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Abstract

Consider a linear model with infinitely many parameters given by

y=jz]xjej+e where 5=(x],x2,...) and Q=(e],ez,...) are infinite dimen-

sional vectors such that } x? <o and ) e? < o, Suppose independent
=1 i=1

observations Yys¥os...s are observed at levels X1o%pseen Under suitable
conditions about the error distribution, the set of all bounded Tinear
functionals T(g) for which there exists a sequence of estimators fn such
that fn+T(g) in probability will be characterized. An application will be
extended to the nonparametric regression problem where the response

m-1)

curve f is assumed to be in theHilbert space wg[0,1]={f[f( is abso-

1Ute1y continuous on [0,1] and féf(m)(t)zdt< w,} The connection with the
results of Wu (1980) for the least squares estiamtes under the usual Tinear

model where the number of the parameters is finite is discussed.
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Regression Models with Infinitely Many
Parameters: Consistency of Bounded
Linear Functionals '

1. Introduction.

Consistency has been considered as a minimal requirement for an
estimator to behave well when the sample size is large. (Further asymp-
totic properties such as the convergent rates can be studied only after
consistency being established). For the case that the observations are
i.i.d., this property is satisfied by various types of estimators (e.g.,
maximal likelihood estimator, and many nonparametric estimators such as
M-, L-, R-estimators etc.) under various appropriate assumptions about
the structure of the paramters and the probability distribution. The
list of publications addressed on this topic is too lengthy to be included
here. Consistency tends to be deemed so indispensable that whenever a
new estimation technique with much potential for the wide application is
introduced, the first asymptotic justification has been to seek for the
"weakest" assumptions for the consistency to hold; e.g., the universal
consistency of the nearest neighborhood estimators (Stone 1977), the
consistency of bootstrapping method (Bickel and Freedman 1981, Freedman
1981) etc. One possible theoretic sequel for such papers may be a search
for some modified estimators possessing the consistency under much more
general assumptions. However, such an effort would turn out fruit1éss,
had the "weakest" assumptions been so weak that violating these assumptions
would mean that no estimators can be consistent at all. In other words,

it seems to be a more fundamental question to ask whether the assumed



isetUp' admits any consistent estimator or not.

The importance of this consideration becomes more apparent when the
observations are not i.i.d. For instance, in the usual linear regresison
setup with a finite number of parameters, it has been well-known that the
least squares estimates are not consistent if the minimal eigenvalue
of the information matrix does not tend to infinity. For such cases,
Drygas (1976) and Wu (1980) characterized the consistent directions (i.e.,
the linear combinations of parameters which can be consistently estimated)
for least squares estimates. Since the ridge estimators and some versions
of Stein estimators have become the natural alternatives in many situations,
it is reasonable to inquire whether these alternative estimates are con-
sistent or not when we want to estimate some inconsistent directjons for
the Teast squares estimates. As a consequence 0f the. general resylt of
Section 2 (see Section 3 for details), we shall demonstrate that for an
inconsistent direction for the least squares estimates, not only neither
the least squares estimates, nor the ridge estimators (with any possible
choices of ridge constants), nor any version of Stein estimators are
consistent, but also the setup itself does not admit any consistent esti-
mators, under some natural assumptions about the error distribution (in
particular, it should have a finite Fisher's information).

For the more complicated i1ly-posed problems where the number of
parameters may be infinite and no estimators are considered as standard
(for example, the non-parametric regression problem where the regressors
are treated as non-stochastic), it is even more important to characterize,

first, the setups for which the consistency is possible (regardléss



of what the estimator should be). Only after such a result being established,

we then can move to the discussion of the proper choice of estimators

among the consistent ones. Thus in this paper, we shall mainly investi-

gate the consistency property for a regression model (in contrast  to

the consistency for certain estimators as was treated in most papers).

The number of parameters may be infinite and thus makes the problem illy-

posed. We shall focus on estimating the bounded linear functionals of

the parameterg only. Specifically we consider the following situation.
Suppose a linear model is given by

o

(1.1) y = X:8: t e = <X,

+
j=1 33 e

0
N

where 6=(6,...,6.,...)" and x=(Xqs...,Xs5...) "' are infinite dimensional
Ao J R J

vectors in the Hilbert space 22={(a1,...,a1,...)'| ) a§< ©}; <e,e> s
i=1

the inner product of 22, e is the random error satisfying certain conditions
as will be specified later on. Suppose independent observations Yys¥ose--
are observed at levels X185 We shall characterize the set of all
bounded 1inear functionals T(Q) for which there exists a sequence of
estimators ?n’ based on the first n observations YyseeesYpyo such that

2

fn“‘T(r%) in probability as n+=, for any ¢ in the parameter space &<u”.

