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1. INTRODUCTION

1.1 Introduction

Statistics needs a "foundation", by which I mean a framework of analysis

within which any statistical investigation can theoretically be planned, per-

formed, and meaningfully evaluated. The words "any" and "theoretically" are
key, in that the framework should apply to any situation but may only theo-
retically be implementable. Practical difficulties or time Timitations may
prevent complete (or even partia]) utilization of such a framework, but the
direction in which "truth" could be found would at Teast be known.

| To a large number of statisticians the above goal is deemed unattain-
able, with the attendant attitude being that one must "keep an open mind"
and use "whatever works well for a given problem". Besides seeming unneces-
sarily pessimistic and somewhat unscientific, such a position seems almost
meaningless in that without the desired foundational framework there would
be no way of determining what works well in a given problem.

The main contender for the crown is Bayesian analysis. ("Classical"

statisticians tend to be of the "there is no foundation" ilk.) The main
justification for Bayesian analysis is a belief (for a variety of reasons)

in

Aséumption I. In any statistical investigation, one will ultimately be fac-

ed with making reports, inferences, or decisions which involve uncertainties.
Of interest is the information available about these uncertainties after
seeing the data, and the only trustworthy and sensible measures of this

information are Bayesian posterior measures.

Belief in Assumption I Teads many Bayesians to argue that the desired
foundation is simply the usual Bayesian analysis in which one specifies a

prior distribution for the unknowns and processes the data via Bayes rule.



This attitude is vigorously opposed by non-Bayesians, partly because

of objections to Assumption I but, more often, because of a belief in

Assumption II. Prior distributions can never be quantified or elicited

exactly (i.e., without error), especially in a finite amount of time.

Because of this dfstrust of prior distributions, many statisticians reject
the Bayesian viewpoint out of hand.

A Bayesian viewpoint has long existed, however, which is based on be-
lief in both Assumptions I and II. While Assumption I calls for a basical-
1y Bayesian outlook, Assumption II precludes the obvious Bayesian solution
of writing down a single prior distribution and doing a Bayesian analysis.
Instead, the viewpoint is essentially that one should strive for Bayesian
behavior which is satisfactory for all prior distributions which remain
plausible after the prior elicitation process has been terminated. I will

call this the robust Bayesian viewpoint, and argue that it provides the de-

sired foundational framework.
The robust Bayesian viewpoint is by no means new, of course, and virtual-
1y all Bayesians will ascribe to it to some degree. For example, deFinetti

(as qudted by Dempster (1975)) stated

"Subjectivists should feel obligated to recognize that any
opinion (so much more the initial one) is only vaguely accept-
able...So it is important not only to know the exact answer for
an exactly specified initial problem, but what happens changing

in a reasonable neighborhood the assumed initial opinion."

Most of the arguments and examples presented herein have undoubtedly been

presented elsewhere. For instance, a very large proportion of the ideas



can be found in the works of I.J. Good, even as early as Gobd (1950).
(Indeed, I would have very few qualms about calling myself a Doogian.)
Herman Rubin and Bruce Hi1l (among others) have also always espoused
similar views. In some sense, therefore, this should be thought of as
basically a review paper, with the goal of tying together the various
elements of the robust Bayesian viewpoint in an attempt to present a
convincing case. (To keep the account readable, I will defer most histor-
ical references to Section 5.)

“ This article is written more for the "non-robust" Bayesian, than for
the non-Bayesian. In other words, little attempt will be made to justify
Assumption I. Besides the sheer impossibility of adequately discussing
Assumption I in a single paper, the rationale is that the Bayesian should
have clean hands before he accuses someone else's hands of being dirty.
Presenting the (enormously convincing) arguments for Assumption I seems to
have 1ittle effect on non-Bayesians if they are able to come back with
the complaint that Assumption II seems totally obvious to themand they re-
fuse to operate in violation of it. Fully admitting (and even expounding
on) the truth of Assumption II, while showing how Assumption I can still
basically be followed, should greatly enhance the Bayesian argument. (See

Berger (1982d).)

In reading the paper, keep in mind that the robust Bayesian viewpoint
is being advocated as the framework for ultimately verifying the sensibil-
ity of an analysis, and is not necessarily being advocated as an applied
methodology to do all of statistics.. Comparatively 1little work has been
done on robust Bayesian methods, so while it is a very illuminating view-
point from which to understand things, it is not to be expected to provide

easy answers to all our problems.



As a final caveat, although I will talk about various "classes"
of Bayesians and non-Bayesians (such as "objective" Bayesians, "pure"
subjective Bayesians, frequentists, etc.), these classes are to a large
extent imaginary; most statisticians are a composite of a number of such
classes. These distinctions will be made only for convenience in repre-
senting certain basic viewpoints.

In Section 2, justifications for Assumptions I and II will briefly
be outlined. Since II implies that one must consider classes of plausible
prior distributions, reasonable such_c]asses will also be discussed,
along with the problems of updating prior information. Section 3 is
concerned with methods of measuring Bayesian robustness, and the somewhat
surprising conclusion is reached that frequentist measures can be useful
in measuring robustness. (This seems to conflict with Assumption I,
and indeed behavior violating Assumption I can occur under this viewpoint,
but only to the extent necessary to achieve robustness.) Section 4
deals with certain consequences of adopting this viewpoint, showing how
certain features of many non-Bayesian techniques can be partially
justified from the robust Bayesian viewpoint. Section 4 also presents
an example, involving the Stein effect, which demonstrates that naive
Bayesian intuition is not always trustworthy in the face of robustness
considerations. Section 5 gives a brief survey of existing work related to
Bayesian robustness, and contains some useful guidelines for achieving
robustness. Section 6 consists of some conclusions and philosophical

meanderings concerning the robust Bayesian viewpoint and objections to it.



1.2 Notation

In this paper it will be assumed that the data x is a realization of
a random variable X with distribution Pe(') on the sample space Z for some
unknown 6€® . Although @ will be referred to as the parameter space and
{Pe’ 6 €@} will usually be a parametric family in the examples, the basic
arguments hold for any index set & ; thus the nonparametric situation would
be included by letting ® 1index any desired class of probability distribu-
tions. A prior distribution on ® will be denoted =, w(+|x) will denote
the posterior distribution of ¢ gjven the observation x, and m(-)=E“[Pe(-)]
will denote the marginal (or unconditional or predictive) distribution of
X. (E will stand for expectation, with superscripts indicating what the
expectation is being taken over, and subscripts indicating fixed parameter

values.)

1.3 Decision Theory

Many of the examples discussed will be presented from a decision theo-
retic viewpoint. The reason is mainly that, if a point is to be made, it
can most clearly be done in a precisely quantifiabie situation. It can, of
course, be argued that, just as the robust Bayesian viewpoint seems neces-
sary for understanding, so the robust decision theoretic viewpoint is also
essential. ("Inference" problems would simply be problems where very little
knowledge concerning the loss function was obtainable, and hence where
robustness over a wide class of loss functions would be sought.) I certain-
ly support this view, feeling that there are great dangers in refusing to
at least think in decision theoretic terms. (Incidentially, it has always
struck me as curious that there are violently antidecision-theoretic

Bayesians and violently anti-Bayesian decision theorists. Is there really



such a big difference between the two types. of subjective inputs?) To keep
the paper contained, however, the decision theoretic issue will not be ex-
plicitly considered; issues get clouded when too much is attempted.

When employing a decision theoretic viewpoint, the action space will
be denoted G , the Toss in taking action a€q when 6 €® obtains will be
denoted L(s,a), and the posterior expected Toss of action a with respect

to the prior 7 and observation x will be denoted

(1.1) o(mxa) = E"C 1)L (60,a) = 1 L(o,a)n(do]x).
‘ . ®

A decision rule (for simplicity assumed to be a nonrandomized function from
Z into g ) will be denoted §(x). We will have cause to consider the
(frequentist) risk function

R(8,8) = EGL(e,S(X)) = f L(e,6(x))Pe(dx)
a

and the Bayes risk

(1.2) r(v,8) = E"R(6,8) = [ R(6,8)n(de)

/
@

Emp('lT,X,(S(X)) = f p(TT,X,(S(X))m(dX).
a



2. THE ROBUST BAYESIAN VIEWPOINT

As the robust Bayesian viewpoint is founded on a belief in Assumptions

I and II,

these assumptions will be discussed in the first two subsections.

Subsection 2.3 discusses reasonable classes of prior distributions which

could be considered in light of Assumption II. Subsection 2.4 discusses

the issue of updating uncertain prior information.

2.1 Justification for Assumption I

There are at least seven basic reasons that have been advanced for be-

ing a Bayesian, these being:

(1)

(iii)

(iv)

(v)

Prior information is too important to ignore or deal with in an
adhoc fashion.

According to most "classical" criteria, the class of "optimal"
procedures corresponds to the class of Bayes proceddres, SO one
should select from among this class according to prior informa-
tion.

The Bayesian viewpoint works better than any other in revealing
the common sense features of a situation and producing reasonable
procedures.

The goal of statistics is to communicate evidence about uncertain-
ties, and the correct language of uncertainty is probability.
Only subjective probability provides a broad enough framework to
encompass the types of uncertainties encountered, and Bayes theo-
rem tells how to process information in fhe language of subjec-
tive probability.

Axioms of rational behavior imply that any "coherent" mode of
behavior corresponds to Bayesian behavior with respect to some

prior distribution.



(vi) The Likelihood Principle seems irrefutable, yet the only general
way of implementing it seems to be through Bayesian analysis.
(vii) Bayesian posterior measures of accuracy seem to be the only mean-

ingful measures of accuracy.

Many papers and books have been written about these reasons, and no
attempt will be made to review or explain these reasons in detail. A few
comments seem in order concerning the importance and effectiveness of each
of these reasons, however.

Reasons (i), (ii), and (iii) do not bear directly on Assumption I,
but do lend considerable support to the Bayesian position. Reason (i) is
important, especially when it is realized that choice of such things as a
model is really just a (perhaps rather extreme) use of prior information.
Nevertheless, reason (i) is not very effective for "conversion" since it
can always be argued (incorrectly or not) that in many problems no (or very
little) prior information is available.

Reason (i1) is very suggestive, pointing out a frequently occurring
one-to-one correspondence between "good" classical procedures or methods
and Bayesian procedures. In testing between two simple hypotheses, for
example (the "dichotomy" discussed from this perspective by Lindley and
Savage in, for instance, Savage, et. al. (1962)), the classical Neyman-

- Pearson tests are the Bayes tests. In selecting a test, therefore, one

can either make a grand intellectual leap to o and B, or can carefully con-
sider the available prior information (and information about the loss or
consequences of accepting and rejecting and cost of experimentation) and
select the test on Bayesian (decision-theoretic) grounds. To me the es-

sence of reasoning is to reduce a complicated problem to simple components,
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analyze the components separately, and recombine to get an answer. I dis-
trust grand intellectual Teaps.

Another example, involving current research, is the work on finding
alternatives to the Teast squares estimator, due either to pursuance of
the Stein phenomenon (that in three or more dimensions the usual estimator
is inadmissible) or ridge regression ideas. Again there is a one-to-one .
correspondence between '"good" procedures (say, as measured by mean squared
error) and Bayesian procedures (as shown in the normal case by Brown (1971)).
One can thus select an alternative to the usual estimator either by a
(mystical to me) intuitive method, or by considering which o are apriori
most likely to occur and selecting a Bayes estimator designed to do well
for these o (while preserving mean squared error dominance if desired).
Further discussion of this example is given in subsection 4.5.

Reason (iii) is certainly not very good for conversion, but is the
reason Bayesians tend to become more and more Bayesian as time progresses.
Application of Bayesian reasoning will time and again clear up mystifying
situations, and easily arrived at Bayesian procedures (say, with respect
to noninformative prior distributions) often perform much better than
complicated and difficult to determine classical procedures. (It is a
shame that the very simplicity of much of Bayesian analysis is consider-
ed an indictment of it; I may find very stimulating a difficult mathemati-
cal derivation of, say, a minimax rule, and not be so intellectually ex-
cited at the routine calculation of the corresponding noninformative
prior Bayes rule, yet (if done sensibly) the latter rule will virtually
always be better.)

The Tast four reasons all pertain to fhe validity of Assumption I,

and indeed are very related. They correspond to essentially four
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different modes of argument for Assumption I, however, and hence are 1list-
ed separately.

Réason (iv) has been eloquently argued by many scientists, philosophers,
probabilists, and statisticians (c.f. Jeffreys (1961), deFinetti (1972, 1974,
1975), Good (1950), Jaynes (1981 ), and Lindley (1982)). We
often work very hard in elementary statistics courses to suppress in stu-
dents their natural instincts to talk about the "chance that 6 is in the
interval" or the "probability that the hypothesis is true", telling them
that (although these are what they really want to know) we must be "objec-
tive" and create an artificial language of confidence statements and error
probabilities. Such artificial languages do not seem able to withstand
deep scrutiny.

Reason (v) is compelling to many, but is perhaps a touch overemphasiz-
ed. The axioms of rationality are, for the most part, very believable,
and it is interesting to know that any coherent method of behavior corres-
ponds to Bayesian behavior with respect to some prior distribution, but
this does not say that the right way to behave is to write down a prior
distribution and perform a Bayesian analysis. IIndeed I would term this
latter behavior incoherent (in a broad sense); in that the prior distribu-
tion used can only be an approximation to true prior beliefs (see the next
subsection). The value of rationality and coherence is that they indicate
that my "optimal" analysis will correspond to a Bayesian analysis with re-
spect to my "true" prior distribution (admittedly circularly defined here),
and hence indicate the direction in which I should look to determine my
.optimal ana]ysﬁs; See Section 3.3 and Berger (]982&) for further

discussion and references.
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Reasons (vi) and (vii) are often the most convincing to non-Bayesians.

They bring out the key point that many Bayesians became Bayesians. not

because they were infatuated with priof information, but because they could
see no other meaningful solution to the conditional inference problems be-
setting classical statistics.

The Likelihood Principle is wonderful, in that so much follows from
so little. The Likelihood Principle essentially says that if the family
of distributions {Pe} has densities {pe} with respect to some dominating
measure and the observation from the experiment is x, then the evidence
about o obtainable from the experiment is confained in the likelihood func-
tion zx(e) = pe(x) (considered as a function of ). The appeal of the
principle is partly the fact that (as shown by Birnbaum (1962)) it follows
from the'Principles of Sufficiency and Conditionality; indeed all that is
needed of the Conditionality Principle is that if one chooses between two
experiments based on the flip of an (independent) fair coin, then the evi-
dence about o obtained is precisely the evidence obtained from the experi-
ment actually performed. These Tatter principles seem so self-evident that
it is hard to disagree with the Likelihood Principle, yet belief in the
Likelihood Principle forces a complete revolution in thought; one must
then think conditionally on the actual observation x. Further investiga-
tion (c.f. Basu (1975) and Berger and Wolpert (1982b)) leads to the
conclusion that zx(e) can be meaningfully used only by considering it as
a probability density with respect to a measure w, which should reflect
prior beliefs about 6. Hence the result of this line of reasoning is
that one must view things in a Bayesian fashion.

Reason (vii) is related to the Likelihood Principle, in that it argues
that only conditional measures (based on the posterior distribution) given
x are sensible for evaluating the evidence about 6, but it is less founda-

tional and more of a "proof by counterexample". For instance, consider
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Example 1. Suppose X =8 + 1 or 8 - 1 wifh probability ! each (eEER]),

2
and that a 75% confidence interval of smallest size for 8, based on inde-

pendent observations X] and X2, is desired. This is obviously given by

1
N

. 1 ; =
‘ the point 5 (x;¥x,) i %=,
C(x1,x2) = '
the point (x;+1) it [x;=x,] =0
(or we could have chosen (x]-1) if [x]—le = 0). But if |x]-x2| =2, we
are absolutely certain that ¢ = %—(x1+x2), while if [x;-x,| = 0 we are

equally uncertain whether o = X] +1oroe-= X] - 1 (barring specific prior

information). In either case, it seems absurd to report C(X],Xz) as being
a 75% confidence interval. The point, of course, is that frequentist mea-
sures such as "confidence" can be totally misleading for given data x. The
frequentist can protest that such measures as "confidence" are not to be
interpreted conditionally, but what is the sense in proposing a measure of
accuracy which clearly presents a false image of the information about o
contained in the data. (The Bayesian posterior credible regions for this

situation are, of course, very sensible.)

