decide which of the 7df to lose. Since
ABC should be of least interest let us confound ABC with blocks. Table 10
shows the plus, minus notation one may use to select the correct treatment
combination for each block when ABC is confounded with blocks.

TABLE 10
Treatment Combinations and Effects in 23

Treatment Combinations

Effects (1 a b ab c ac bc abc
A - + - + -+ -4
B - - + + - - + +
C . - - - - + o+ + +

1
+
+

1
+

i

1
=+

ABC(multiply)
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To obtain the SS for ABC one subtracts the 4 "minus" treatment com-
binations yields from the 4 "plus" treatment combination yields, squares
that difference and divides by 8. If blocks are to be confounded with
ABC that is, the exact information on ABC is to be mixed up with that of
blocks, the SS for blocks will be calculated identically to that of ABC.
It follows that the make up of one block is the minuses of ABC and the
pluses of. ABC must be in the other block. Hence from Table 10 one can

construct the two blocks to be run in the experiment as:

Blocks
1 2
minus plus
() a
ab b
ac | oc
bc abc

The ANOVA for the analysis of the data from this experiment is given

in Table 11:
TABLE 11
ANOVA (23 in 2 blocks of 4, ABC confounded)

Source df

Blocks and/or ABC 1

§ 0

A 1

B 1

AB 1

C 1

AC 1

BC 1

Total 7
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Notice that there is no error for testing the m.e.'s and 2 f.i.'s
in this case. That is the reason this experiment should be considered
a demonstration of the technique.

Of course, if a few treatment combinations (at least one) were
repeated in each block a few df could be avilable for an error estimate.

Using this same 23 experiment for demonstration purposes one

Can show how a fractional factorial experiment can be constructed. If

Block 2. a, b, ¢, abc |, is used, only four treatment combinations instead

of 8 would make up a 1/2 replicate or fractional factorial. To find out
what effects may be estimated from only those four treatmetn combinations
Table 12 is set up.
TABLE 12
Treatment Combinations and Effects
for 1/2 replicate of 23

Treatment Combinations

Effects a b o abc
B - + - +
AB - - + +
C - - + +
AC - + - +
BC + - - +
ABC + + + +
Mean + + + +

Notice that the mean = ABC, A = BC, B + AC and C = AB.



- 46 -

These equal effects may be indicated as aliases or complete confounded
with each other. Further the mean may be called I or identity and one

has I = ABC. If we multiply each side of the equality by A, we obtain

A = A%BC,

but the levels of the factors are only 0 or 1 and any even number becomes

0 or any odd number becomes 1 (modulo 2). Hence

2 0

A= A" =1

and

A%BC = BC,

or

A = BC.

Similarly for B = ABZC = AC and C = ABCZ = AB.

The ANOVA for this 1/2 fractional factorial of 23 is given in Table

13.
TABLE 13
ANOVA (1/2 replicate of 2°)
Source df
A and/or BC 1
B and/or AC 1
C and/or AB 1
Total -7;

It must be understood that this is NOT a good design and is given
here to demonstrate a methodology for handling fractional factorials.

A good example of a fractional factorial is a ]/4th replicate of a
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9

2° where the factors are a,b,c,d,e,f,g,h, and j. If three factor and higher

interactions are zero, the effects can be identified as:

I = ABCDEF = DEFGHJ = ABCGHJ

A = BCDEF = ADEFGHJ = BCGHJ
AB = CDEF = ABDEFGHJ = CGHJ
ABC = DEF = ABCDEFGHJ = GHJ

Hence, in general, m.e.'s are confounded only with 5 f.i. and higher:
2 f.i.'s are confounded with 4 f.i.'s and higher and 3 f.i.'s (assumed
zero) are confounded with other 3 f.i.'s and higher.

This allows the fo]]bwing ANOVA shown in Table 14.

TABLE 14
ANOVA (1/4%M replicate of 2°)
Source df
m.e. 9
2 .1, (5) = 36
(Residual) error 82
Total 127

A booklet Tisting almost all useable 2" fractionals with numerators one
is "Fractional Factorial Experiment Designs for Factors at two Levels"
by the Statistical Engineering Laboratory of the National Bureau of
Standards Applied Mathematics Series 48 (1957).

Another design that is occasionally of interest to bioavialability
research people is the composite design. This design allows estimation

of curvature in experiments having many factors whereas the fractional
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factorial of 2" designs does not. The composite design is built around
the factorial (or fractional) and center points are used on all the faces
of the hypercube from the factorial plus one point in the center of the
entire design.
If there are k factors, then there are only
2K+ 2k + 1
treatment combinations needed for the whole experiment. This is a tre-
mendous savins relative to 3k factorial (the smallest complete factorial
allowing curvature estimation) when k > 4. For example if k = 5
25+ 2.5+ 1 =43
whereas

35

= 243.

Both of these designs allow estimates of all linear and quadratic
m.e. plus the linear x 2 f.i.'s. A thorough coverage of this design is
given in Chapter 13 of Anderson and McLean (1974).

One final type of experimentation that is encountered in drug bio-
availability studies is that called mixture experiments. The basic indi-
cator of this type of experiment is the fact that all factors of interest
must add to a constant. The usual constant is 100 percent and the factor
‘levels are certain percentages of the total. An illustration of a few
treatment combinations for an experiment involving factors A, B, and C

are as follows (the levels of A, B, and C are percentages):

Treatment
Combination A B C

1 10 40 50
2 12 40 48
3 10 35 55
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Note that in order to lay out a 2 x 2 factorial experiment involving
factors A and B that the Tevel C has to be adjusted so that the total
composition is 100 percent.

Designs for this type of experiment are quite involved and will not
_be included here. One type of design that is good when the number of
factors is no greater than 5 is the extreme vertices design, the details
of which are given in Chapter 13 of Anderson and McLean (1974). A good
summarization of the existing literature on mixture experiments is given

in Cornell (1979).
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