Such functionals will be called consistently-estimable bounded linear

functionals (hereafter, c.e.b.1. functionals) for G

Section 2 provides the main theorem of this paper. According to
this theorem, T(-) is a c.e.b.1. functional, if it is pairwise consistency

in the sense that when restricting the parameter space to {0,8*} for any



Q*'E €@, there exist consistent estimators (possibly depend on Q*) for
T(:); or, equivalently, if the probability distribution of (y1,...,yn)'
under Q=g* is asymptotically singular to that under Q=O for any g*é €.
Statement (iii) of Theorem 2.1 is a simple consequence of the statement (i1)
if we have the normality assumption about the error distribution. Instead
of assuming normality we merely require that the error distribution
POSsess a finite Fisher's information. In Wu (1980), the equivalence
between (iii) and the statement

"T(-) is a consistent direction for the least squares estimates"
is established when € is finite dimensional. It is interpreted there

that a good direction w with the property that

is a direction where we may gain much information and T(-) is a consistent
direction if all the bad directions Q@ with the property that _§1<51,%>2 <
are orthogonal to T(:). While the similar interpretation ho]ég in our

case here, the equivalance between (ii) and (iii) also provides a suitable
explanation for why the direction w is considered as "good" if (1.2)

holds. Suppose we consider the simple against simple hyposts testing
Problem: HO:Q=0 against H1:Q=Q. Then a version of (ii) shows that

(1.2) is a necessary condition for the existence of an asymptotic power

one test. Thus in a good direction @ we gain so much information that we
can distinguish H1 from HO without making any error asymptotically. Mathe-

matically, (iii) is a relatively simple statement to verify. All the



stochastic nature of the consistency problem now diminishes and what
remains for our concern is only the divergence problem about the positive

oo

infinite series .X <51,%>2. The statement (iv) allows us to conduct a
Sujtable orthogo;;} transformation for the construction of a consistent
€stimator. By the similar argument as in proving (iv) = (v) there,
one may obtain many classes of consistent estimators; see for example,
(2.8b) and (2.8c) of Section 3. Finally, (v) claims that the consistent
estimators are also consistent in the sense of the mean squared error.

~ Section 3 is devoted to the more detailed discussion of Theorem 2.1.
Assumptions under which the theorem holds are investigated and more general
conclusions are obtained.

An application of Theorem 2.1 is made to solve the nonparametric
regression problem of Section 4. Suppose the response curve f is m—]th
continuously differentiable on [0,1] with f(m']) absolutely continuous
and fgf(m)(t)zdt< », QObservations yi=f(ti)+€i are independent and errors
e; are with mean 0 and have a common variance and a finite Fisher's infor-
mation. The goal is to characterize the set of all c.e.b.1. functionals.
In particular, we would 1ike to obtain the necessary and sufficient condi-
tions for f(k)(t) to be a c.e.b.1. functional. Theorem 4.1 determines the
consistent region of degree k, defined to be the set of all points at
which the k-th derivative of f is consistently estimable. After introducing
the notion of the limiting points of degree k for a sequence {ti}:=1’
we show that the consistent region of degree k is equal to the set of all
Timiting point of degree k. A connection with Wu's results on the poly-

nomial regression is quite interesting. In our terminology, the set of all

consistent directions for the least squares in the polynomial regression



model of degree m~1 is equal to the linear space generated by all f(k)(t?),
m-1 .

where f(t)=jZoejt1 and t* is any limiting point of degree k, k=0,1,...;m-1.
The consistent region of degree k in the polynomial case may be Targer than
the set of all Timiting points of degree k simply because some f(kzt)
may be written as a ]ihear combinations of other consistant directions. Such
phenomenon does not occur in the nonparametric regression considered in
Section 4. Finally, we also show that in many cases the closed linear
space generated by all c.e.b.1. functionals of differential type equals the
set of a1?"c;e.b.1. functionals.

In the appendix, we derive a useful result concerning the finite
Fisher's information. This is applied to connect (ii) and (iii) of

Theorem 2.1.



2. Main results.

In this section, the notation <-,-> will be used to denote either the
inner product in 22 or the inner product in R" without ambiguity.

Consider the linear regression model with infinitely many parameters
given by (1.1). Since the results we shall derive here may also be appli-
cable to the case where the parameter space € is not the entire 22
(e.g., ®:={Q|<Q=Q>.i52=QE'22} for some known real number &) and to the case
where the usual Tinear model with finitely many parameters is considered,

a suitable condition on the parameter space Wwill be given as follows.
Let €* be the closed linear .- . . space generated by €. For >0,

let B(8)={p|<6,0> <6%, €6 *}, Assume that
n n, " n, -— Ny

(2.1) @ contains B(s&*) for some §* > 0.

The probability distribution of the random error ¢ is assumed to

satisfy the following two conditions:

(2.2) Ee =0 and 0 # Var ¢ = 02 <o (o may or may not be known),

and

(2.3) e has a finite Fisher's information (i.e., ¢ has a density f
£1(x)?

which is absolutely continuous and ffm ) dx < =),

It is clear that (2.3) is satisfied by many important distributions
including the normal distribution. In the proof of our main theorem

below, we shall need a useful property about finite Fisher's information,



which will be discussed in the Appendix because of its independent inter-
est. Further discussion on these conditions will be provided in the
next section. We now present the main theorem of this paper. The conven-

tion that the "inf" of an empty set is += will be adopted.

Theorem 2.1. Assume that (2.1)~(2.3) hold. For the regression model
(1.1), the following statements are equivalent:
(i) T(+) is a c.e.b.1. functional for QE € .
(ii) (Pairwise consistency). For any 9*€ @, T(+) is a c.e.b.T1.
functional when the parameter space is restricted to {g,g*}.