Examples are available for essentially any non-Bayesian measure of
accuracy (or at least any frequency measure of accuracy), showing that the
~measure can very inaccurately portray the information about & contained in
the observation x. After seeing enough of these examples, posterior mea-
sures start to look very attractive.

ATl sorts of classical defences and objections to reasons (vi) and
(vii) can, of course, be raised, such as bringing in questions of design,
stopping rules in sequential analysis, analysis in nonparametric situa-
tions (where a 1ikelihood function may not exist),allowing "conditional™

frequentist statements, etc., but they all seem to be answerable. Further
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discussion here-would be inappropriate and can be found in Basu (1975)

and Berger and Wolpert (1982b), which also contain earlier references.

2.2 Justification for Assumption II

Assumption II seems almost transparently obvious, yet there is
considerable resistance to it among many Bayesians. Hence a brief
discussion seems in order.

In the first place, there are situations in which it seems simply
unreasonable to expect that beliefs can even be modeled by a single
prior distribution. Consider the following simple (though admittedly

artificial) example, essentially given in Zaman (1982).

Example 2. Consider 3 boxes Tabelled A, B, and 2B, one of which contains
a ball. The only information you have is that box ZByis twice as likely
to contain the ball as box B. You are to determine your subjective prob-
abilities Pp> Ppe and Pog of the ball being in the indicated box. Clearly
you should have Pop = 2pB, but it is not clear what else can be said.
Since nothing is known comparatively about A and B, it seems that one
should have Py = Pgo but by the same reasoning one would say Pp = Poge and
both cannot hold. It does seem reasonable to suppose that one's prior
probabilities should satisfy the constraints Pg < Pp < Pyp and Pop = 2pB,

but it is unreasonable to expect anything more precise to be concluded.

Even if in a situation where it is reasonable to expect beliefs to be
expressible in terms of a single prior distribution Trs Can this actually
be done? Consider, for instance, any of the axiomatic systems which

guarantee the existence of Tt (In the situation of Example 2, at least
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one of the axioms in any system wi]T be violated.) The prior Tr is obtain-
ed by various betting or comparison schemes, but is exactly nailed down
only after an infinite process of elicitation. This is clearly the case
when @ is infinite: (or when the associated o-field of events is infinite)
since there are then simply an infinite set of probabilities to determine.
Even when ® is finite, the axiomatic systems formally call for consider-
ing an infinite number of bets or comparisons. In the betting schemes, one
must compare all possible wagers, and indeed should really base the bets

on a utility function which itself takes an infinite amount of time to per-
fect; and in the comparison schemes one must compare events with the in-
finite set of measurable events from some auxilliary - say, uniform -
distribution. Ahd aT] this assumes. that /@ %érkhéwh, whéféés in many
situations the possible states of nature are only vaguely comprehended
(c.f. Shafer (1979, 1981a, 1981b) and Barnard (1982)).

From a strictly intuitive viewpoint it is also clear that the single
prior axiom systems are, in a sense, inapplicable, since there is obviously
a lower limit to the accuracy of prior elicitation. I cannot believe
that anyone could ever distinguish between P(A)=.25 and P(A) = .250001

-100

(or P(A) = .25 + 10 if an extreme case is needed) in terms of subjec-

tive elicitation. Thus Savage (1961) says

"No matter how neat modern operational definitions of
personal probability may look, it is usually possible to deter-
mine the personal probabilities of important events only very

crudely."
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Similar views can be found in Koopman (1940), Good (1950, 1962a, 1973
(priggish principle 3)), Savage (1954), Smith (1961), Dempster (1967,
1968), Fine (1973), Kyburg (1974, 1976), Suppes (1975), Levi (1980), Rios
and Giron (1980), DeRobertis and Hartigan (1981), and Zaman (1982).

Some Bayesians argue that the concept of a "true" prior T is
meaningless, in that the approximate prior A that one arrives at after a
finite amount of time is your true prior at the moment, and should hence
be used as such. In the face of infinite:® this is clearly not very
reasonable, since in a finite amount of time an infinite set of proba-
bilities cannot be specified without introducing a large degree of arbi-
trariness. Even if only a finite' @ 1is involved, it seems unreasonable
to look upon mp @S any form of truth, since further thought would likely
cause further refinement and there is always a considerable fuzziness
in subjective elicitation. The distinction between Tr and TA is made
very succinctly by Dickey (1976a, 1976b), who calls them the "actual
prior distribution" and the "operational prior distribution”, respectively,
and point out situations in which my can be known to be a good approxi-
mation to Tr- (It is possible to argue philosophically that T is
essentially an imaginary quantity itself -- c.f, parts of Levi (1980) --
but it is often a useful imaginary quantity to consider.)

As an aside, it is interesting to observe that; in the above light,
the subjectivist Bayesian objections to the objective Bayesian use of
"noninformative" priors seem less forceful. In a situation where there is
very little prior information about 6, a noninformative prior may be a
better approximation to L than any hastily derived proper subjective ap-

proximation Ty
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Another situation, in which working with a class of priors is
clearly unavoidable, is when group conclusions or decisions must be
made and the priors of all members of the group must be considered.

(See Weerhandi and Zidek (1981) and Zidek (1982) for discussion and earlier
references.) The issue of scientific communication is related to this,

the (often unattainable) ideal being that of presenting a conclusion

which would be the conclusion for any reasonable prior that a user of

the information might have. (Among the works bearing on this issue are
Hildreth (1963), Dickey (1973), and Jackson, Novick, and DeKeyrel (1980).)
Although ideas in these areas must bear a strong relationship to those
discussed in this paper, we will not be formally considering such group
situations.

The above arguments do not, of course, establish that a serious
problem exists with standard (i.e. single prior) Bayesian analysis. Indeed
I am very sympathetic to the claim that single prior Bayesian analysis
is the ideal goal and that the major problem remaining is that of developing
good prior elicitation techniques. There is a very substantial and
growing literature on the subject of prior elicitation (c.f. Kadane,
Dickey, Winkler, Smith and Peters (1980) for discussion and other
references), and as better elicitation methods become available it is
natural to expect the need for consideration of Bayesian robustness to
decline. The validity of Assumption II from a philosophical viewpoint

seems clear, however,
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o 2.3 Reasonable Classes of Prior Distributions

In subsection 2.2 it was argued that quantification of prior beliefs
can never be done without error, and hence that one is left, at the end of
the elicitation process, with a set T of prior distributions which reflect
true prior beliefs; i.e., T is an unknown element of Ir'. Some comments are
in order concerning the specification of T.

The first and most crucial realization is that, in quantification of
prior beliefs, only prior probabilities and relative likelihoods can accurate-
ly be elicited. In other words, such features of the prior distribution
as percentiles and shape features (unimodality, monotonicity, symmetry,
smoothness, etc.) can be elicited with some confidence, while features such
as moments and exact functional form are much harder to accurately deter-
mine. The reason for this is simply that assessment of probabilities of
events (and hence of percentiles of the prior distribution) is certainly
feasible, as likewise is intuitive comparison of the "likelihood" of the
various 6 (at least to the extent of leading to reasonably certain struc-
tural information about the prior density). To specify a prior moment, on
the other hand, demands very accurate specification of the "tail" of the
prior distribution, which will almost never be feasible. Consider the

following example.

Example 3. Suppose 6 is an unknown normal mean, and that a necessarily

brief period of prior assessment results in the conclusions that
PT(6<-1) = p(-1<6<0) = p(0<o<N)=p"(1<0) = 1 ,

and that = has a symmetric unimodal density. Thus r could reasonably be
chosen to consist of all priors with symmetric unimodal densities having
median 0 and quartiles #1. (To be certain of robustness, it would prob-

ably be better to choose TI' to consist of all priors with medians within
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€1 of zero and quartiles within €5 of #1, with similar leeway for error
allowed in the specification of symmetry. This will not make much differ-
ence in this situation, however.)

In this example, T contains both the conjugate prior % (0,2.19) (nor-
mal with mean zerb and variance 2.19) and the ¢ (0,1) prior (Cauchy with
median zero and scale parameter 1). The normal prior has all moments,
while the Cauchy prior has no moments whatsoever. It seems very unlikely
in this situation to expect detailed knowledge of the tail of the distribu-
tion (i.e., detailed knowledge of a set of very small prior probability),

so any attempt to specify I by prior moments seems fraught with peril.

An alternative reasonable approach to specifying r is to approximate
T by a specific assessed approximation nA,‘and then let T consist of all
priors "close" to Ty Again, “close" should be measured in terms of close
probabilities, such as in the class
(2.1) r={m: w(+)=(1-e)my(+)+eP(+),

P an arbitrary probability distribution} ,
where ¢ reflects the believed accuracy of the prior assessment. This class
r was first considered in Schneeweiss (1964), Blum and Rosenblatt (1967),
and Huber (1973). Other reasonable classes can be found in Berger (1980b).

Much of the literature invoiving classes of priors chooses I' to be
either the set of priors with certain moments in specified ranges or a set
of priors of a particular functional form with parameters in specified
ranges. MWhile these tend to be much easier to work with than are T such
as in Example 3 or (2.1), they are unsuitable, as discussed earlier.

Easily specified classes, such as (2.1), are often somewhat too large,

in that they do not incorporate probably available smoothness information
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about w. In (2.1), for example, it may well be felt that = definitely has
a unimodal continuous density, which would place severe restrictions on
the contaminations P allowed. Thus if, in doing a robustness analysis with
respect to a I' as in (2.1), robustness seems hard to achieve, make sure
this is not due to unrealistic features of I'. Of course, if robustness
with respect to T is obtained, then one is also robust with respect to the
more reasonable subclass.

It is, of course, possible to have I much less clearly specified than
in the above examples, such as when 6 is a high dimensional vector or, even
worse, a nonparametric index. Only extreme]y crude or general features of

the prior might thén be obtainable, so T coqu be very large.

2.4 Updating T

Since we will primarily be concerned with posterior measures, the
question of updating I by the data is obviously crucial. When making
posterior conclusions, the obvious class of posteriors to consider is simply

r* = {n(+|x): =€ T'}.

Unfortunately, more flexibility must be allowed if realism is to be achiev-
ed. The main difficulty is that, especially in mﬁ]tivariate problems, it
would be far too time consuming (if even possible), to accurately ascertain
even the most important features of the prior ahead of time. After seeing
the data, however, one can determine which features of the prior will have
a real impact and must carefully be considered. For example, in a compli-
cated linear model the data may illuminate which variables are important
and hence should be the focus of the prior elicitation. Or the data may
indicate that some variables are accurately determined by the data, and

hence prior information concerning them is likely to be less important,
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while other variables are very inaccurately determined from the data (due,
say, to multicollinearity) and hence need accurate prior specification.
Thus the data may cause further prior elicitation resulting in a reduced
class I'* (which will then be updated by the data in the usual Bayesian
fashion).

Major objections to the above approach can, of course, be raised, most
troubling being the apparent dependence of the prior (not just the posterior)
on the data. This offends many Bayesians, and also smacks of cheating and
adhocery to non-Bayesians. To Bayesians, I can only reply that there is
no choice. Typical situations have high dimensional &, for which it is
very unrealistic to suppose that suitably accurate prior specification can
be achieved; i.e., only very Targe T can be determined prior to experimen-
tation. It will be very unlikely that robustness can be achieved with
respect to such a large I'. Hence a narrowing down of T will be needed,
with the data indicating where further refinement is necessary. Note that
the data is not to be used to shape your beliefs, but only to indicate how this
narrowing down should be done, and when a point is reached which allows

reasonably robust Bayesian conclusions to be drawn. As Hill (1965) says

"...it is only the degree of care we take in approximating

our prior, not the prior itself, that depends on the data."
J

A more troubling situation is when the data reveals that T was in some
sense wrong, and not just too big. One could argue that r should have been

kept flexible enough to encompass all possibilities, but realistically the
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data will often suggest new relationships, hypotheses, or models that were
not included in, and may even contradict, the original specification of #. One
must then go back and suitably enlarge or change T', as observed in deFinetti

(1972, Chapter 8) and Savage (1962). As-Savage, said, however,

"It takes a lot of self-discipline not to exaggerate the prob-
abilities you would have attached to hypotheses before they were

suggested to you."

The disturbing nature of allowing the data to affect I directly does
not seem quite so bad if a slightly different perspective is adopted. In-
stead of viewing the situation as that of updating prior information, think
of it as an attempt to quantify (after the experiment) the relevant experi-
mental and non-experimental information, and then combine the two. This,
of course, is the view that outsiders, evaluating a robust statistical
analysis, will take. A good analysis will present a suitable summarization
of the data along with a description of the experimenter's T and his con-
clusions. In evaluating this, an outsider would consider the suitability
of r, and alter r to reach his own conc]usidns if needed. How T was obtain-
ed is essentially irrelevant; either it seems a reasonable representation
of the non-experimental evidence or it does not. The emphasis here is on

the effect of the data on opinions, or on the prior to posterior transforma-

tion, a concept convincingly promoted by Dickey (1973). Another

way of thinking of this is that one learns by passing a variety of
reasonable priors over the likelihood function zx(e) and seeing what
happens. The strict prior to posterior mode of reasoning is then de-

emphasized. (Indeed, Shafer (1981b) argues convincingly that practical
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Bagesians almost never think in this strict mode, but instead view the
problem as that of combining different sources of information.)

The clear difficulties of updating, by merely conditioning on the
data via Bayes rule, have led to the development of other theories or
methods for Bayesian or pseudo-Bayesian analysis. (See, for example,
Jeffrey (1968), Shafer (1976, 1979, 1981a, 1981b, 1982), Teller (1976),
and Diaconis and Zabell (1982).) These alternatives are interesting, but
I remain unconvinced as to the practical necessity of developing a
methodology which goes beyond post-data modification of I, followed by
updating via Bayes rule.,. First of all, most of the exaMp]es against
Bayesian updating can be handled by allowing post-data modification of T.
Secondly, complex situations are understood by trying to break them into
simple components for separate analysis; the prior - data, or alterna-
tively, experimental - nonexperimental information decomposition is a
very useful such breakdown, with a known method (Bayes rule) for recom-
bination. Although contamination of information is certainly a real
danger, and there may be situations where this breakdown is not necessary,
in the overwhelming majority of the cases it is successful. A final
argument for staying within the framework of Bayesian conditioning is
that, as alluded to earlier, it is very important in statistical reports
to separate the information contained in the data from that in the prior,
and so this breakdown should be attempted even when not convénient.

While the above reasons argue against basing one's methodology on
non-Bayesian updating, it would be foolish to rule out alternate methods
completely. (See the discussion of this issue in Shafer (1979, 1981a,
1981b).) Also, certain ideas derived from these alternate viewpoints
are useful in post-data modification of T'. One such idea is the use of
Jeffrey's rule, as discussed in Diaconis and Zabell (1982) and Shafer

(1981a).
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3. MEASURES OF ROBUSTNESS

The natural Bayesian measure of robustness is insensitivity of the
final (posterior) conclusion to the choice of # € I'. This will be discuss-
ed in the next section. Though of central importance, this measure of
robustness will be seen to be inadequate in some situations, necessitating
measures of robustness of procedures based on overall performance, such as
Bayes risk, r{(m,8), in decision-theoretic situations. 'This will be dis-
cussed in subsection 3.2. Subsection 3.3 discusses the role of each of

these two methods of measdring robustness.

3.1 Posterior Robustness

Assumption I, being the cornerstone of the robust Bayesian Viewpoint,
must be followed. Hence, after observing all the data, any inference or

decision made should be satisfactory from a posterior viewpoint.

Definition 1. An inference or decision is posterior robust with respect

to r if it is satisfactory with respect to =(-|x) for all = €r.

This definition is necessarily very vague, but could be tightened up in
specific situations, such as in the following reasonable definition for

decision-theoretic settings.

Definition 2. In a decision-theoretic setting (see subsection 1.3), an

action a is e-posterior robust with respect to T for the observed x if

(3.1) suplp(n,x,ao) - inf p(w,x,a)| < e.
mer aeqd

It is important to realize that whether or not posterior robustness

exists will often depend on which x is observed. Thus Barnard (1982) says
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"We should recognise that 'robustness' of inference is a
conditional property - some inferences from some samples are

robust..."

Consider the following example.

Example 4. Assume that X ~ % (o,1) is observed, and that it is desired

to estimate 6 under loss L(6,a) = (e-a)2. Here @ = G = R1. Suppose

T = {ﬂN,nC}, where ™ is the % (0,2.19) distribution and e is the; ¢(0,1)
distribution. (This T is a very specialized subset of the T in Example 3,
but behaves similarly in many respects.) If m, were the true prior, then

N
one would want to use the Bayes estimate

while if T, were the true prior, then one would want to use the Bayes es-

timate

oo o 120#0%) Texpt-3 (x-0)"ja0
[(1+65) Texpi-2 (x-8)"}do

N

Table 1 gives a few values of § and GC.

N

Table 1. &N and 6©

X 0 1 2 10

S 0 .69 1.37 6.87

S 0 .52 1.27 9.80
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An easy calculation shows that, for squared error loss,

lo(m.x520) - inf o(m,x,a)| = (g (x))°
a

where u (x) is the posterior mean for w. Since GN and ac are uy and u ,
i TI'N -T\'C

respectively, it follows that the posterior robustness of either GN(x) or

Gc(x) is measured by

[sM(x)-sC(x) 12

From Table 1, it is clear that either action'is quite posterior robust

(i.e., 6N(x) is close to GC(x)) for x near zero, while for x = 10, neither
action is posterior robust. (For large x, the tajl of the prior becomes

very significant, and ™ and e have substantially different tails.)

If posterior robustness is attainable in a given situation, then the
problem is essenfia]]y solved. If posterior robustness is not attainable,
however, as happens in Example 4 when x = 10, then something else must be
done. The natural thought is to attempt further elicitation of the prior
distribution, and indeed it is precisely when posterior robustness does
not obtain that more detailed elicitation is indicated. If this resolves
the issue, fine, but if further elicitation is not possible or won't prove
helpful (as in Example 4 for x = 10, where the prior tail will be next to

impossible to accurately specify), then we must look beyond posterior robust-

ness. (Of'cqurse,'the above example is extreme, in that if encountered

in practice one wou{d seriously suspect the model for X. Extreme

examples like this are useful for emphasizing the issues, however. They
also provide insight which can be used in less extreme situations. Sections

5 and 6 deal with more practical issues.)
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3.2 Procedure Robustness

Faced with the (X,0) experiment, one can talk about the procedure
§(X) to be used when X is observed. Although the Bayesian tends to think
conditionally on the observation X = x, it is certainly possible to con-
sider the collection {§(x), x € x} of inferences or decisions to be made
for all possible X. (This may seem an unnecessary complication, but is
logically sound.) Since, preexperimentally, the Bayesian thinks that X
will be occurring according to the marginal distribution m(-)}, he would
(in a decision theoretic setting, for simplicity) evaluate the overall

performance of a procedure by

r(m,6) = E'[p(m,X,8(X))].
A reasonable method of measuring the robustness of a procedure in such a

situation is given in the following definition.

Definition 3. In a decision-theoretic setting, the procedure 60 is

e-procedure robust with respect to r if

sup [r(m,s%) - inf r(m,8)] < ¢ .

TET §
Example 4 (continued). Calculation shows that r(wc,aN) = o , r(nN,GN)’= .697,
r(nc,ac) <1, and r(nN,GC) = .736. Hence the procedure robustness of 6C

(with respect to T') is measured by

r(ﬂN,aC) - r(nN,GN) - .049 ,

while that of GN is measured by

N Cy _
r(’n'Ca(S ) - Y‘('TTC,(S ) -«
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Clearly 6C is much superior according to this measure of robustness. (Of
course, the use of an unbounded loss function can be criticized, but even

for many reasonable bounded losses 6C would prove far superior.)

Many Bayesians object to the use of r(w,§) as a measure of anything,
because it involves an average over the sample space. A statistician should
be responsible for the long run performance of his methodology, however.

In the situation of Example 4, for instance, the Bayesian who time after
time uses the conjugate prior Bayes rule SN will have very bad long run
performance if e is the true prior fairly regularly, while the Bayesian
who uses GC suffers no such danger when ™ is the true prior. In other
words, if a Bayesian is to employ a methodology leading to the use of a
procedure &, he should be concerned that his methodology is sound, as re-
flected by r(w,8). This is not to say that a proéedure § is good for all
x if r(n,8) is good (the fallacy in reasoning underlying frequentist sta-
tistics), but does say that & is bad if r(w,s) is bad. (Discussion of *
other reasons for considering r(w,s) will be givenlin subsection 4.4.)

Many Bayesians react to the above argument by asking how r(w,8) can
be bad if &§(x) is chosen to be good from a posterior viewpoint for each x.
Example 4 provides an illustration of how his can happen. From the view-

Y

point of posterior robustness,s" (x) and ac(x) were equivalent, in that the

posterior robustness of each (with respect to T') was measured by

[sN(x)-6%(x) 1%

But from the procedure robustness viewpoint, it seems clear that GC is con-

siderably better than GN.
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From the procedure robustness viewpoint, several specific criteria
have been proposed for the selection of procedures. The two most common

are the r-minimax and I'-minimax regret criteria, which propose the use of

the procedure &* which minimizes

(3.2) sup r(w,s*)
TET
or
(3.3) sup [r(w,8*) -inf r(w,s8)],
TET )

respectively. Discussion of the Titerature on these criteria will be de-

layed until Section 5.

3.3 Discussion

It is important to realize that posterior robustness is the ideal
goal. If it can be attained, the problem is solved. Also, when posterior
robustness is not present, a careful Bayesian will attempt further
refinement of I or, if possible, attempt to obtain more data. Unfor-
tunately, situations where posterior robustness is simply unattainable
are common, such as when (i) because of time or mental limitations
further refinement of I is impossible; (ii) no more data can be obtained;
or (iii) Bayesian analysis is technically too difficult to implement
for a convincing variety of plausible priors (as in many nonparametric
problems).

What alternatives are available when posterior robustness cannot
be found? First, one could simply say that there is no clearcut answer
to the problem. This is reasonable, at least in those situations where
I is clearly defined and different priors in I give substantially

different answers. If, however, the problem is due to technical diffi-
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culties in implementing the. Bayesian approach, or if an answer simply
must be obtained, then something else must be tried.

The natural Bayesian inclination would be to put some "metaprior"
on T itself, and use the resulting Bayes rule. If technically feasible,
this may well be a good adhoc solution. We stress "adhoc" because
the assumption is that no further prior elicitation is possible. Thus
the metaprior is simply some arbitrarily chosen distribution used as
a technical device to obtain an answer. The analysis with metapriors can
be very formidable, however, especially with I such as discussed in
Section 2.3. Also, there is nothing to guarantee that the resulting
answer will be good. Hence it may well be useful to consider procedure
robustness and/or use of frequency measures as an aid in obtaining an
answer. A more extensive discussion of the use of procedure robustness
and frequency measures will be given in Sections 4.4 and 4.5.

The complaint can be raised that use of procedure robustness may
violate Assumption I and the Likelihood Principle, and also that use of
such measures as (3.2) and (3.3) and frequency measures will violate the
rationality or coherency axioms. This is a valid complaint, yet carries
no real force since a point has been reached where there is no clearcut
"coherent" way to proceed. Here, coherent is being used in a broad sense,
since it would formally be coherent (in the usual sense) to arbitrarily
select some metaprior on T' and do a Bayesian analysis, yet few Bayesians
would say that arbitrary choice of a prior (i.e. a choice not based on
any subjective opinions) is necessarily good. Thus Levi (1980) says

"We should, therefore, recognize a distinction between

principles of rationality regulating an agent's commitments
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and the suggestions which may be made when he cannot live

up to them."

It should be stressed that we are not recommending any definite
way of proceeding when posterior robustness is lacking. Often, putting
an artificial prior on T may work. Often (see Sections 4.4 and 4.5)
use of procedure robustness or frequency measures may prove helpful.

Or entirely different statistical methodologies may provide good answers.
In fact, the coherency arguments essentially suggest that no single
automatic prescription concerning what to do in this situation will
always prove successful.

It is crucial, finally, to recall that we are contemplating straying
from the Bayesian path only to select from among answers which are
plausible from a posterior Bayesian viewpoint, and hence will not be
knowingly violating Assumption I or coherency by any substantial amount.
Thus Good (1976) says

", ..non-Bayesian methods are acceptable provided that they are

not seen to contradict your honest judgements, when combined

with the axioms of rationality."
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4. TIMPLICATIONS OF THE ROBUST BAYESIAN VIEWPOINT
The major implications of the robust Bayesian viewpoint have already
been discussed, but the flexibility of the approach allows incorporation
of various sensible,yet osténsib]y "non-Bayesian", techniques. Some of

these are briefly discussed below.

4.1 Data Analysis

The data summarization part of data analysis is justifiable from any
viewpoint, so it is the interactive modeling aspect which is of interest.
This activity always involves the combining of subjective knowledge with
the data to suggest or modify models for the phenomenon being studied, and
is hence essentially Bayesian in nature. As discussed in subsection 2.3,
it seems sensible and necessary to allow modification of I based on the
data, and indeed, with this option, the robust Bayesian and data analyst
behave in essentially the same way. The differences are, first, that the
robust Bayesian believes in quantifying the subjective information (to
the extent possible) in r, rather than incorporating it in an adhoc fashion;
and, second, the robust Bayesian uses posterior measures in evaluating the
evidence for any model or conclusion. This last feature eliminates, in a
sensible fashion, the problems of evaluation of the strength of the evi-
dence for a model selected by the data. (The posterior weight given to
the model is based on a product of the prior weight and likelihood accord-
ing to the data, automatically discounting the "significance" of the data
for the model it selects.) Hence, contrary to popular opinion, the robust
Bayesian is not the slave of a particular prior distribution he must pre-
experimentally specify, and can engage in sensible data analysis (as

opposed to non-Bayesian data analysis).
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4.2 Randomization

Most statisticians are convinced of the value of randomization in
statistical design (e.g. random allocation of subjects to two treatments),
yet the single prior Bayesian position does not allow this. If all unknowns
in the situation have been identified and their true prior distribution
obtained, then the optimal Bayesian design will not require any form of
randomization. When, however, uncertainty in the prior information is
admitted, randomization becomes available.

The use of randomization to a robust Bayesian, however, is essential--
ly limited to the effort of avoiding experimenter induced bias. In other
words, because the robust Bayesian is worried that there are experimental
factors which he has not thought of and which may be correlated with any
nonrandom subject selection or allocation scheme, he will find randomiza-
tion to be useful in (hopefully) preventing such bias.

The robust Bayesian does not {as an ideal) find randomization to be
of use in drawing conclusions from the data. The probabilistic mechanism
of randomization will usually be independent of 6, and hence by Assump-
tion I the robust Bayesian will want to draw conclusions conditional on
the given selected sample. Of course, even the non-Bayesian agrees with
this to some extent, the "selection" of a new randomization design if the
original design doesn't Took random enough being one example. And even
the most ardent anti-Bayesian would not go through with a standard classi-
cal analysis based on the randomization if significant cofactors were re-
vealed which, by bad Tuck, turned out to be highly correlated with, say,
the treatment groups. Yet the Bayesian conditional viewpoint argues
against making any use of the randomization mechanism. Arguments for this
viewpoint can be found in Basu (1971) and Basu (1980). (See also the dis-

cussion by Lindley in Basu (1980).)
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It is possible to argue that robustness considerations allow the use
of the randomization mechanism. For instance, Rubin (1978) argues that
the prior specification is so immensely complicated in typical situations
that it will often be better to "ignore" part of the data (i.e. the known
outcome of the randomization) to simplify the needed prior specification.
The probability mechanism of the randomization does then become part of
the Bayesian analysis, and can indeed simplify matters.

The danger in this is, of course, the usual danger befalling any
attempt to analyze data in violation of Assumption I; the analysis con-
ditional on the data could differ . substantially from the analysis averag-
ing over data points that could have been obtained. Although this is some-
thing that will probably occur fairly rarely, it is unappealing to adopt
as a basic method of analysis techniques which can lead to conclusions at
odds with all the actual data. Note that the robustness advocated in this
paper is not of this potentially dangerous type, since satisfactory con-
ditional posterior behavior is of primary importance.

| There may, of course, be very pragmatic considerations involved. For
example, a randomized design will be useful if it seems important to con-
vince others that the experiment was "unbiased" (although this is rather
j1lusory impartiality). Also one can be very sympathetic to the argument
that any Bayesian analysis here, much less a robust Bayesian analysis, is

simply unmanageable.

Discussion of the randomization issue can also be found in Savage,
et. al. (1962), Hill (1970), Good (1976 and earlier), Basu (1980),
Lindley and Novick (1981), and Berger and Wolpert (1982b). Also, the
debate in sampling fheory concerning the use of superpopulation models
as opposed to analysis based on the probabilistic mechanism of the

sampling rule is essentially the same as the randomization debate.
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Indeed Godambe and Thompson (1977), Godambe (1982), and Royall and
Pfefferman (1982) specifically argue that suitable random sampling plans
can lead to a form of Bayesian robustness. Other discussion and references
can be found in Cassel et. al. (1977), Basu (1978), Hajek (1981),

and Berger and Wolpert (1982b).

4.3 Classical Robustness

By classical robustness is meant robustness with respect to the
distribution Pe(') of the observation X. This is obviously a crucial
aspect of statistical analysis, and can be included in the robust Bayesian
framework by the simple expedient of allowing:® to be a nonparametric
index set (indexing the distributions for X which are of concern),
and having T reflect the prior knowledge available about these distri-
butions. Indeed, to many Bayesians the difference between "model" and
"parameter" seems fuzzy at best. The subjective choice of the model
is often a far more drastic use of prior information than is use of
prior distributions on parameters of the model.

Classical robustness results tend to be in terms of measures such
as "asymptotic minimaxity" (c.f. Huber (1972)), which can be related to
procedure robustness. Procedure robustness is of interest here,

because Bayesian analysis when Pe is uncertain can be tethnica]]y
very difficult. A number of successful Bayesian analyses of model

robustness problems have been carried out, however. For the most part,
these studies proceed by embedding a standard family of distributions

in a larger parametric family (such as embedding the normal distributions
in the class of all t-distributions), and then performing a Bayesian
analysis. Excellent discussions of this, along with earlier references,

can be found in Box and Tiao (1973), Dempster (1975), and Box (1980).
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One important point brought out in the Bayesian view is that model
robustness should be viewed conditionally. If a data set gives residuals
which are a gorgeous fit to normality, worrying about robustness to
normality is a waste of time. Discussion and examples can be found in
Dempster (1975) and Barnard (1982). Efron and Hinkley (1978) and Hinkley
(1982) also discuss important situations in which model robustness should
be investigated conditional on shape features of the data. A1l this is
in Tine with our view that having valid conditional (posterior) measures
is of primary importance.