(iii)For any 9€ Gsuch that T(Q)#O,

(iv) For any s>0,

) =1} + =,

0
~

n
(2.5) lim inf {121 <,>51.,,q>2|g€ B(s), T(

n-eo

(v) There exists a sequence of estimators {fn}, where fn is based

on the first n observations, such that
E(f - T(e))2 ~ 0, as now,
n Lt

for any g€ €,



Proof.
"(1) = (1ii)" holds obviously.
"(i1) = (iii)". Suppose there exists a g*¥€ € such that T(g*)#O

but (2.4) does not hold. Let h,=<x.,6*>. Then ) h% <o, Let P and
iR sEp AN

Q

Qn be the probability measure of (y],...,yn)' when §=0 and g=p* respec-

tively. Consider the case where the parameter space is restricted to

{0,0*}. It is clear that (i1) implies that Rn and Q are asymptotically

n
mutually-singular. However, this is contradictory to the Theorem in the
Appendix.

"(ii1) = (iv)". Since the "inf" of an empty set is +«, we may con-
sider those & such that {QIGE B(s),» T(Q)=1} # ¢ only. For such a ¢ and

any c¢>0, define

n
fy = (818 €B(6), T(g)T and ] < 0% < cb.
Since A t:An_], it suffices to show that A,=¢ for some n. Observe that
(ii1) implies that (2.4) holds for any g€ B(s*) because of the assumption:

(2.1). Thus it follows that (2.4) holds for any Qé B(s). Therefore we

have
(2.6) NA, = ¢3
n=1
<] n 2
Otherwise, for any g € A,» we get ) <Xis8>" < ¢ >« for any n, a
n=1 i=1

contradiction to (2.4). Now, consider the weak topology on the space @ *



(since @* 1is a Hilbert space, weak topology and weak* topology are
identical). By Aloaglu's Theorem (c.f. Roydon 1972, page 202), B(s)
is weakly comhact. Since T(-) and <Xi,e> are weakly continuous, it is
clear that An is weakly closed. Moreover, since An < B(s), An is also
weakly compact. Therefore, by a fundamental property of compactness,

from (2.6) it follows that there exists some N such that

Since An C?An_], we get AN=¢. Thus the proof is complete.
"(iv) = (v)". Let v be the element in €* such that <y,6>=T(8)
4"} n oy A"}
for any QE €* (such a N exists because of Rietz representation Theorem).
Without Tloss of generality, we may assume that <¥,¥>=1, because it is

T(-)

obvious that if < is a c.e.b.1. functional then T(-) is a c.e.b.T.
<Vay>%

functional. Before constructing the consistent estimators, we shall make
a suitable orthogonal transformation on the vector of observations
(y],...yn)' and choose a convenient complete orthonormal system on @%*

so that the design matrix takes the form

(2.7) /xw[xno cL0 0L
Xog | 0 X5p 0 .. | 0.

..
. . ..0 |

K\XnO o . .. Xnnl 0.. .//

and the first coordinate of the new parameter is what we want to esti-

- 10 -



mate. To carry out this idea, let Xn be the vector space generated by
{ys%qs--enx,) and Tet Hn={%|<%’¥>=0 and géixn}. Consider the linear

. n . . 1
transformation L from Hn to R" defined by mapping y to (<é1’g>""<%n’%>) .
It is a well-known fact in the linear algebra that there exists an ortho-
normal basis {Q],...,gn} in Hn and an orthonormal basis {%1,...,gn}
. n - . .
in R" such that L(gi)—migi for some nonnegative number My, Teeuosn
(mi may be taken as the squared roots of the eigenvalues of L'L). We
extend the orthonormal basis {X’%l""’gn} in Xn to a complete orthonormal
system in €* by adding an arbitrary complete orthonormal system in the

orthogonal complement of Xn in 8% to the set {X,gi,...,e }. Write

xn
x(n)=(y1,...,yn)', :%(n)=(€1""’€n)l’ Q(n)=(<?\(,] ’r\\),>""’<')\(ln’f\\),>)l and
let Zi=<x(n)fgi> and'e%=<%(n),gi>. Now, it is clear that

t, i=1,...,n,

(2.8) Z; = <ﬁ(n)’81><x’%> Tmi<g,0> + ey

1

and the random errors e% are of mean 0 and uncorrelated with the common

2

variance ¢~. Thus for (Z],...,Zn)' and the complete orthonormal system

{X’E]""}’ the design matrix is of the form (2.7) with x10=<ﬁ(n),gi>

and Xj3=M. Note that to be precise we should have used the notations

(n) (n) . (n) .
X;0° and ;3  instead of Xig and X, (and g; ' instead of %i) because the

transformation L depends on n. However we omit the superscript (n)
to avoid the complexity of notations. It should be understood that

Xi0 and X;; may take different values for different sample size n and

g; may be different too.

Now, construct the estimator %n by setting

- 11 -



i

.i

where xiiv1=max{x11,1}.
To show that E(fn-T(Q))2+O for any pe e, it suffices to show that

ETn-T(Q)+O and Var Tn+0. Since Zi are uncorrelated,

i~

Var T, = < E < Xi0 >2>2 < E < X0 > 2
=1 \Xj3V! i=1\%41Y]

We now proceed to show that

2o 1 (%)
2.9 -—> >o aS N - o
i21 \X vl

17

in order to get Var fn+0.