4.4 Uses of Frequency Measures

Frequency measures can have a role to play in robust Bayesian
analysis. The basic idea of frequency measures is, of course, to also
consider x other than that which occurs. The simplest form of such
reasoning, which can be useful to a Bayesian, is simply to imagine
possible data x, compute the Bayes rule for a prior being investigated,
and see if the result makes sense. In the situation of Example 4,
for instance, the fact that GN appears inadequate for x=10 provides
a warning that GN'might also be inferior for a smaller (yet possible)
observation such as x=5. Several very interesting examples of this type
of reasoning are given in Diaconis and Freedman (1981). Looking at
the behavior of a Bayes rule for a variety of x (often extreme x)

may point out unsuspected and unacceptable features of any chosen

prior. This has been called the "device of imaginary results" by

I.J. Good, and has been extensively promoted by him (c.f. Good(1965,

1976, 1981)).
More formally, frequentist measures, such as operating character-

istic curves and risk functions can be of interest through their rela-
tionship to procedure robustness. (This was briefly discussed in

subsection 3.2, but, since the issue is quite controversial, an expanded
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discussion is in order.) The basic reason for this relationship is

(1.2), namely that
(4.1) E" (7,X,6(X)) = r(v,8) = E"R(s,8).

(Although R(6,8) and p(m,x,6(x)) were defined as frequentist risk and

posterior expected loss, respectively, through appropriate choice of the
loss function they can be made to represent non-decision theoretic
measures such as coverage probability and posterior probability of
containing e, respectively.) If, now, R(6,8) is known to be "good"

for all o, then from (4.1) it follows that E™p(m,X,8(X)) will be "good"
for all n. Although this doesn't guarantee that p(mw,x,8(x)) is actually
good for the observed x and m of interest, there is a good chance that
it will be. Conversely, if R(e,8) is bad for some 6, then before using
§ it is imperative to make sure that such e are really very unlikely

apriori. In Example 4, for instance,

R(0,8V) = .471 + (.0983)02,

which is terrible for large 6. Looking at this risk would cause one

to realize that, unless the large ¢ really are as unlikely (subjectively)
as indicated by the tail of the presumed normal prior, then use of GN
may not be wise.

Besides this aspect of using frequency measures as a check on
Bayesian robustness, two closely related reasons for admitting considera-
tion of frequency measures should be discussed. First, there are simply
many problems which have a good frequency answer, and yet which do
not have clearly trustworthy Bayesian answers. Because of (4.1),
the frequency procedure has a good chance of also being sensible from
a conditional posterior Bayesian viewpoint. Thus it can be viewed as
a good "stab in the dark". Of course, as Bayesian methodology expands,

there will be Tess and Tless need to depend on such frequency evaluations.

(See Berger (1982d) for examples, discussion, and references.)
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The final reason for consideration of frequency measures and
procedure robustness is that, like it or not, the majority of users of
statistics are not going to be extremely well trained, and will probably
not be capable of careful Bayesian sensitivity analyses. For such users
it is necessary to provide procedures, which are as Bayesian as possi-

ble, and yet are automatically robust. Since these procedures will

be used repeatedly, their long run frequency performance is definitely
relevant. Example 4, for instance, suggests that in estimating a
normal mean it would be reasonable to ask the unsophisticated user to
specify a "guess" and an estimate of the accuracy of this guess, and
then fit this to a Cauchy prior and calculate the Bayes estimate (all
of which could be automatically done by a computer). Fitting to a
conjugate normal prior is contraindicated, however, at least for such
automatic use. This section concludes with a very brief review of

some useful frequency concepts.

A. Design, Prediction, and Sequential Analysis

In these problems it is absolutely imperative to average over the
data Tikely to occur, and no Bayesian would think otherwise. Of
course, these problems also have a large Bayesian component. In design,
for instance, one must use subjective guesses for 6 to predict what
data will occur and hence what design to use. Also, a Bayesian will
have the goal of obtaining good conditional performance, which may lead

to a quite different design than a classical design.
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B. Confidence Procedures

If C(x) is a confidence procedure for 6 with confidence level

1-a, then

P.(C(X) contains 6) > 1-a.

As in (4.1), it follows that
4.2) e O e cx) > 10,

so that, for small a, C(x) has a pretty good "chance" of containing
6 (according to a valid posterior measure) no matter what m is. This
use of confidence procedures was discussed in Pratt (1965).

Morris (1981, 1982b) has advocated the development of procedures
satisfying (4.2) for all priors = in a feasible class I', and has called
this "empirical Bayes confidence". For the reasons discussed earlier,
this may well be a valid objective, as long as it is kept in mind that
the real goal is to obtain a set with good posterior probability of
containing ¢ for the given observation x. Similar ideas are employed
in Godambe and Thompson (1976) and Godambe (1982) to argue for use of
frequentist concepts in obtaining robust Bayesian confidence procedures
in survey sampling. Other work on the relationship between frequency and
Bayesian confidence methods can be found in Welch and Peers (1963)

and Stein (1981b), which also contain earlier references.

C. Minimaxity

The robust Bayesian interest in minimaxity arises from the fact that
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(4.3) sup r{m,8) = sup R(6,8),
T 0

and hence a minimax decision rule (i.e. a rule minimizing the right hand
side of (4.1)) is also the "most procedure robust" Bayesian decision
rule (being r-minimax when r is the class of all priors). Although
realistic T will rarely be so large that

sup r(m,8) = sup R(e,s),

T€T 6

a minimax rule can provide a basis of comparison for procedure robustness.

D. Admissibility

If § is inadmissible, there will often exist a §* such that
R(6,8*) < R(s,6)

for all o, and hence such that r(n,8*) < r(w,8) for all priors m for which
the Bayes risk exists. Because of procedure robustness and (4.1),

it can be convincingly argued that this should preclude consideration

of inadmissible decision rules. (See also Hill (1974).) The restriction
to consideration of only admissible rules can be a very helpful reduction
of the problem, particularly in areas such as sequential Bayesian

analysis where even determination of a Bayes rule can be very difficult.

E. Asymptotics

Much of the frequentist work on asymptotics has relevance to a

Bayesian. Some such work is discussed in Section 5. Also, asymptotics
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can be helpful in determining Bayesian robustness. For example, in
Diaconis and Freedman (1981) it is shown that certain partially non-
parametric Bayes rules can be inconsistent, giving real cause for

concern as to the robustness of use of the corresponding priors.

F. Significance Testing

There are sometimes relationships between P-values in significance
testing of a hypothesis and posterior probabilities of the hypothesis
(c.f. Good (1950), Jeffreys (1961), Pratt (1965),and Berger and Wolpert
(1982b) which has later references), and this may sometimes justify
use of the often much easier to compute P-values. Also, in Section 5
the role of Bayesian significance testing in Bayesian robustness will

be briefly discussed.

We have, of course, barely touched the surface of the possible
uses of frequency concepts in robust Bayesian analysis. Invariance
concepts, for instance, can have many uses. Also, many explicit
frequentist procedures turn out to be perfectly satisfactory from a

Bayesian viewpoint.

4.5 Estimating a MuTtivariate-Mean:-.Thé'Stein Effect

We conclude this section with an example interesting from several
aspects. First, it is an example wherein both the frequentist decision-
theorist and the robust Bayesian decision-theorist end up wanting to solve

the same problem. Second, it is an examp1e wherein the Bayesian can be
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amazingly robust and the frequentist can make significant use of prior in-
formation at no or little cost. Finally, it illustrates the fact that good
robust Bayes procedures need not be Bayes procedures for any prior in T,
and indeed can violate natural Bayesian intuition.

Suppose we must simultaneously deal with p independent estimation prob-

lems (p>3), where Xi ~ 72(61,]) is the observation in the ith problem,

and the loss in estimating 6 = (6752250 ) by § = (8754246 ) is

p P

E (61-61)2. The 6, are apriori known to be independent and, as a quick
i=1

approximation, are felt to have % (0,1) prior distributions,to be denoted

w§; i=1,...,p. (Different prior medians could be allowed in the follow-

ing analysis.) This last facet of the prior distribution is deemed un-

certain, however, and hence robustness is sought with respect to the class

of priors

= o

(4.4) T ={r= Tel 1T_i=('|-€)7r|_?+ep1-,

i=1 !
Pi arbitrary probability measures} .

(It is essentially certain that the ei are apriori independent, and ¢ is
the assumed error in the approximations n?.)

A non-Bayesian frequentist analysis of the problem must take note of
the Stein phenomenon, which is that estimators &* exist which are better
than the natural estimator Go(x) = x, i.e.,

%)

(4.5) R(e,8*) < R(e,8°) = p for all 6.
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The frequentist finds himself forced somewhat into the Bayesian ballpark,
however, since any such §* is significantly better than 60 only in a rela-
~tively small region of the parameter space. Intuitively, therefore, s*

should be selected by deciding where significant improvement is most desir-
ed, and it seems manifest that significant improvement'W111 be mést desired
for those 6 felt Tikely to occur apriori. A very reasonable way of proceeding,

therefore, is to elicit a rough prior distribution =,, and then to find

A
that ¢* which minimizes r(wA,6*) subject to.(4.5). (Such a &* will clear-
1y perform best for those o felt apriori to be most 1ikely.) The frequent-
ist willing to sacrifice some minimaxity (here p is the minimax risk) for

more Bayesian gain would be interested in the problem

(4.6) Minimize r(nA,a), subject to R(8,8) < p + C.

A fascinating feature of this situation is that a robust Bayesian can
become concerned with the same problem. Indeed, suppose he seeks proce-
dure robustness by trying to be r-minimax (see (3.2)) with respect to
the v in (4.4), and furthermore does the "obvious" thing and restricts

attention to coordinatewise independent rules, i.e., rules of the form

(4.7) §(x) = (61(x]),62(x2),...,Gp(xp)).
(Since the 6; are apriori independent, any Bayes rule with respect to a
prior in T will be of this form.) A relatively simple game theoretic argu-
ment shows that this problem is then equivalent to the problem in (4.6)
(with & restricted to be of the form (4.7), of course), in that there
exists a continuous increasing function o such that C = p(e) defines an
equivalence of solutions. It is interesting to see what happens if the
restriction to estimators of the form (4.7) 1is dropped, so we will consider

the general problem posed in (4.6).
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Exact results on problems of this form are very complicated but simple
approximate solutions are given in Berger (1982b) and Berger (1982c). For
the special case considered here, and when C = 0 in (4.6) for simplicity,
the approximate solutions are

X

<]_2TP—I§)>X it [x12 s 4(p-2)
X

it |x]% < 4(p-2)

6*(X) =

This estimator is minimax, and hence,not only satisfactory from the fre-
quentist viewpoint, but also procedure robust with respect to the class

of all priors. The estimator is also quite acceptable from the posterior

viewpoint, since for |x|2 < 4(p-2)
s*(x) = 5 x = 8V(x) ,
where 6N is the Bayes procedure with respect to the approximate prior

p
=g n? . (For the class T in (4.4), posterior robustness is achieved

i=1
for small [x| by any Bayes rule with respect to a prior in the class, while
for large |x| posterior robustness is not attainable.) As to Bayes risk,
this estimator astonishingly has
A= T(ﬂN,G*)/P(wN,SN)

as indicated in Table 2.
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Table 2. Bayes Risk Ratio of s* to 6N

Pl 3 [ 4 5 6] 7| 8] 9] |15 | 20

xl1.296!1.135|1.0727l1.0427\1.0267’1.017411.0117'1.008!1.0016]1.0004

Thus when p = 5, for instance, §* is only 7% worse than GN if wN is the

true prior. Indeed sup r(m,s*) will be very satisfactory, as indicated by
mer

the crude upper bound

sup r{m,s*) < (1-pe)r(nN,6*) + pe .

Ter

(Compare this with the fact that

sup P(W,GN) = ®,)
TEr

That one can have such fine Bayesian performance and be so robust (or,
from a frequentist viewpoint, be minimax) is quite surprising. What is
even more surprising from a Bayesian viewpoint is that we know apriori that
the 6. are independent, and hence we know that our "true Bayes rule" would
be of the form (4.7). But it is shown in Efron and Morris (1971) that if
only estimators of this form are considered, then about the best that can
T ) = (1.3)p.

be done is to have an estimator &' with A = 1.4 and sup R(6,6
6

This is 40% worse than s\ when ™ is true, and 30% worse than a mini-
max estimator in terms of minimax risk (indicating considerably less pro-
cedure robustness), which is.significantly inferior to the performance of &%*.
Hence good robust Bayesian procedures can differ substantially from what a
straightforward Bayesian viewpoint might dictate, and need not be Bayes

with respect to any prior in r. (The "formal" Bayesian solution to this
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problem of putting a metaprior on T would probably also work, although
care might be needed in choosing the formal metaprior and the resulting

procedure would probably be extremely messy.)

This example was, of course, very special, particularly in that
the approximate priors for each ei were assumed to have equal variances.
(Talking in terms of "variance" is convenient for specifying T here,
but r does not assume that the prior variance is known.) Almost certainly
in reality, apriorinindependent'ei will-have different approximate prior vari-
ances. Some partial results for the general nonsymmetric situation can be found
in Berger (1982b). Similarly,it will often be unrealistic to assume that
the error in the specification of each of the n? is the same value ¢. The
almost astounding power of the Stein effect in achieving Bayesian robust-
ness in this "ideal" situation, however, certainly argues for its value in

less ideal situations.
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5. HISTORY AND GUIDELINES
There has been comparatively 1ittle research in Bayesian robustness,
and only a few specific guidelines are available in attempting to achieve
robustness. In subsection 5.1 we briefly review the Tliterature on Bayesian
robustness, although this was not intended as a review article per se,
and hence little more than a categorization of results is attempted. In

subsection 5.2 the few available guidelines are presented.

5.1 History

5.1.1 Posterior Robustness

A. Asymptotics

It is intuitively plausible that, as the sample size goes to infinity,
the information from the data becomes conclusive, and hence the conclu-
sions will depend very 1ittle on the prior (automatically achieving posterior
robustness). Results in this area can be divided into the categories of
"stable measurement", "consistency", and "sequential analysis". Summaries
of much of this work can be found in DeGroot (1970).

A(i). Stable Measurement. The principle of stable measurement 1is

roughly that, as the sample size goes to infinity, the posterior distri-
bution of o becomes essentially proportional to the likelihood function
(i.e., the prior distribution washes out). This concept was extensively
promoted by Savage (cf. Edwards, Lindeman, and Savage (1963) and most of
the other works of Savage listed in the references). Blackwell and Dubins
(1962) explored a similar concept. |

Since the Tikelihood function will generally be asymptotically hor-
mal, it is reasonable to expect the posterior distribution to be asymptoti-
cally normal. Results in this direction were obtained by LeCam (1956),

Johnson (1967, 1970), Walker (1969), Dawid (1970), Brunk and Pierce (1977),
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Heyde and Johnstone (1979), and Ghosh et. al. (1982).

One difficulty with stable measurement is that the sample size which
is Targe enough for the asymptotics to apply will often depend on the ob-
servations themselves. Hence, in a sense, one is forced to do a compliete
posterior robustness check even for Targe samples.

A(ii). Consistency. Results concerning the consistency of Bayes es-

timates (and hence a degree of asymptotic robustness with respect to the
prior distribution) can be found in LeCam (1953), Freedman (1963, 1965),
Fabius (1964), Schwartz (1965), Berk (1966, 1970), Strasser (1981),
DeRobertis and Hartigan (1981), and Diaconis and Freedman (1982). These
results tend to say that,if & is in the support of the prior distribution,
then the Bayes estimates are consistent for g, and otherwise they are

not. The results of Freedman (1963, 1965) and Diaconis and Freedman
(1982) indicate, however, that Bayes estimates can be inconsistent even
when s is in the support of the prior, unless care is taken in the selec-
tion of the prior.