Let Inﬁ{iligp, X;3<1}. Write

X 2 X 2
< 101> = Z XZ.O + Z <__1_Q>
1\X4Y jer ! g X4

Suppose (2.9) does not hold. Then there exists some positive number M

fe~1>

such that

- 12 -



b2
(2.10) Xig < M,

and

X. 2
2.1) L [Z10)7 cw,
g1 X34

X
for any n. Let %(n)=¥_ Z 219_ g,- Because of (2.11) it is clear that
i¢1 "

(n) -
p e {Q|T(g)—1 and g € B(1+M)}. It follows that

) =1} < <%1’%(n)>2

8
’\l —_—

n
inf { ] <x..0>2g€B(14M), T(
i=1

e~

i=1]

= [1L(e(™ - y) + aM 112 (by the definition of L and A",

here ||-|| is the Euclidean norm in R")
y (n) (n),2
= E <g1, L(% - x) + ﬁ > (

since {gi} is an orthonormal
i=1

<gis - 'Z X %339 + Q(n)>2 (Since L(ej)=xjj%j)

—

manad
(&1
A

—

It
e3>

T A e R A

= X?O (recall the definition of x.,)
i€l ! !
n

<M< (by (2.10))

This is contradictory to (2.5) for 6=M+1. Hence (2.9) holds and thus

Var fn+0. It remains to show that Efn-T(g)+0 for any € 6.

- 13 -



For this purpose, it suffices to verify that

(2.12)

N~

2 i 1%
1 (XHV]) -+ 0, as noo,

n
i=1 xiiV1

.i

i

| A
Ue~13

| A
o 1
ne~1=
—
T
- b3
- -
<|O
—
\/
N
—
~
[h)
o>

Therefore by (2.9), we see that (2.12) holds and consequently %n
is consistent. The proof for "(iv) = (v)" is now complete. Finally,

"(v) = (i)" holds obviously.

3. Discussion.
Several important features about Theorem 2.1 are now in order. First,
"(i1) = (i)" means "pairwise consistency implies consistency", which

certainly may not be a true statement in other context. In fact, the

- 14 -



following example demonstrates what may happen without the structure
given by (1.1).

Example 1. Suppose @=={(e],...,e ) e§=w} U {(0,0,...)1}.
=1

n

The observations Y; satisfy the model yi=ei+€i’1=]’2""’ where e; are
i.i.d. normal with mean 0 and variance 02. Suppose we want to estimate
ej. Without much difficulty, it can be verified that when the parameter
space is restricted to two points {(0,0,...), (e?,...,e;,...)}, then
consistent estimates exist. But, it is also clear that when the parameter
space is the whole 6, e] is not consistently estimable.
One may also find that the following example illustrates the similar
phenomenon but in a simpler situation where only one observation is made.
Example 2. Take € =RU{~}. Assume that the observation Y is a normal
random variable with mean 0 and variance 1 if 6=«; otherwise, Y=6.
Obviously, when restricting the parameter space to any pair of points
(say 075 and ez#w), a perfect estimator (without any error) exists;
i.e., 5=Y if Y=92 and 5=e] if Y#ez. But when the parameter space is the
whole @ then no estimator can estimate & without error.
The next important feature about Theorem 2.1 concerns the statement
(iii). By the equivalent between (iii) and (i), the consistency problem
(which is stochastic in nature and therefore is relatively complicated)
can now be reduced to verifying the deterministic equation(2.4), which
retains some intuitive interpretation as was already given in Wu (1980).

Roughly speaking, when yi is observed, not only the "information" along

- 15 -



the direction % is obtained, but also partial information can be gained
along directions not orthogonal to % A direction ] is called a good
direction if (2.4) holds; otherwise, it is called a bad direction. A
bad direction is a direction where the total "information" is finite.
Therefore, we conclude that T is a c.e.b.1. functional if all the bad
directions are orthogonal to T. A useful consequence is given in the

following corollary.

Corollary 3.1. The set of all c.e.b.1. functional is a closed linear

space.
Proof. This follows from the remark above and the fact that the ortho-

gonal complement of any subset in a Hilbert space is closed. (W

However, uniikely in the finite dimensional case, the set of all
bad directions may not be a closed space. Consequently, the space of

all 9 such that ) <éiﬁ>2<w may be only a dense subset of the orthogonal
i=1

complement of the space of all c.e.b.1. functionals. Thus caution should
always be taken when one wants to charactérize the set of all c.e.b.1.
functionals; see, for instance, Example 3 of Section 3.

Strictly speaking, in view of the equivalence between (ii) and
(ii1) (and the proof of (ii) = (iii)) the reason why a 8 satisfying (2.4)
can be deemed as a "good"direction strongly depends on the condition of
the finite Fisher's information of the error distribution. If the error

distribution has an infinite Fisher's information, then (ii) may not

- 16 -



imply (iii); a bad direction 9* in the sense that )
j=

2
<X; 10%> <o, may also
1t

be "good" enough so that we can asymptotically discriminate the distri-
bution of (y],...,yn)' under =0 from that under §=¢* perfectly. This
is illustrated in the following example.

. is a real nonnegative

Example 3. Take € =R and y1=x19+e1, where X;

(o]

number such that } x.== and } x§<w; es» 1=1,2,..., are i.1.d. with the

i=1 i=1
common distribution uniform on [-1/2,1/2]. It is clear that for any
6*#0, the 1ikelihood ratio of (y],...,yn)' between 6* and 0 is either
0, or += , or 1; the probability measure (either when 6=0 or when

6=0*) of the set of points for which the 1likelihood ratio equals ] is at

n
most 1 (1-x1.9*)+ where (1-xie*)+=Max{1-xie*, 0}. From the condition
i=1 .
w n
that ) x;==, it follows that 1 (1-x,6%);50. Thus for 6=6*#0, the

i=1 i=1
distribution of (y],...,yn)' is asymptotically singular to that for
6=0. Hence (ii) of Theorem 2.1 holds but not (iii).