A(iii). Sequential Analysis. Asymptotic sequential Bayes decision

theory is concerned with sequential Bayes decision problems when the cost
of each observation.is very small. As the cost goes to zero, the number of
observations Tikely to be taken goes to infinity, allowing the Tlarge

sample Bayesian asymptotics discussed previously to apply. Most of the
results on this subject obtain limiting forms of the Bayes stopping rule

or Bayes risks. See, for instance, Chernoff (1959), Schwarz (1962, 1968),
Kiefer and Sacks (1963), Bickel and Yahav (1967, 1969), Gleser and Kunte
(1976), Fortus (1979), Vardi (1979a, 1979b), and Woodroofe (1980). Often,
this limiting form is independent of the assumed prior distribution, in-
dicating a large sample robustness. Certain seemingly robust nonasymp-

totic Bayes stopping rules for estimation problems can be found in Alvo
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(1977). (See also Berger (1980b) for a general discussion.)

B. Sensitivity Theory.

Sensitivity analysis is a standard name for the process of investigat-
ing changes in the conclusions caused by changes in the initial assump-
tions (including the prior distributions). Such analysis is present in
many good Bayesian papers. Dempster (1976) gives aninteresting general
discussion of this with examples. Any attempt to mention all such works
would be nearly hopeless, so instead only the more formal works concerned
with developing bounds on the range of the posterior conclusions based on
variation in the assumed prior distributions will be mentioned. (Such
works will be calied Sensitivity Theory.)

B(i). Bounds on the Posterior Distributions. There have been many

works seeking to bound the amount of variation in the posterior distribu-
tion itself (or certain posterior probabilities) for classes T of prior
distributions, or the closely related "upper and lower probabilities". Re-
sults for classes of priors can be found in DeGroot (1970), HUbef (1973);
Chamberlain and Leamer (1976), Dickey (1976b), Leamer (1978), Davis
(1979), Hi1l (1980c), Rios and Gjrén (1980), and DeRobertis and Hartigan
(1980). (Some of these works are c1o§e1y related to stable estimation.)

Results in Stein (1965) are also relevant.

The idea of "upper and lower probabilities" is essentially to try and
find upper and Tower bounds on the prior distributions (theselbounds will
typically just be finite measures, i.e., will not have mass one), and
from these obtain bounds on the posterior distributions. Such ideas can
be found in Boole (1854), Koopman (1940), Good (1950, 1962a, 1976), Smith (1961),
Dempster (1966, 1967, 1968, 1971), Beran (1970, 1971), Fine (1973), Huber and

Strassen (1973), Kyburg (1974, 1976), Kleyle (1975), Suppes (1975), Williams (1976),
Suppes and Zanotti (1977),. West (1979), Levi»(1980), DeRobertis and Hartigan

(1981); and Wolfenson and Fine (1982), although several.of these works pro-

pose alternative modes of reasoning based on the upper and lower probabilities.
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B(ii). Bounds on Posterior Actions and Expected Loss. Sensi-

tivity theory is often concerned with bounding the variation in the

optimal posterior action or posterior expected loss caused by variation

in the prior. Results for finite parameter spaces can be found in

Isaacs (1963), Fishburn (1965), Fishburn, Murphy, and Isaacs (1968),

and Pierce and Folks (1969). More general theories can be found in
Skibinsky and Cote (1963), Dickey (1974, 1976b), Bansal (1978), Kadane and Chuang
(1978), Rios and Giron (1980), and DeRobertis and Hartigan (1981). Leamer and
Polasek {c.f. Leamer (1978) and Polasek (1983), which also contain earlier
references) give bounds on the posterior Bayes action for a wide variety

of problems involving variation of (hierarchical) conjugate priors, an
analysis they call "global sensitivity" analysis. They also discuss

"Jocal sensitivity", which is essentially the rate of change of the
posterior Bayes action with respect to change in the parameters of the
conjugate prior. Although not generally as~useful as global sensitivity,
local sensitivity can be of assistance in identifying those prior para-
meters which have the greatest influence on the conclusion, and hence

which must be considered most carefully.

C. Partial Prior Knowledge

There are a number of results in the literature concerned with deter-
mining reasonable posterior actions when only limited facets of the prior
distribution are known. For example, Stone (1963), Hartigan (1969), and
Goldstein (1974, 1979, 1980) consider estimation problems where knowledge
is available concerning only the first two moments of the prior distribu-

tion. The estimators that result from such an assumption are linear es-
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timators, and much of the huge literature on linear estimation (including
much of linear filtering theory in stochastic processes) can be recast in
this light. A serious concern is that prior moments are almost never know-
able (see subsection 2.3), and that resulting linear estimators will often
not be robust (see also subsection 5.1.3.A).

Other analyses based on limited prior knowledge can be found 1in
Godambe and Thompson (1971), Hill (1975), Leamer (1978), Levi (1980),
and Lambert and Duncan (1981),

D. Detecting a Lack of Posterior Robustness.

It is particularly important to identify common statistical situations
in which posterior robustness is Tacking, since such situations call for
very careful consideration of prior information.

When the 1likelihood function is flat, the prior distribution will be
the main factor in determining the posterior distribution, and hence the
conclusions are liable to be very sensitive to the prior. This commonly
occurs in high dimensional situations, where due to such problems as multi-
collinearity or often simply a lack of sufficient data for all the param-
eters of interest, the Tikelihood function will be flat in certain direc-
tions. Among the many discussions of this issue are Hill (1977), Leamer

(1978), Hi11 (1980a), Posasek (1983), and Smith and Campbell (1980).
The Tatter article addresses this problem in a critique of ridge regression,
and references a number of other ridge regression papers dealing with the

same issue.
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Another situation in which the likelihood function is flat is in
the random model analysis of variance when the usual unbiased estimator
of the between variance component is negative. This is discussed in
Hi11 (1965), Hi11 (1970), and Hi11 (1980a).

The value of m(x) (the marginal density of X) can be of use

in determining robustness, in that a particularly small value of m(x)
indicates that surprising data has occurred; the data and the prior
information would seem to be in conflict. In such situations the
Tikelihood function will tend to be concentrated in the tail of the prior
distribution, a very uncertain part of the prior. Of course, the initial
implication of a small value of m(x) is that the situation was incorrectly

modeled, and hence (prior) assumptions concerning the data model need to

be reconsidered or discarded. Excellent discussions of this and other

references can be found in Jeffreys (1961), Dempster (1971, 1975), Box
and Tiao (1973), Geisser and Eddy (1979), Box (1980), and Good (1965,

1981).

5.1.2 Procedure Robusfness

A. Asymptotic Bayes Risk.

One can work with decision problems and Bayes risk r(w,s) as the
sample size goes to infinity. Asymptotic approximations to r(w,8) are
then available. Some work in this direction can be found in Chernoff
(1952, 1956, 1970), Lindley (1960), Rubin and Sethuraman (1965), Rubin
(1971, 1972), Johnson and Truax (1978), Burnasev (1979), Woodroofe (1980),
and Ghosh et. al. (1982). Some of the articles mentioned in subsection

5.1.1(A.) are also of this type.
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Interesting robustness phenomenon can occur, when asymptotics are con-

sidered, as shown in the following example due to Rubin (1971).

Example 5. Consider the situation of testing a "fuzzy" point null hypothesis.
This concerns the reasonable formulation of the point null testing prob-

Tem in which the null hypothesis can be phrased as Hp: 6 € €y = (eo-e,eo+e),
where e is quite small. (Rubin (1971) formulates the problem solely 1in

terms of losses, in which case 8y * € are the points at which the Tosses

in accepting and rejecting are equal.) The prior density w(e) is assumed

to have a sharp peak inside ®(), and to be fairly f]at away from the peak.
(Th1s corresponds to common sense eva]uat1ons when a po1nt nu]] is

involved.) Relevant, also, are the loss functions LA(G), of accepting

Hg» and LR(e), of rejecting Ho- The Bayesian will be making a decision

based on the weight function

accepting HO if

(5.1) fw(e)py(x)do < 0,
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and rejecting otherwise (since (5.1) implies that the posterior expected
Toss of accepting is smaller than that of rejecting). The sample size is
assumed to be large enough so approximate normality holds, i.e., pe(x) is

2
-7 (8, Eﬁ~). Three cases must be distinguished:

(1) Somewhat large n (i.e., e << ;% ). In this situation H0 can
n

essentially by treated as a point null, in that

(5.2) fw(e)pe(x)de = peo(x) [ W(e)de + | W(e)pe(x)de .

8, 8¢ 6

The mass of the weight function in e, is comparatively easy to specify.
Also, outside ofjc>0, W(e) will be a fairly smooth function and, since
n is somewhat large (so that the region with high 1ikelihood is fairly
small), it should be possibly to specify the last integral in (5.2) fairly
accurately. Thus we have reasonable Bayesian robustness (i.e., the sub-
jective inputs that are needed are fairly easy to elicit.)

(ii) Extremely large n (i.e., 5& << g). Here it will essentially
n

be known whether o6¢ @0 or not, so the prior will not matter. (Robustness
with respect to ¢ could be a concern, however.) This situation is the usual
“stable measurement" situation.

(i1i) Moderately large n (i.e., all n not covered in cases (i) and
(ii)). Here, surprisingly enough, robustness is lacking, in that the
shape of W(s) in @O is very important. (See Rubin (1971).) This is dis-
turbing, in that determining the shape of the prior in this region is al-
most impossible. (Of course, the overall risk will be small since n is
moderately large, but Rubin (1971) has shown that even mild misspecifica-

tion of the shape of W(e) can cause an increase of Bayes risk of 40% in the

most favorable cases, with much larger increases in unfavorable cases.)

The phenomenon observed in this example, of robustness for somewhat large
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n and extremely large n, but not for n in between, is striking.

B. r-Minimax and r-Minimax Regret Procedures

The r-minimax and r-minimax regret criteria (see subsection 3.2) are
natural criteria to follow if procedure robustness is sought. The basic
concepts were originally developed in Robbins (1951, 1964) and Good (1952).
Other general discussions can be found in Menges (1966), Blum and
Rosenblatt (1967), Kudo (1967), and Berger (1980b).

The T-minimax regret criterion seems somewhat more reasonable than
the r-minimax criterion, in that it is based on the loss in risk by not
using the theoretically optimal Bayes rule, rather than the absolute Bayes
risk. The danger in using r(n,s) itself is that there could be an

"unfavorable" prior mg €T with excessively large Bayes risk

Y‘(ﬂo) = 1'21" Y‘(TTO,G),

in which case the r-minimax procedure would be the Bayes rule with respect
to mg. Unless there is some reason to be especially concerned with mg,
however, it would better to eliminate its prominence by using the r-minimax
regret criterion. The r-minimax regret criterion will, on the other hand,
be somewhat more difficult to work with, so if I contains no "unfavorable"
prior it might be better to consider r-minimaxity.

Recall from subsection 2.3 that r should generally be specified in
terms of percenti1es'and relative 1ikelihoods. This has been done in the
r-minimax literature on testing, multiple decision'theory, and nonparamet-
rics. The literature on estimation, however, makes unfortunate use of T
specified by prior moments.

Results on r-minimax estimation can be found in Jackson, 0'Donovan,
Zimmer, and Deeley (1970), Solomon (1972a, 1972b), DeRouen and Mitchell

(1974), Watson (1974); and Morris (1982a). Testing and multiple decision
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theory results can be found in Rubin (1965', 1971), Randles and Hollander
(1971), Gupta and Huang (1975, 1977), Berger (1979), Gupta and Kim
(1980), Gupta and Hsiao (1981), Miescke (1981), and Hsiao (1982). Some
nonparametric T-minimax studies were done in Doksum (1970), Campbell and

Hollander (1979), and Lambert and Duncan (1981).

C. Controlled Frequentist Risk

As discussed in subsection 3.3, the frequentist risk R(6,8) can be a
good indicator of procedure robustness. In particular, if
(5.3) R(e,8) < C
for all e, then r(r,s) < C for all =, giving an upper bound on the possible
harm from use of the procedure §. Theoretical work finding bounds on the
frequentist risk of Bayes estimators can be found in LeCam (1982), which
also contains some earlier references. Studies of particular Bayesian es-
timators which seem to have good frequentist risk have been done in Novick
(1969), Strawderman (1971), Lindley and Smith (1972), Efron and Morris
(1972, 1973), Clevenson and Zidek (1975), Leonard (1976), Rubin (1977),
Faith (1978), Berger (1979, 1980a, 1982a, 1982b, 1982c), Dey (1980), Dey
and Berger (1980), Albert (1981), Berliner (1981), Ghosh and Parsian (1981),
Hudson and Tsui (1981), Stein (1981), Berger and Wolpert (1982), Bock
(1982), Wolpert and Berger (1982), and Zheng (1982). |

A more systematic approach to the robustness problem is the restricted
risk Bayes approach, initiated by Hodges and Lehmann (1952), which seeks
to minimize the Bayes risk r(wo,s) for a chosen prior 'y subject to the
constraint (5.3). This guarantees robustness (in a conservative sense)
with respect to the class of all priors. Interestingly, as discussed in
subsection 4.5, the restricted risk Bayes problem often corresponds to
the true r-minimax problem with

r = {m: n(-)=(1-e)n0(-)+aP(-), P arbitrary} ,
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where ¢, of course, depends on the C in (5.3). Results for the restricted
risk Bayes problem can be found in Efron and Morris (1971), Shapiro (1972,
1975), Masreliez and Martin (1977), Bickel (1979), Marazzi (1980), and
Berger (1982c, 1982b).

5.1.3 Robust Priors

The difficulty of working with a class T of priors makes very appeal-
ing the idea of finding prior distributions which give Bayes rules which are
naturally robust with respect to reasonable misspecification of the prior.

Indeed as Huber says in the discussion of Box (1980)

"Essentially, by now the Bayesian approach should be con-
cerned not with the ad hoc construction of super models but
with deriving reliable guide-1ines on how to choose the super
model (within the inherent arbitrariness) so as to guarantee

robustness, and how to do so in a best possible fashion."

A. Conjugate Priors are Often Not Robust.

Conjugate priors, by definition, have tails of the same type as the
tails of the likelihood function; this can cause robustness problems as in-
dicated in subsections 3.2 and 3.3. Priors with tails flatter than the
tails of the likelihood function are generally superior (at least for estima-

tion problems). This observation has been made in Anscombe (1963), Tiao

and Zellner (1964), Lindley (1968), Dawid (1973), Hill (1974), Dickey
(1974), Meeden and Isaacson (1977), Rubin (1977), Umbach (1978), Ramsay
and Novick (1980), and Berger (1980a, 1980b). Rubin (1977) gives an
excellent numerical study showing the value of choosing flatter tailed

priors.
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Incidentally, conjugate priors in estimation problems in exponential
families tend to result in linear estimators (see Diaconis and
Ylvisaker (1979), indicating a general lack of procedure.robustness of
Tinear estimators (except for those arising from noninformative priors).
This can be seen directly by examining risk functions of linear esti-
mators.

Of course, a major advantage of conjugate priors is that they are
very easy to work with. Hence if posterior robustness is present, it is
often appealing to use conjugate priors. If robustness is of concern,
yet simple posteriors are desired, an attractive way to proceed in estima-
tion problems is to use a (robust) flat tailed prior, calculate (usually
numerically) moments (or maybe percentiles) of the posterior, and then
match these to a distribution (usually conjugate) of desired simple form.
For instance, if X ~ % (8,1/n) is observed, and it is desired to estimate
6, a Cauchy prior will tend to be robust but will result in an ugly posterior.
Calculating (numerically) the first two posterior moments and pretending
that the posterior is normal with these moments should be reasonably accur-
ate and will result in a posterior which is easy to communicate and use.
Uses of this idea can be found in Bakan and Oleksenko (1977), Morris (1977),
and Berger (1980b).