Note that in the proof of Theorem 2.1, the only part involving the
assumption (2.3) is (ii) > (iii). It follows that even if ¢ has an
infinite Fisher's information (iii) still implies (i) (and of course
(i1)). In particular, while a bad direction may become "good" because of
infinite Fisher's information error, a good direction is always good no
matter the error distribution has finite or infinite Fisher's information.

We now discuss the cases where (2.2) is violated and the observations
May be dependent or correlated and may have unequal variances. First,

we observe that the inpenendence assumption about observations is needed

- 17 -



only when verifying "(ii) = (iii)". Thus, if the observations are depen-
dent but uncorrelated with common error distribution and satisfy (2.2), then
it still holds that (iii) = (iv) = (v) > (i) > (ii). Thus (iii)

is a sufficient condition for T to be a consistent estimator in most
Situations. Next, suppose the covariances of the observations are known

up to a constant. Denote the covariance matrix of the first n obser-
vations by Vn' Let An be the Tower triangular matrix such that AnVnAﬁ=Inxn'
Now, transform the original data (y],...,yn)' to (z],...,zn)'=An(y],...,yn)'.

For the new data, the observations are now homosedastic and uncorrelated.

Let ﬁ%=(A Ai'

],O,...) be the i-th row of An. The regression model

TERER

for Z; becomes

i
7. = Lo XL 0> + gl
%4 <1§] AijXye@ + &

(Note that since A,y 1s the left-upper submatrix of A,> Z; should be
]

independent of n.) Thus writing X¥= ) Aij%j’ we can establish "(iii) >
j=1

(iv) = (v) > (i) = (iii)" after substituting X by 5? in the Theorem
2.1. Moreover, if {si} is Gaussian, then the €55 i=1,2,... are independent;
hence "(ii) = (iii)" holds and the analogue of Theorem 2.1 is now
established. However, to what extent the condition about the existence
of the second moment of the error distribution can be released is not
clear to the present author yet.

A comment about the consistent estimators constructed by the method
used in the proof of "(iv) = (v)" is given below. Examining the proof
carefully it is not hard to see that instead of using the estimator of

(2.8a), the following types of estimators also work:

- 18 -



(2.8b)

—>
]

(2.8c)

__{)
n
—
—

where ) is any fixed positive number. The role of A here is similar to
the role of the ridge constant in the ridge regression or the role of a
smoothing parameter in any illy-posed problem; it controls the trade-
off between the variance and the bias. Therefore, one might expect that
an adaptive choice of X will be more useful in practice. This should
be investigated in the future. Also, for other commonly-used estimation
procedures such as the smoothing spline method in the non-parametric
regression setting of Section 4, their consistency property should also
be examined under the general framework discussed here.

The equivalence between (v) and (i) is also interesting. Without
the specific setup, particularly the conditions (2.2) and (2.3), (i)
generally does not imply (v).

Finally, let's consider the finite dimensional case (i.e., @'=Rp),

and discuss the connection with Wu's work. By the natural confinement

- 19 -



to the least squares estimateé as usual, Wu showed that T(-) is a consis-
tent direction if and only (iii) holds (although the nonsingularity of
the information matrix is assumed there, it is removable if one works
with the generalized inverse instead). Thus combining Wu's result with

Theorem 2.1 here, we obtain the following corollary.

Corollary 3.2. Suppose @ is finite dimensional. Then T(-) is a c.e.b.1.

functional if and only if T(.) is a consistent direction for the least
squares estimates.

The important consequence of this corollary is that when the least
squares method fails to provide a consistent estimator, no other types
of estimators (for instance, ridge estimators with adaptive or non-
adaptive choices of ridge constants or Stein estimator or alike) can be
consistent. While this fact does not discredit these alternative esti-
mators, it does point out one of the difficulties for such illy-posed
problems and thus more attention should be given before drawing the con-
clusion; even if the sample size is very large, the inference error may
still be sizable.

Before closing this section, let's comment on the estimability of
the Tlinear combinations of parameters as defined in Scheffé (1958);
i.e., a linear combination of parameters is estimable if there exists an
unbiased estimator. In the finite dimensional case, it is true that if
T(+) is consistently estimable then T(:) is estimable. But this is not

necessarily the case in the infinite dimensional situation. T(-), when

- 20 -



represented as an element in the Hilbert :space concerned, can be outside
of the linear space generated by {51""’%n} for any n but still retain
the property of consistent estimability. This will become clearer when

we consider the nonparametric regression setting of the next section.
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4. Nonparametric regression.

In this section, the following nonparametric regression problem will
be considered. For m>1 (m is considered as a fixed integer hereafter),

(m-1) is absolutely continuous on [0,1] and f]f(m)(t)zdt< ©,

let Wy [0,11={f|f
W [0 ]] is a seperab]e Hilbert space when equipped with the inner product
<f ,g>= E IO glg (It should be clear from the context whether
<eye> 1s the inner product of w2[0,1] or the inner product of 22). Suppose
a sequence of points in [0,1], {t],tz,...}, is given. We observe the

Yi» i=1,2,..., which follow the nonparametric regression model:
(4.1) y; = f(t'i) + €5

where f'Eiwg[O,lj and e; are i.i.d. with a common distribution satisfying
the conditions (2.2) and (2.3). Our goal is then to characterize the
set of all c.e.b.1. functionals on wg[o,1].

Let {f1, 93 .} be a complete orthonormal system of wg[o,1]. Any

oo

f in W?[O,]] can be represented as ) <f,fj>fj. In particular, for any

j=1 _
t€[0,1], the bounded linear functional Dio), defined by’<D§0), f>=f(t), can
: 7 .p(0) _ _.pl0)
be written as ) <Dt ,fj>fj. Take ej <f,fj> and X; <Dt ,fj>. Denote

j=1
Q=(e1,92,...)' and %=(x1,x2,...)‘. When any observation y is made at the

point t we can rewrite (4.1) as

1l
A
L
—
o
~—
—4
v
+

= f(t) + ¢

I
M
><
CD
+=
Y]
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Hence our setup is indeed a special case of (1.1) with @,=12). We may

apply Theorem 2.1 to derive the desired results as follows.

Lemma 4.1. T(.) is a c.e.b.1. functional if and only if

(4.2) ] f(t;)% = =, for any £ in WJ[0,1] such that T(f) # 0.
i=1
Proof.
(0) . -
Represent f and Dt, as § and x.. It follows that <%1,Q>—f(ti).
Therefore Theorem 2.1 applies. (4.2) follows from (2.4). G

Now Tet us consider an important class of bounded linear functionals

on w2[0,1], néme]y the differential functional D(k), which maps any f

t
in wg[o,l] to its k-th derivative at the point t, f(k)(t). Note that
D£k) is a bounded Tinear functional only when O<k<m-1. To characterize the

set of all D£k) which are consistently estimable we shall, equivalently,

determine the consistent region of degree k, defined to be the set

(4.3) Cy = {t|t€ [0,1] and Dﬁk) is consistently estimable}.

(This notion is obviously an extension of the definition of the consistent
region given in Wu (1980).) Obviously, the limiting behavior of {ti}

is crucial here. For any nonnegative integer k, we call a point t* in
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[0,1] a limiting point of degree k for the sequence {t;}, if

(4.4) there exists a subsequence {t{} of {t;} such that

t: > t* as ivo and P (t - t*)2k = too

i=1

[oo]

When k=0, this notion is exactly the usual definition of the limiting
points of a sequence of real numbers. Note that by our definition here
if a point is a Timiting point of degree k, then it is also a limiting
point of degree less than k. Other useful properties about 1imiting
points are described in the following lemma. Note that the topology con-

sidered here is restricted to [0,1]; e.g., (1/2,1] is an open set, etc.

Lemma 4.2. A point t* is a 1imiting point of degree k if and only
if
(4.5) tZEEN(ti - t*)2k = =, for any open neighborhood N of t*.

i

In particular, the set of all Timiting points of degree k is a closed
set, and the set of all limiting points which is of degree 0 but is not
of degree k is a discrete set.
Proof.

Obviously, (4.4) implies (4.5). We now show (4.5) implies (4.4).
There are two cases.

Case (i), let us assume that there exists an infinite sequence of
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distinct 1imiting points of degree O,{t?},such that t?»t*. Then, without
much difficulty, one can select a subsequence {t%} of {ti} such that

tiat¥ and the first n, items of {ti} are in a small neighborhood of tf,

the next n, items of {t%} are in another small neighborhood of t%,..., etc.
The ranges of the neighborhoods should tend to 0 to insure that t%+t*.

The numbers Nysfose.ss should be large enough to guarantee that
n] %-I'*'nz ©
'Z‘(t%-t*)Zk 2k

i=1 i=n,+1 i=1

(4.4) holds consequently.

>T, § (ti-t¥)

>1,... ete. Thus § (ti-t%)%*=e and

Case (i), there exists a neighborhood N of t* such that there is no
limiting point of degree 0 in N-{t*}. Now, let {t%}=Nf1{t],t2,...}.
By (4.5), it is obvious that t%+tkand1§](t%—t*)2k=+w, Thus (4.4) holds.
The other statements of the lemma are easy to establish; the proofs

are omitted. ]

The consistent region of degree k is now characterized below.

Theorem 4.1. For any integer k such that O<k<m-1, the consistent
region of degree k, Ck, consists of all limiting points of degree k.

By Lemma 4.2 and this theorem we obtain some useful properties of

Corollary 4.1. Ck is compact, CkZJCk+], and CO—Cm_] is discrete

(and”is therefore countable).
Proof.of Theorem 4.1.
First, we show that for any limiting point t of degree k, Dék)

is a c.e.b.1. functional. By Lemma 4.1, it suffices to show that for

- 25 -



;

any f such that fek)(t*)#o, we have

f(t1)2=w. Let v be the smallest
i

1
nonnegative integer such that f(Y)(t*)#O. Because of the continuity of
f(Y), it is easy to see that |f(t)|z_7/2|f(Y)(t*)(t-t*)lY for any t in an
open neighborhood N of t*. Since g<k and t* is a limiting point of
degree k, it follows that t is also a limiting point of degree y. Apply

Lemma 4.2 (taking k to be y) and we conclude that

.E]ﬂti)z > 1 ft)Z s f 2 T (g - )Y =,
1:

t%é N t%E N

(4.2) is now established and Dﬁi) is therefore a c.e.b.1. functional.
Next, for any t* which is not a Timiting point of degree k, we shall

demonstrate that there exists a f 1in wg[o,lj such that f(k)(t*)#o and

) f(t1)2<m; this then implies that Déﬁ) is not a c.e.b.1. functional by
i=1

Lemma 4.1. By Lemma 4.2, Tet N be an open neighborhood of t* such that

) (ti-t*)2k<w. Construct a function f 1in W?[O,]] such that f(t)=0
t. €N
i

for any t¢ N, f(Y)(t*)=O for any vy<k, and f(k)(t*)#o. It follows that

2 2k
<

_E]f(t1)2= Yy o f(t;) <} M-(ti-t*) », where Mzsup{f(k)(t)zlte [0,1]3.
i=

=
t1€ N tiE N

(k)