B. Noninformative Priors.

Noninformative priors are designed to be flat and as uninfluential as
possible. They tend to work well (if carefully determined), and can hence

be considered to provide robust solutions to problems where very Tittle is
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known apriori. The Titerature on this subject is vast. Much of it is
summarized (and other references are given) in Jeffreys (1961), Zellner
(1971), Box and Tiao (1973), Bernardo (1979), and Berger (1980b).

There are problems with the use of noninformative priors, however,
principally the arbitrariness in their definition. ‘(Bernardo (1979) seems
to have the most workable definition, of what he calls reference priors.)
Hence even the user of noninformative priors should be concerned with
robustness with respect to the class of reasonable noninformative
priors. Also, if a noninformative priors is being used as an approxi-
mation to a vague proper prior, it is wise to, at least informally,
verify that the results obtained are suitable for vague proper priors.

In testing problems, standard noninformative priors cannot be used
when they give infinite mass to one of the hypotheses. Such situations
can be handled (in a robust fashion) by use of "reference informative

priors" (c.f. Jeffreys (1961) and Zellner (1982)).

C. Priors on the Boundary of Admissibility.

While flat-tailed priors tend to be desirable, priors with tails that
are too flat may give rise to inadmissible decision rules, especially in
higher dimensions. The most important example is estimation of a p-variate
(p > 3) normal mean under quadratic Toss (although almost any sensible loss
gives similar results). The usual estimator (the vector of sample means or
the least squares estimator in a linear regression) is the (generalized)
Bayes estimator with respect to the (noninformative) uniform generalized
prior on RP. This estimator is inadmissible, because the prior has tails

which are too flat.
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Much of the recent work in admissibility has been to find the "boundary
of admissibility" in various problems. Priors with tails flatter than those
on the “boundary" will tend to give inadmissible decision rules, while
priors with sharper tails will tend to give admissible decision rules.

Since flat tails are desirable for robustness, yet inadmissible decision
rules are unappealing, priors on this "boundary" are natural choices for
use. Results of this nature can be found in Stein (1965, 1981), Brown
(1971, 1979), Strawderman (1971), Strawderman and Cohen (1971), Berger
(1976a, 1976b, 1980a, 1982c), Srinivasan (1980), Berliner (1981);

Ghosh and Parsian (1981), Berger, Berliner and Zaman (1982), and Hwang
(1982a, 1982b).

D. Maximum Entropy and Reference Priors

An appealing idea when faced with a class I' of possible priors is
to choose that prior which maximizes entropy or some measure of loss,
or minimizes some measure of information. Such priors are likely to
lead to robustness, in that they are as noninformative as possible subject
to being in T, and have been called "minimax information" priors (Good
(1968)), "maximum entropy" priors (Jaynes (1968, 1981) and Rosenkranz
(1977)), and "reference" priors (Bernardo (1979, 1981)).

The most extensively developed such theory is that of maximum
entropy priors, much of the development being due to E.T. Jaynes. While
I would call the theory highly successful, there are certain difficulties
which are cause for concern. First, when:@ 1is infinite and the partial
prior knowledge is (sensibly) the specification of certain percentiles,

the maximum entropy prior does not exist. Even when/& 1is bounded, the
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maximum entropy prior in this situation will have unp]easant Jumps.
Finally, it is not really clear that a maximum entropy prior will be

1 and the first two prior moments are

robust. For example, if:®=R
known (an unrealistic assumption, of course), then the maximum entropy
prior is normal with the given moments. Although this is not terribly
unreasonable whenvthe first two prior moments are exactly known, it

still seems preferable to use a flatter tailed prior; say, a t-distri-

bution with the given moments and a small number of degrees of freedom..

E. Multistage Bayes Priors
Multistage (or hierarchical) priors are priors composed of several stages:
at stage one the prior is assumed to be of a given functional form (usually the

conjugate prior form) with unknown parameters (called hyperparameters); at

stage two these parameters are given a prior distribution with possibly un-
Known hyperparameters; with the process repeating until the final stage (sel-

dom more than the third stage), at which point-a completely specified prior

distribution (often noninformative) is given to the hyperparameters of the
preceeding stage. Such priors are particularly useful in multivariate
situations where relationships among the parameters are thought to exist
and can be modeled in stages. They are also a useful enrichment of the
class of conjugate'priors when either robustness or more flexibility is
sought, in that Bayesién calculations can be done in stages with these
priors and will often be relatively easy if the first stage is of a con-
jugate form.

A multistage prior can, of course, be thought of as a single stage

prior; merely integrate out the mulitstage prior over all hyperparameters.



-62-

The robustness of the multistage prior follows from the fact that, virtual-
1y always, the single stage version has flat tails. If, for example,

e = R] and the first stage prior is ?Z(u,TZ), putting a prior on TZ and
integrating will usually result in a flat tailed prior.

The T1iterature on mu1t1stage priors is too large to be mentioned here.

Good (1952) was the f1rst to extens1ve1y discuss the technique, and
has a very substantial body of work on the subject and its relationship
to Bayesian robustness (c.f. Good (1980, 1981)). Lindley and Smith

(1972) is also an important landmark.

F. Empirical Bayes Priors.

If X]""’Xn are observed and thé Xi'have distributions depending on
855 where the 6; can be assumed to be generated from a particular prior
distribution T then Ty can itself often be estimated from the data. This
is the empirical Bayes idea, first formalized by Robbins (c.f. Robbins (1955,
1964)). The approach is particularly easy if m is chosen to be of a
known functional form (say the conjugate form) with unknown hyperparameters,
and these hyperparameters are estimated from the data. (This is then actual-
ly very closely related to the multistage Bayes approach, with similar
answers being obtained under either method.) Providing all the data is used
to estimate the hyperparameters (as opposed to, say, using just "past data"
to estimate the hyperparameters) the resulting prior seems to be quite ro-
bust. This is because "extreme" data (the bane of nonrobust priors) will
tend to give hyperparameter estimates leading to flat priors. For more
thorough discussion of this see Berger (1980b).

The empirical Bayes literature is also too large to mention. Good

discussions and references can be found in Maritz (1970), Bergep (1980b),

and Morris (1982b).
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5.2 Guidelines

The (woefully) few guidelines that have been discussed for achieving

Bayesian robustness are summarized here, with a few additional observations.

5.2.1 General Considerations.

As stressed in subsection 2.3 and elsewhere, it is very important to
consider robustness with respect to reasonable classes of priors. Unfor-
tunately, easy to work with classes, such as classes of conjugate priors
and classes based on prior moments, are usually unsuitable.

It cannot be overemphasized that if posterior robustness obtains,
for the data at hand, then the search is ended. This can often best be
discovered by simply varying the prior (over r') and seeing how the con-
clusion changes. Increasingly easy to use interactive computer systems
should eventually make this relatively easy to do. It will often suffice
to merely check posterior robustness for several, fairly different, priors
in r. For instance, in Example 3 (subsection 2.3), if posterior robust-
ness with respect to the normal and Cauchy priors is present, then posterior
robustness with respect to all of r probably also obtains. Two useful
indicators of a lack of posterior robustness are a flat Tikelihood func-

tion (or more commonly a likelihood function which is flat in certain

directions of ®) and a surprisingly small value of m(x).

When posterior fobustness js lacking, the situation must be recon-
sidered. First of all, one naturally looks for experimental causes or
modeling. failures accounting for this unpleasant situation. If nothing
is turned up, further refinement of T is called for. If the 1imit of the

elicitation process has been reached, however, then now, and only now,



-64 -

does procedure robustness and the possible use of frequency concepts

(see Section 4.4) come into play. (Of course, if one is develop-

ing procedures for automatic use by nonsophisticated users, then posterior
robustness is relevant from the start. To many, this may be deemed to be
a major purpose of the theoretical statistician.) One could formally
attempt some type of r-minimax or r-minimax regret analysis, but this will
tend to prove enormously difficult. Indications of a Tack of posterior
robustness can be obtained from frequentist measures of the performance
of a procedure; if the frequentist measure looks bad for certain T which
are not completely implausible, concern is indicated.

A natural Bayesian attempt to obtain procedure robustness would be
to put a metaprior on r itself. Since we are assuming that the elicita-
tion process has ended, this would be merely a technical device to hope-
fully achieve robustness. Experience indicates that this probably works
reasonably well, although it is difficult to do. (For one example, see
Dickey and Freeman (1975).) It will usually be nearly impossible to con-
struct a reasonable meta prior with support -equal to all of r, so care-
ful selection of a representative subset of I on which to place the meta
prior would be needed. Note that this "two stage" prior could be writ-
ten as a one stage prior, and hence the technique can be interpreted as

simply a way of constructing hopefully robust priors.
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Due to the difficulties of formally working with T for procedure
robustness, it may simply be best to investigate the robustness of a pro-
cedure with respect to a few carefully chosen disparate priors in TI.

The material on "robust priors" in the preceding subsection will not

be repeated here, although it is certainly relevant to general guidelines.

5.2.2 Guidelines for Particular Types of Problems.

The following essentially obvious comments are not too much better
than nothing, but may sometimes prove helpful.

A. Estimation.

Posterior robustness will typically be obtained when the 1ikelihood
function is concentrated in the "central" portion of the prior. (This
"center" will usually be similar for all = in r.) When this is not' the case,
flat tailed priors will at least give procedure robustness. Note that,in
multivariate estimation problems,it will often be the case that the robust-
ness situation is very different for different coordinates of o.

B. Testing.

In testing problems the tail of the prior will usually be unimportant
(in contrast to the estimation situation), in that if the 1ikelihood func-
tion is concentrated in the tail of the prior there is usually very strong
evidence for a particular hypothesis. This robustness with respect to the
tail of the prior is very pleasant. Note, however, that the posterior
odds of the hypotheses can be drastically affected by the tail of the
prior (as pointed out by Savage et. al. (1962)), so Bayesian measures of
the strength of the conclusion are not necessarily robust.

Conclusions in testing problems will, naturally, be frequently sensi-
tive to the prior mass given each hypothesis. This is unavoidable and,

to a Bayesian, completely sensible.
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C. Design of Experiments and Sequential Analysis.

Optimal Bayesian designs are usually robust with respect to small
changes in the prior, such as changes in the tail. At least this is true
when overall average measures of performance (say Bayes risk) are deemed
relevant, since such averages are dominated by the contributions from the -
"Tikely" o6, or alternatively the "1ikely" x. (Of course, after taking
the data and being faced with.the need to draw some conclusion, robust-
ness may have to be completely reevaluated.)

Note that, in design, there may be real technical advantages in work-
ing with frequentist measures averaged over the prior, rather than posterior
measures averaged over the marginal distribution of X (which is more in-
stinctively appealing to a Bayesian). This is because the (decision) pro-
cedure to be used may be fairly accurately known (say, when the sample
size will be moderately large), so that involving the (uncertain) prior
only at the last stage can lead to a technically easier robustness analy-
sis.

Sequential analysis is, in a sense, just a design problem, in that
the real difficulty is deciding, at a given stage, whether to cease samp-
1ing or to continue taking observations. This problem should again be
relatively immune to such things as the tail of the posterior distribution
(upon which the decision to stop or not is based). Of course, if the
1ikelihood becomes concentrated in the tail of the original prior, then

this tail can become relevant through its effect on the posterior.
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In a very practical sense there may be 1ittle problem with robustness
in sequential Bayesian analysis, since it will often be the case that
one simply continues sampling until enough information has been accumu-

lated so that posterior robustness obtains.

5.2.3 Actual Practice.

In many realistic statistical situations 1hvo]ving complicated @,
any type of Bayesian approach becomes very difficult. Also, the uncertain-
ties in specifying a prior for such :@ are very acute, meaning that
Bayesian robustness becomes a very real concern. Unfortunately, one
quickly encounters an instance of "Type II rationality" (c.f. Good (1973))
in that, if straightforward Bayesian analysis is difficult, then a robust
Bayesian analysis might be next to impossible. Type II rationality simply
says, in this situation, that if you cannot trust a single prior Bayes
analysis and Bayesian robustness results are unavailable, then it is
permissible to use some type of non-Bayesian analysis, providing it is
deemed to be the lesser evil. In other words, if the dangers of a
Bayesian analysis with an il11-specified prior seem large (and cannot be
eliminated by robustness considerations), and if an easier non-Bayesian
or partially non-Bayesian analysis seems sensible (see Subsection 4.4),

then go ahead and abandon ship.

The need to compromise the "purist" robust Bayesian position was al-
ready encountered in subsection 2.4, where.post-data modification of r
was discussed. (Of course, allowing such modification somewhat allevi-
ates the current problem, since all prior knowledge concerning a compli-
cated: ® need not then be exactingly quantified prior to experimenta-
tion.) This compromise was still within the general Bayesian framework,

however.
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A more significant departure from the usual Bayesian framework occurs
when it is necessary to ignore data. Such situations surely abound 1in
statistics. Survey sampling provides one such situation, in that all
sorts of data may be available about the sample, most of which may seem

irrelevant to the attribute of interest. Constructing a general Bayesian
(superpopu]ation) model for all the data would be very difficult and, per-
haps, would not be trustworthy. The same issue arises in the use of random-
ization, as discussed in subsection 4.2. Hi]dreth (1963), Pratt (1965,

with his discussion on "insufficient statistics"), Dempster (1968),

Hi11 (1975, 1980a, 1980c), and Good (1976 and earlier with his "Statis-
tician's Stooge") also contain useful discussions on this issue.

Ignoring data causes no real problem to a Bayesian if the data seems

uniikely to have an effect on the posterior distribution of the param-
eters of interest. Often, of course, this can only be ascertained through,

at least informal, Bayesian reasoning. Consider the following examples.

Example 6. (Fraser and Mackay (1976)). Suppose independent observations

X]""’Xn from an 72(p,02) distribution are observed, where it is desired
to estimate y but 02 is also unknown. Independent observations Y],...,Ym
are also available, where Y. is 72(p1,02), u; unknown, i=1,...,p. If
virtually nothing is known apriori about the M (and they are in no way
related to u), it is certainly reasonable to ignore the Yi when estimating

u. (A formal Bayesian analysis would certainly show that the Yi had al-

most negligible influence on the posterior distribution of u.)

Example 7. In a medical trial comparing two surgical techniques, a signi-

ficant relationship was found between the time of the day in which the
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surgery was performed and the success of the surgery. Suppose the relation-
ship was one of the fo]]bwing: (i) the Tater in the day the surgery occur-
red, the less successful it was; (ii) when surgery began on even hours, it
was more successful than when it began on odd hours; (ii1) when surgery
ended on an even minute, it was more successful than when it ended on an odd
minute. The question before us is - can we ignore the data "time of day"?
The answer in case (i) is almost certainly no, and we better hope that the
two treatment groups were not unbalanced concerning this covariate. The
answer in case (ii1) is almost certainly yes; it is hard to believe that
this relationship is anything more than a coincidence. In case (i1) the
answer is not so certain, and indeed some investigation is called for.

(Did certain surgeons work at certain times, etc.?)

The decision about ignoring data in Example 7 clearly involves prior
opinions. The point, however, is that it may be possib]e to informally
reason that certain data can be ignored, without having to go through a
full blown Bayesian analysis. This is not really a violation of Bayesian
principles either, since the posteriors obtained by ignoring part of the
data are fe]t to be the same as what would have been obtained by a sound
Bayesian anlysis with all of the data.