Therefore Dt*

is not a c.e.b.1. functional, and the proof is complete.O

(k)
t

or not. We caill Dik) a c.e.b.1. functional of differential type if

te Ck. An application of Cofo]]ary 3.1 then shows that any element in

By Theorem 4.1, we may easily see whether D is a c.e.b.1. functional
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the closed linear space generated by all c.e.b.1. functionals of differ-
ential type is also a c.e.b.l. functional. Naturally, we would like to
know if there are any other c.e.b.1. functionals or not. The following
example gives some clues to the answer. It also demonstrates that the
space of all 8 such that (2.4) does not holdmay not be closed as was
already pointed out in Section 3.

Example 3. Suppose t.-t* as i> and ) (ti—t*)
i=1

2m=w. By Theorem

4.1, Dii), k=0,1,...,m~1, are the only c.e.b.1. functionals of differential
type. We now show that the linear space generated by Dii), k=0,1,...,m-1,
is exactly the set of all c.e.b.1. functionals.

Consider an f 1in wg[o,1] which is orthogonal to D(k) k=0,1,...,m-1;

t*
i.e., f(k)(t*)=0, for O<k<m-1. To show that <f,.>1is not a c.e.b.1.
functional we have to find a g such that <f,g>#0 and ) g(t1)2<w (by

i=1
Lemma 4.1). By some trivial argument it can be shown that for any e>0,
there exists a g which equals 0 in a small open interval I containing

t* such that ||f-g||<e. Take ¢ small enough to insure that <f,g>#0. It

9(t;)%
1 i

g(t1)2<w, where n is an integer such that
:

Ne~1=

follows that )
i=

tHE I for i>n., Thus the desired result is established.

2

Note that in this example the set of all g such that _Z g(ti) <o

i=1
is not closed. To see this, consider the function go(t)=(t-t*)m. Obvi-

ously, géo)(t*)=...=gém'])(t*)=0 and .X]go(ti)2=w. However, if the set
'l:

of all g such that g(t1)2<w were closed, then this set would equal the

i

e~ 8

]

o7



orthogonal complement of the space of all c.e.b.1. functionals (i.e.,
{g[g(o)(t*)=...=g(m_])(t*)=0} = {gl'g g(t1)2<w}). Thus a contradiction
is obtained because 9 can't be in g;lh sets.

The argument used in the Example 3 can be generalized to show that
the set of all c.e.b.1. functionals equals the closed space generated
by all c.e.b.1. functionals of differential type when the consistent
region of degree less than m-1 is a finite set (but the cardinality of
the consistent region of degree m-1 may be infinite). Consider f in
; and £ (£)=0
m-2

for all t¢ Ck’ k=0,1,...,m-2. Since Cm-] is compact and U 1is a finite
k=0

W0,17 such that £ (t)=.. =M t)=0 for all tec
2 -

set, without much difficulty we can construct a function g in wg[o,l]

such that

(4.6) g(t) = 0 for t in a union of finitely many open intervals
covering Cm_1; g(k)(t) = 0 for t¢€ Cy» k=0,1,...,m-2; and
|| f-g] |<e for e>0.

It follows that for e small enough, we have <f,g>#0 and g(t1)2<w.

i=1
Thus f is not a c.e.b.1. functional and the desired result is obtained.
However, for the case that ZGZCk is not a finite set, it is still
not clear to the present author whether a g satisfying (4.6) exists or not.
Thus it remains unknown whether the set of all c.e.b.1. functionals
equals the closed Tinear space generated by all c.e.b.1. functionals of

differential type or not.
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Finally, we draw the connection between our results here and those
obtained by Wu (1980) in the consideration of the polynomial regression
model. Suppose the model is yj=f(tj)+ej=T§;eit;+ej, where 2 are
independent random errors satisfying conditions (2.2) and (2.3) and
tje [0,1]. Wu's characterization on the set of all consistent directions
for the least squares estimates can be summarized as below.

(i) The consistent region (of degree 0) contains (but may not equal)

all the limiting points (of degree 0).

(ii) The consistent region of degree k (1<k<m-1) contains (but may

not equal) all the limiting points of degree-k.

(iii) The set of all consistent directions equals the linear space

generated by the consistent directions obtained by (i) and (ii).

(iv) From (iii), it is easy to identify the consistent region

(of degree k): it equals [0,1] if the dimension of the set of all

consistent directions is m; otherwise it equals the set of all

limiting points of degree k.

(Note that if the sequence {ti} is unbounded, then it was shown
in Proposition 3 of Wu (1980) that the characterization problem is easy
to solve. We thus omit the discussion for this case.)

We leave the verification of the above statements to the readers

(who have read Wu's paper) while simply reminding them of the following

(and other similar) fact:

[+8]

!

= o

(t-tHZ*(t, -t = =" if and only if " )2k

1 i (ti-tT

1
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where ty and t are two distinct 1imiting points of {ti}?=].