The real difficulty arises when it is necessary to throw away poten-
tially relevant data. The reason for doing this would be an inability to
carry out a (robust) Bayesian analysis involving everything. Hill (1975)
considers a nonparametric problem of this nature, in which a trustworthy

complete Bayesian analysis seems almost impossible. Hill says
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“When such a formal analysis simply cannot be made, or
even when it is merely very difficult and of dubious validity,
then there is Tittle choice but to condition on that part of the
data that can be effectively dealt with, and rely upon some

form of stable estimation argument."

The last part of the comment can be interpreted to mean that, if you must
ignore data, at least convince yourself that there is no reason to expect

it to have a large effect on the posterior (or, more properly, the final
conclusion). This point is extensively discussed in Pratt (1965) and also

Dempster (1975) which has interesting examples and other references.

The above discussion is not to be interpreted as advocating the fre-
quently encountered viewpoint of "using whatever approach works well for
a given problem". Indeed the major point in this article is that the
only way to ensure that a conclusion being reached is sensible it to verify
that it is sensible from a posterior robust Bayesian viewpoint. But if a robust
Bayesian analysis is not implementable, then compromises must be made.
The robust Bayesian makes this compromise only when he has to, however,
and only to the extent necessitated by technical limitations.

Perhaps the most important practical advice the robust Bayesian has
to offer is "think 1ike a robust Bayesian". (In the same way,it has been
argued that the most important thing to Tearn from decision theory is
simply the ability to think decision-theoretically.) Merely thinking of
problems from this perspective, without even doing a formal analysis, will
frequently illuminate the truth. Once the truth (or the direction in
which it Ties) has been discerned, a method of analysis can undoubtedly be

found which is acceptable to the relevant audience and leads to this truth.
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6. FINAL COMMENTS

In an (obviously unsuccessful) effort to keep from meandering from
the central argument, a number of side issues have been deferred to this
final section. These include a discussion of various criticisms that can
be raised against the robust Bayesian viewpoint (by non-Bayesians, Bayesians,
and Foundationalists), and a very brief discussion of needed theoretical
developments. Many of the criticisms are founded on very deep issues, so
all that can be done here is to give a superficial view of the arguments

and counter arguments.

6.1 Non-Bayesian Criticisms

The primary non-Bayesian objection to the robust Bayesian viewpoint
is, of course, that Assumption I is wrong. Since an extensive justifica-
tion of Assumption I was not attempted here, this objection will not be
pursued, except for one brief comment. Much of the philosophical differ-
ence in attitude between Bayesians and non-Bayesians seems to be due to
Bayesians being optimistic about the existence of truth and pessimistic
about the use of intuition, while non-Bayesians are just the opposite.
The Bayesian feels there is (at least theoretically) a single correct way
of doing things, not many correct ways. Also, the Bayesian (and the
decision theorist) do not trust intuition to properly combine and relate

all relevant factors of a problem to arrive at a conclusion.
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Perhaps the most common non-Bayesian objection to anything Bayesian
is the Bayesian's lack of objectivity. Bayesian rebuttals range from the
subjectivist opinion that "objectivity" is a myth, to the objective
Bayesian assertions that objectivity can only be attained if consciously
sought from a Bayesian perspective. The former viewpoint is reflected by

the following quotation from Good (1973).

"The subjectivist states his judgements, whereas the
objectivist sweeps them under the carpet by calling assump-

tions knowledge, and he basks in the glorious objectivity of

science."

The objective Bayesian viewpoint is that the only way to avoid
"biasing" the analysis is to do a Bayesian analysis with a noninformative
prior distribution (see subsection 5.1.3(B)for references). Strong sup-
port for this view can be obtained from "Reason (ii)" in subsection 2.1.
If a supposedly objective non-Bayesian procedure actually corresponds to
a Bayesian procedure for a very biased prior distribution, the claim of
objectivity seems somewhat silly. The vehement condemnation of the use
of noninformative priors by some non-Bayesians is indeed somewhat mystify-

ing, since subjective prior beliefs are not being incorporated. Of course,
there are problems in finding and using noninformative priors, but I have

seen no better, easier to use, and ‘less error prone technique for deriv-
ing reasonable objective procedures. (Although when being a purist I
would argue against the possibility of objectivity, for a variety of robust

Bayesian and Type II Rationality reasons the noninformative prior approach

seems extremely valuable.)
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It should be mentioned that there are several different non-Bayesian
theories that reject Assumption I. Besides the various classical theories,
these include the fiducial inference of R.A. Fisher (see Wilkinson (1977)
for an up-to-date version), the structural inference of D.A.S. Fraser
(see Fraser and Mackay (1976) and Fraser (1979) for references), pivotal
inference (c.f. Barnard (1981)) and the theory of belief functions (c.f.
Shafer (1982)). Since we are foregoing a serious effort to justify Assump-

tion I, these alternative theories will not be discussed.

6.2 Bayesian Criticisms

Many natural Bayesian objections to the viewpoint expressed in this
paper, such as the violation of the Likelihood Principle (and to an ex-
tent Assumption I) by procedure robustness, have been discussed else-
where. Several other criticisms can be raised, however. Three are dis-
cussed in this subsection.

A. "Just Report What the Data Says."

A very admirable Bayesian desire is to provide a mechanism by which
the data can be easily assimilated to allow others to reach a conclusion.
The T1ikelihood function of o, zx(e), is the most basic such mechanism,
since anyone can determine his own posterior for 6 by simply multiply-
ing zx(e) by his prior (or priors) and normalizing. Thus reporting the

Tikelihood function is definitely reasonable (c.f. Box and Tiao (1973)).
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A similar idea (c.f. Bernardo (1979)) would be to just report a noninformative
or reference posterior, since this will be more meaningful intuitively than
2x(e), and anyone can easily still determine his own posterior. Consider-
able effort has also been spent on finding easier to digest data communica-
tion vehicles such as Bayes factors between hypotheses (c.f. Dickey (1973,
1974)). A criticism of the robust Bayesian position is that, if the above
pursuit is the true job of the statistician, then he need not be concern-
ed with robustness, which afterall only becomes of concern when data-prior
interactions are being studied.

I must have stated the criticism unfairly, since it seems clearly un-
worthy. We cannot, after all, abandon the user at the critical point of
combining the data with his prior information, particularly when some ac-
tion or conclusion must be taken. Also, it is frequently impossible to
even separate data from prior information in a useful way. For example,
the usual 1ikelihood function is very model dependent, but the model is

often unknown and should be considered part of the parameter.

B. "Why Single Qut the Prior? Model Robustness Is Just As Serious a

Problem."

First of all, since the data model was allowed to be part of -®, we
did not really ignore model robustness. On the other hand, there are
sometimes reasons to be more concerned about the parameters than the model.
For example, the model may have some theoretical basis, while prior opinions
about parameters of the model might be much more subjective. Of course,
there are many problems in which the reverse is true, where the choice of
a model is somewhat arbitrary and will have a much more profound effect

on the answer than the choice of a prior on the parameters of the model.



-75-

Nevertheless, the prevalent statistical attitude is to trust models more
than priors, and in dealing with this attitude the robust Bayesian viewpoint
can be very helpful. Also, even when considerable uncertainty about the
model exists, it may cause less of a problem than uncertainty about the

prior information, as the following example indicates.

Example 8. Suppose X]""’Xn is an independent sample from a location
density f(x-6) on R], where f(z) is symmetric and unimodal. It is deemed
reasonable to model f as a t-distribution with quartiles (e+1) but speci-
fication of the degrees of freedom, a, is judged to be impossible. Prior
elicitation reveals that 6 is thought to have median zero and quartiles
+1, with the prior having a symmetric unimodal density. It is desired to
estimate 6. Although the model and prior uncertainties seem similar here,

the 1ikelihood function will be

=

e (0) = 1 f(x;-e) ,

i=1
which, for even moderate n, will most 1ikeTy have sharper tails than the
prior. (The tail of Qx(e) will be 1ike the nth power of the tail of f.)
This indicates that the robustness problem with respect to f will be less

serious than that with respect to the prior.

C. "Robustness Is a Rare Problem and Can Be Dealt With Entirely Within

the Bayesjan Framework."

These issues havé been discussed throughout the paper. I have argued
that posterior robustness will be lacking in a significant portion of our
problems (at least at the present stage of Bayesian development), and that

techniques of proceeding, which at least partly lie outside the pure
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Bayesian framework, can prove useful. Some people may argue that the
non-Bayesian components of the robust Bayesian viewpoint will seldom be
needed, while others will argue that it is these non-Bayesian components
which will be of most use. This is exactly what we should be arguing about:
what is the best method to achieve the robust Bayesian goal. (See also

Berger (1982d).)

From a very pragmatic viewpoint, also, the pure Bayesian position
strikes me as unwise. The only truly overwhelming problem facing Bayesians
is that of convincing non-Bayesians that the Bayesian viewpoint is correct.
The major stumbling block in the entire controversy is that Bayesians
(as a whole, not individually) have not openly admitted the validity of
Assumption II, and been willing to accept its consequences. This allows

the non-Bayesian to refuse to think about Assumption I, because he feels

certain that Assumption II is correct and hence that the Bayesians must

be wrong. Again, I am talking about the overall image of Bayesian, and

not necessarily about the viewpoints of particular Bayesians. Even accept-
ing Assumption II, but staying within the purely Bayesian framework of
posterior robustness, will not provide a general enough structure to
satisfy many of the criticisms of non-Bayesians. The practicing Bayesian
might find that he seldom needs to leave the pure Bayesian structure, and
hence that procedure robustness, etc., are concepts only rarely needed,

but having them available can never hurt and can, I believe, help substan-

tially in promoting the cause.
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" 6.3 Foundational Criticisms

While non-Bayesians attack Assumption I from above (loftily disdain-
ing from grubbing around in subjective probabilities) certain foundation-
alists attack it from below (urging even deeper submersion in subjectiv-
ism). The issue is whether reasoning in terms of a class I of (countably
additive) prior probability distributions with updating by conditioning
(and post data modification of T) suffices, or whether more general or
more basic concepts are needed. I will basically argue that the above
concepts not only suffice, but are what we should train ourselves to
think in terms of. The robust Bayesian viewpoint is not an attempt to
model how intuition works, but rather an attempt to create a structure
of components which are simple enough to be accessible to intuition, and

which when combined give the truth. As Good (1976) says

"The main merit that I claim for the Doogian philosophy
is that it codifies and exemplifies an adequately complete and
simple theory of rationality, complete in the sense that it is
I believe not subject to the criticisms that are usually direct-
ed at other forms of Bayesianism, and simple in the sense that

it attains realism with a minimum of machinery."

My rebuttal to the foundational criticisms will thus tend to be that
the alternative structures proposed either have components which are not
reasonably accessible to intuition, or have unnecessarily complicated struc-
tures. I, of course, admit that it may be personal taste,

rather than sound reasoning, which Teads me to reject these alternative
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theories. Also, through lack of careful enough study or just general
thick-headedness I may misrepresent certain arguments or be foolish in

}my response to them, in which case I apologize and look forward to being
set straight. In any case, besides being somewhat fun, these foundation-
al issues serve well to illuminate the edges of the robust Bayesian theory.

A. Measurab111ty Criticisms.

DeFinetti (1974, 1975) and Good (1962a) argue that sometimes it is in-
appropriate to stay within the confines of measurable events. The real
concern here is that the data may cause one to desire an enlargement of
the o-field (of measurable events in, @) that was originally chosen as
adequate. This could be subsumed under post-data modification of 1, of
course. In any case, technical measurability concerns are certainly not
particularly relevant to the validity of the robust Bayesian viewpoint.

At the other extreme, Manski (1981) and Lambert and Duncan (1981)
argue that, in specifying a prior, the o-field of measureable events
should be restricted to those events about which prior information is to
be elicited. This is somewhat appealing intuitively, since a single mea-
surable prior with respect to this o-field would correspond to a class T
of priors in the usual setup with, say, the Borel o-field. The difficulties
with this approach are that (i) it is very hard to update o-fields based
on the data, surely an essential ingredient of the approach; and (ii) it
will generally be much more revealing to investigate robustness by varying
m over T, than to simply make conclusions within the restricted o-field
formulation. The point is that, by using the robust Bayesian framework,

one is often alerted as to what features of the prior need special con-
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sideration. Restricted o-fields may hide these facets of the prior. To
some extent, my view may be based on simply feeling comfortable with usual
probability distributions, and hence deve]opment of this alternate approach
is of interest, but I would be surprised if it led to a more useful frame-
work.

B. "Finitely Additive Priors Should Be Allowed."

Among Bayesians there is a considerable faction that believes that
insisting on countably additive priors is too restrictive, in that such
conceivably desirable priors as proper "uniform" priors on R1 of on the
integers are prohibited. DeFinetti has long argued this (c.f. deFinetti
(1972, 1974, 1975)). Other persuasive cases have been made by Dubins
(1975), Heath and Sudderth (1978), Kadane, Schervish, and Seidenfeld
(1981), and Hi11 (1980b). The case for allowing finitely additive priors
also rests on the fact that the "rationality" or "coherency" justifications
of Bayesian analysis lead only to finitely additive priors, although under
slightly stronger axioms countable additivity emerges (c.f. Savage (1954),
DeGroot (1970), Spielman (1977), and Kadane, Schervish, and Seidenfeld
(1981)).

The arguments for staying within the countably additive framework are
that (i) the examples espousing a need for finite additivity are not
really convincing; (ii) even if "uniform" type priors on unbounded spaces
are needed, countably additive improper priors can be used; and (iii)
finitely additive priors require extremely careful handling.

The first point is that, while convincing "thought" examples have been
constructed of the need for finite additivity, I have not yet seen a real
example, involving an actual real world action that must be taken, in

which my prior opinions would be uniform on an unbounded set. I certainly
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admit, however, that situations will exist in which I might want to use a
"noninformative" prior, either as a robust approximation to my true prior
beliefs or in a situation in which the appearance of objectivity is deemed
necessary. Such situations can be dealt with either by using improper
countably additive "noninformative" priors or by using proper finitely
additive noninformative priors. Each approach has certain theoretical
drawbacks, which will not be discussed here. They both also have the
practical drawback of there being no clearcut definition of noninformative
prioré, and a careless choice can g%vé agsé£f§f5ét5}y f;su¥f§. (The
situation for finitely additive priors is particularly bizarre: for instance,
there are 22 ° different "diffuse" finitely additive priors on the posi-
tive integers, as opposed to the single (constant) countably additive
diffuse (improper) prior.) The main difference, to me, lies in the ease
with which they can be used. Finitely additive priors frequently fail to
have the Radon-Nikodym property (that conditional probabilities on sets

of measure zero can be uniquely defined as 1imits of conditional probabili-
ties of sets of nonzero measure), and hence frequently do not have well
defined conditional (posterior) distributions. (Heath and Sudderth (1978)
discuss some common statistical situations involving amenable group
structures where meaningful posterior distributions can be defined. See
also Dubins (1969).) This makes the typical Bayesian conditional analysis
very difficult or impossible in general. Also, unconditional Bayesian
analysis can seem very silly if finitely additive priors are used, as the

following example shows.
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Example 9. It is desired to estimate, under squared error loss, a normal
mean ¢ based on X ~:% (9,1/n). If one were to be repeatedly faced with
this problem (with different ej) then it might seem reasonable to ask for
a procedure with good average Bayes risk r(w,s). If nothing was felt
known about the 6, one might be tempted to use a noninformative prior.
Use of the improper countably additive uniform prior will give infinite
risks, so one is alerted to approach the probiem differently. The usual
finitely additive uniform prior, however, has finite Bayes risk equal to
1/n, but there are many estimators which achieve this, among them

ao(i) = X and &6*(X) = x - 101000/2 . A posterior analysis of the problem

(which can be done here using Heath and Sudderth (1978)) shows that 50,
not &*, is correct, but the need for careful unconditional handling of

finitely additive priors is, at least, indicated.