Now, the similarity between the polynomial model and the nonpara-
metric regression setup considered here becomes transparent. The only
difference lies in the dimensions of the parameter space. In polynomial

regression, as a consequence of the finite dimension property, some

),

t), where t is not a limiting point of degree k, may become a con-

sistent direction simply because it is a linear combination of other consistent
directions. But this is not the case for the nonparametric setting. Thus

the consistent region of degree k in the polynomial case may be larger

than Ck.



Appendix. A property about finite Fisher's information.

Suppose ¢, E13€ps--+3Es--- 5 ATE i.i.d. random variables satisfying

(2.2) and (2.3). Let {h1,h2,...,} be an infinite sequence of real

«©

numbers such that } h§<m. Let P be the probability measure of (eqsepsnns
.2

i

’gnd Qn be the probability measure of (€1+h1’€2+h2""’€n+hn) . Consider
the simple against simple hypothesis testing problem Hn:En against

Qn’ based on the observation (y],...,yn) » Where ¥i=¢; under En and
yi=€1+h1 under Qn' Let An be any measurable acceptance region in R".
The following theorem claims that there does not exist a sequence of

regions with an asymptotic power equal to 1. In other words, Rn and Qn

are not asymptotically mutually singular.

Theorem. For any measurable set Aﬁ:Rn, we have

ﬂgn(An) +~ 1 as n»=" implies that "Qn(An) 4 0 as n>o",

To prove the theorem, we first observe that by Neyman-Pearson's

Lemma, . we may consider the following special type of acceptance region

qn(y'l A 9yn)
by,

A=ty ooy < C} wherep andq are the density

(with respect to Lebesque measure) ofql}’n and gn,and Cn is a nonnegative

real number. Suppose we can demonstrate that
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(A.1)

Tim P %p (y], ) <8¢ < 1-a, for some a, 6>0.

Then it follows that to have "P (An)+1" it is necessary that T?ﬁ'cn>6.

N>
Now,

Q,(A) = fAnqn(y],...,yn)dy_l,”_,dyn
qn(.Y'l 3'-..,y ) ( )d ;
._>_f qn()’],...,)’) pn(y.l,,“,y ) p .y'la ..,yn y]""’ 'yn

c_ > 8

n=p (yl,-..,y)
‘ yp ces¥p)
i( G AR )id>.6'

Hence TTH'gn(An)3§(1-(1-u))=6a>0 and the theorem holds.

N->c0

To show that (A.1) holds, we prove the following proposition which

obviously is equivalent to (A.1).

Proposition. If ) h§<w, then
i=1

X Tog f(g -h; ) - log f(ei) 4 - » in probability, as noe
1=]
where f is the density of e.
Note that because the e.'s are independent, the convergence in proba-
bility is equivalent to the almost sure convergence.
To establish this proposition, we shall apply a powerful tool devised

by LeCam (1960) in the proof of his second lemma on the contiguity theory
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(see also Hajek (1967)); i.e., we shall approximate the random variable

fleroh.) f(e.-h.
i ; i ' ' i ‘—11‘7J
Tog __?7227—- by a quadratic function of the random variable 2 e -1,

which always has a finite variance. The reader may refer to Hajek (1967)

for the idea about the proof of some lemmas below.

© 17 A2 o
Write s(y) = V/f{y) and I(f) = f-f—%x%— dy = 4f S'(y)zdy

Lemma 1. [ {[s(y-h) - s(y)]/h}zdy < LKI(f).

-0

Proof.
See Hajek (1967), page 212, (12). .
2
S (e-h) 2 _h
Lemma 2. E(—S—('E—y— "-l) <_'4T— I(f).
Proof.
o 2 2
S (e - 2 -h) -s
E(—s(f@?l -1) - hZ{w ly=h) (Y)z dy < - 1(f) (by Lemma 1).0
Lemma 3. For any §>0,
7 P(S(E"-h‘) 1 )
- - > §] < »
i=1 Slegd =
Proof.
By Chebychev's inequality, we have
EP(S(e"_h") ] )
J— - > §
i=1 Js'(ei) -
® S (es-h.) 2
- 1 G i1y
=52 451 \s(gy)
T o= i
5_—l§~ ) hf I(f) (by Lemma 2)
4= i=1
< ® 0
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Lemma 4. )

s(e;-h;) . babili
: _ETETT—— - 1‘ # -= in probability.
Proof.
By Chebychev's inequality, it suffices to show that the first

moment is bounded below and the variance is bounded above.

1

N °§ E(S(E:.i_h-i) )
ow, -
j=1 \ s(ey)

® S(Q.i-h-i)
Next, .Z]Var T

« I(f) (by Lemma 2).

Thus, Lemma 4 1is proved. [

Proof of Proposition.

By (7), (8), (9) on page 206, Hajek (1967), we obtain
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n
} {1og f(es-h.) - Tog f(e;)}
=1

[1+a(s(es-h.)/s(e;) - 1)]{
= (I) - (1)

By Lemma 4, the first term (I) does not tend to -». Therefore,
it suffices to show that the second term (II) does not tend to .

e:~h
Let T M'ln“—T———)——)

,8'1, for sufficiently small &>0.

Then, by Lemma 3 and Borel-Cantelli's Temma, we need only to verify that

52
(T5)° - f0{2(1-x)/(1—xa)}dx # o,

He~—13

i=1

or, equivalently,

(A.2)
n
8,2
T # =
i=1 1
n 5.2 n s(e.-hi) 2 no,
Now, since § E(T;)“ < J E < - <4y h’ I{(f), (A.2)
i=1 i=1 &4 i=1
]
follows easily. Hence the proof is complete. L
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