It should be noted that there is no foundational reason not to allow
finitely additive priors into the robust Bayesian framework, so that those
who feel comfortable with them are invited to do so.

C. "The Use of Probability Distributions is Too Restrictive."

The first point, made initially by Kraft, Pratt, and Seidenberg (1959)
(see also Fine (1973)), is that there may exist "1ikelihood orderings" of
events that are internally consistent and yet which are not consistent
with any probability distribution. Although unsettied by this fact, I
would argue that it is irrelevant, in that I would myself heavily dis-
trust any 1likelihood ordering not consistent with some probability distri-
bution. The consistent modes of behavibr are those induced
by probability distributions, so I would rather take them as my "primitives"

than I would a concept such as"l1ikelihood orderings". This is another
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situation in which I am not concerned with modeling how the mind could
work, but rather with developing a framework within which the mind can
successfully work. |

Many foundational theories have been proposed which are based on
generalization of probability distributjons. Various such attempts can be
found in Koopman (1940), Good (1950, 1962a, 1976), Smith (1961), Dempster
(1966, 1967, 1968, 1971), Jeffrey (1968), Beran (1972), Huber and Strassen
(1973), Fine (1973), Kyburg (1974), Suppes (1975), Suppes and Zanotti
(1977), Levi (1980), DeRobertis and Hartigan (1981), Wolfenson and Fine
(1982), and Rios and Girdn (1980). (Some of these deviate only slightly

from the robust Bayesian approach, and hence are not really susceptible

to the following criticisms.)
A starting point for several of these theorijes is a rather i11-
considered criticism of prior probabilities. They often begin with a

"counterexample" such as the following.

Example 10. Suppose you pull a coin from your pocket and, without Tooking
at it, are interested in the event A that it will come up heads when flip-
ped. Suppose you (reasonably) judge the subjective probability of this
event to be close to %—. Next, you contemplate an experiment in which two
drugs, about which you know nothing, will be tested, and are interested
in the event B, that Drug 1 is better than Drug 2. You (reasonably) judge
your subjective probability of event B t® also be %—. The argument now
proceeds:

"Even though both probabilities were %—, you have a stronger 'beljef
in the probability specified for event A, in that if you were told that
five flips of the coin were all heads your opinion about the fairness of

the coin would probably change very 1ittle, while if you were told that



-83-

in tests on five patients Drug 1 worked better than Drug 2 you would
probably change your opinion substantially about the Worth of Drug 1."_
Thus, the argument goes, it is necessary to go beyond probability distri-
butions and have measures of the "strength of belief" in probabilities.

It is easy to see the flaw in this reasoning. Before getting any
data, I would be equally secure in probabilities of %— for each A and B,
in that I would be indifferent between placing a single bet on either
event. My knowledge about the events A and B is well described by a
probability of %— . However, my knowledge about the overall phenomena
being investigated in each case is quite different. A description of my
overall knowledge about the situations is more fully described by defining
the unknown (and fictitious to a true subjective Bayesian) quantities Pc
and Py reflecting the "true" proportion of heads and "true" proportion
of patients for which Drug 1 would work better than Drug 2, respectively,
and then quantifying prior distributions (or classes thereof) for Pc and
Py- The prior distributions for Pc will undoubtedly be much more tightly
concentrated about %—, than will the prior distributions for Py Note
that the subjective probabilities of events A and B are just the means of
the respective prior distributions. (I first saw an analysis of this

common misconception done by D. Lindley, though I cannot recall the refer-

ence. )

Thus prior distributions prove to be rich enough to reflect whatever
is reasonably desired. Even more interesting is the observation that, in
taking account of experimental evidence, one is almost forced to think
in the correct fashion. Thus, in Example 10, if at the beginning it was

only felt necessary to quantify the probabilities of A and B, reflection
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on the experiment to be performed reveals that the data information can
be combined with‘prior information via Bayes theorem only if prior in-
formation is specified in terms of quantities such as Pc and Py

A second, more substantial, reason that alternative theories to
Bayesian analysis have been developed is the recognition of the validity
of Assumption II, and the perception that Bayesian analysis could not
incorporate this assumption (although there were numerous works, about 50
by I. J. Good alone I believe, indicating that Assumption II could be in-
corporated). Some of the approaches do suggest alternate methods of deal-
ing with probabilistic uncertainty, such as using lower and upper prob-
abilities. The robust Bayesian approach seems much more straightforward,
however, and does not demand the introduction of all sorts of new and
supposedly "intuitive" criteria. Indeed, I have seen no new criterion
that is obviously trustworthy, and the very same reasoning that forced me
to accept the Bayesian viewpoint, as opposed to the "intuitive" classical
viewpoint, argues against the existence of any such other criterion. This

is a mild echo of E. T. Jaynes (1976), who said

"It doesn't matter how many new words you drag into the
discussion to avoid having to utter the word ‘probability' in
a sense different from frequency: Tlikelihood, confidence,
significance, propensity, support, credibility, acceptability,
indiffidence, consonance, tenability, - and so on, until the
resources of the good Dr. Roget are exhausted....It doesn't
matter what approach you happen to like philosophically - by
the time you have made your methods fully consistent, you will

be forced, kicking and screaming, back to the ones given by
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Laplace." (Author's note: Laplace argued for noninformative
prior Bayesian analysis. We have, of course, allowed ourself
proper subjective priors also, but the following of Assumption

I is the most important part of Laplace's methods.)

D. Updating T.

The fourth reason sometimes proposed for broadening Bayesian analysis
is the clear need to sometimes update the prior information by means other

than Bayes theorem. This problem was discussed in subsection 2.4.

E. Conclusions.

A reading of the above suggests that the espoused robust Bayesian
viewpoint was constructed by starting with pure Bayesian analysis and
modifying it to handle every meaningful objection raised. This is exact-
ly right. Assumption I is the cornerstone, and provides the starting
point for the theory. At every stage where additional flexibility was
needed, it was allowed into the theory, but in a way which minimized the
resulting deviation from Assumption I. Any attempt to modify the theory,
not satisfying this "minimum distance from Assumption I" constraint,is

unlikely to prove successful.

6.4 Future Development

I agree with Dempster (1976) that

"The ultimate goal of research on Bayesian robustness
should be to classify applied situations so that a plausible
prepackaged robustness analysis within each class will be
available. I believe that only the faintest beginnings have

been made on this task."
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This would enable users to investigate robustness themselves, surely the
most desirable goal.

Because it will probably always be the case that many (most?) users
of statistics will not have the skill or the inclination to do such analyses,
however, it behooves researchers to find specific robust Bayesian procedures
or families of robust prior distributions (to use in place of conjugate
families where warranted) for important situations. Again, relatively
Tittle has been done in this area.

Alerting users to situatiohé Téék{ng fobdsthess is also very important.
They can then know when, and on what, it is necessary to concentrate their
prior elicitation.

As a concluding comment, note that a common criticism of Bayesian
analysis is that it is too automatic. Thus Kiefer (1977).states that

"...statistics is too complex to be codified in terms of a

simple prescription that is a panacea for all settings..."
As we have seen, robust Bayesian analysis offers no single prescription,
and instead urges flexibility in thought and methods. It demands only that

the proper goal be kept in mind.
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1. Introduction

1.1. Introduction

Statistics needs a ‘foundation’, by which I mean a framework of analysis
within which any statistical investigation can theoretically be planned, per-
formed, and meaningfully evaluated. The words ‘any’ and ‘theoretically’ are
key, in that the framework should apply to any situation but may only
theoretically be implementable. Practical difficulties or time limitations may
prevent complete (or even partial) utilization of such a framework, but the
direction in which ‘truth’ could be found would at least be known.

To a large number of statisticians the above goal is deemed unattainable,
with the attendant attitude being that one must ‘keep an open mind’ and use
‘whatever works well for a given problem’. Besides seeming unnecessarily
pessimistic and somewhat unscientific, such a position seems almost meaning-
less in that without the desired foundational framework there would be no way
of determining what works well in a given problem.

The main contender for the crown is Bayesian analysis. (‘Classical’ statisti-
cians tend to be of the ‘there is no foundation’ ilk.) The main justification for
Bayesian analysis is a belief (for a variety of reasons) in

Assumption I. In any statistical investigation, one will ultimately be faced with
making reports, inferences, or decisions which involve uncertainties. Of interest
is the information available about these uncertainties after seeing the data, and
the only trustworthy and sensible measures of this information are Bayesian
posterior measures.

Belief in Assumption I leads many Bayesians to argue that the desired
foundation is simply the usual Bayesian analysis in which one specifies a prior
distribution for the unknowns and processes the data via Bayes rule.

This attitude is vigorously opposed by non-Bayesians, partly because of
objections to Assumption I but, more often, because of a belief in

Assumption II. Prior distributions can never be quantified or elicited exactly
(i.e. without error), especially in a finite amount of time.

Because of this distrust of prior distributions, many statisticians reject the
Bayesian viewpoint out of hand.

A Bayesian viewpoint has long existed, however, which is based on belief in
both Assumptions I and II. While Assumption I calls for a basically Bayesian
outlook, Assumption II precludes the obvious Bayesian solution of writing
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down a single prior distribution and doing a Bayesian analysis. Instead, the
viewpoint is essentially that one should strive for Bayesian behavior which is
satisfactory for all prior distributions which remain plausible after the prior
elicitation process has been terminated. I will call this the robust Bayesian
viewpoint, and argue that it provides the desired foundational framework.

The robust Bayesian viewpoint is by no means new, of course, and virtually
all Bayesians will ascribe to it to some degree. For example, de Finetti (as
quoted by Dempster (1975)) stated

“Subjectivists should feel obligated to recognize that any opinion (so
much more the initial one) is only vaguely acceptable...So it is im-
portant not only to know the exact answer for an exactly specified initial
problem, but what happens changing in a reasonable neighborhood the
assumed initial opinion.”

Most of the arguments and examples presented herein have undoubtedly been
presented elsewhere. For instance, a very large proportion of the ideas can be
found in the works of 1.J. Good, even as early as Good (1950). (Indeed, I would
have very few qualms about calling myself a Doogian.) Herman Rubin and
Bruce Hill (among others) have also always espoused similar views. In some
sense, therefore, this should be thought of as basically a review paper, with the
goal of tying together the various elements of the robust Bayesian viewpoint in
an attempt to present a convincing case. (To keep the account readable, I will
defer most historical references to Section 5.)

This article is written more for the ‘non-robust’ Bayesian, than for the
non-Bayesian. In other words, little attempt will be made to justify Assumption
I. Besides the sheer impossibility of adequately discussing Assumption I in a
single paper, the rationale is that the Bayesian should have clean hands before
he accuses someone else’s hands of being dirty. Presenting the (enormously
convincing) arguments for Assumption I seems to have little effect on non-
Bayesians if they are able to come back with the complaint that Assumption II
seems totally obvious to them and they refuse to operate in violation of it.
Fully admitting (and even expounding on) the truth of Assumption II, while
showing how Assumption I can still basically be followed, should greatly
enhance the Bayesian argument. (See Berger (1982d).)

In reading the paper, keep in mind that the robust Bayesian viewpoint is
being advocated as the framework for ultimately verifying the sensibility of an
analysis, and is not necessarily being advocated as an applied methodology to
do all of statistics. Comparatively little work has been done on robust Bayesian
methods, so while it is a very illuminating viewpoint from which to under-
stand things, it is not to be expected to provide easy answers to all our prob-
lems.

As a final caveat, although I will talk about various ‘classes’ of Bayesians and
non-Bayesians (such as ‘objective’ Bayesians, ‘pure’ subjective Bayesians,
frequentists, etc.), these classes are to a large extent imaginary; most statisti-
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cians are a composite of a number of such classes. These distinctions will be
made only for convenience in representing certain basic viewpoints.

In Section 2, justifications for Assumptions I and II will briefly be outlined.
Since II implies that one must consider classes of plausible prior distributions,
reasonable such classes will also be discussed, along with the problems of
updating prior information. Section 3 is concerned with methods of measuring
Bayesian robustness, and the somewhat surprising conclusion is reached that
frequentist measures can be useful in measuring robustness. (This seems to
conflict with Assumption I, and indeed behavior violating Assumption I can
occur under this viewpoint, but only to the extent necessary to achieve
robustness.) Section 4 deals with certain consequences of adopting this view-
point, showing how certain features of many non-Bayesian techniques can be
partially justified from the robust Bayesian viewpoint. Section 4 also presents
an example, involving the Stein effect, which demonstrates that naive Bayesian
intuition is not always trustworthy in the face of robustness considerations.
Section 5 gives a brief survey of existing work related to Bayesian robustness,
and contains some useful guidelines for achieving robustness. Section 6 consists
of some conclusions and philosophical meanderings concerning the robust
Bayesian viewpoint and objections to it.

1.2. Notation

In this paper it will be assumed that the data x is a realization of a random
variable X with distribution P,;(-) on the sample space & for some unknown
6 € 0. Although @ will be referred to as the parameter space and {P,: § € @} will
usually be a parametric family in the examples, the basic arguments hold for any
index set @; thus the nonparametric situation would be included by letting @
index any desired class of probability distributions. A prior distribution on @ will
be denoted mr, m(-|x) will denote the posterior distribution of 6 given the
observation x, and m (-) = E"[P,(-)] will denote the marginal (or unconditional or
predictive) distribution of X. (E will stand for expectation, with superscripts
indicating what the expectation is being taken over, and subscripts indicating fixed
parameter values.)

1.3. Decision theory

Many of the examples discussed will be presented from a decision theoreti-
cal viewpoint. The reason is mainly that, if a point is to be made, it can most
clearly be done in a precisely quantifiable situation. It can, of course, be argued
that, just as the robust Bayesian viewpoint seems necessary for understanding,
so the robust decision theoretic viewpoint is also essential. (‘Inference’
problems would simply be problems where very little knowledge concerning
the loss function was obtainable, and hence where robustness over a wide class
of loss functions would be sought.) I certainly support this view, feeling that
there are great dangers in refusing to at least think in decision theoretic terms.
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(Incidentally, it has always struck me as curious that there are violently
antidecision-theoretic Bayesians and violently anti-Bayesian decision
theorists. Is there really such a big difference between the two types of
subjective inputs?) To keep the paper contained, however, the decision
theoretic issue will not be explicitly considered; issues get clouded when too much
is attempted.

When employing a decision theoretic viewpoint, the action space will be
denoted &, the loss in taking action a € &/ when 6 &€ @ obtains will be
denoted L(6, a), and the posterior expected loss of action a with respect to the
prior 7r and observation x will be denoted

p(m, %, @)= ET9L(0, a) = j L(6, a)m(d6(d8 | x) . (1.1)
6
A decision rule (for simplicity assumed to be a nonrandomized function from &

into &f) will be denoted 8(x). We will have cause to consider the (frequentist)
risk function

R(6, 8)= BL(9, 5(X)) = | L(6,3(x))Pa(dx)
and the Bayes risk
r(m, 8) = E"R(6, 8) = j@ R(6, 5)m(d6)

= Erp(m, X, 8(X)) = L p(m, x, 8(x))m(dx) 12)
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2. The robust Bayesian viewpoint

As the robust Bayesian viewpoint is founded on a belief in Assumptions I
and 11, these assumptions will be discussed in the first two subsections. Subsection
2.3 discusses reasonable classes of prior distributions which could be considered in
light of Assumption II. Subsection 2.4 discusses the issue of updating uncertain
prior information.

2.1. Justification for Assumption 1

There are at least seven basic reasons that have been advanced for being a
Bayesian, these being:

(i) Prior information is too important to ignore or deal with in an ad hoc
fashion.

(ii) According to most ‘classical’ criteria, the class of ‘optimal’ procedures
corresponds to the class of Bayes procedures, so one should select from among
this class according to prior information.

(iii) The Bayesian viewpoint works better than any other in revealing the
common sense features of a situation and producing reasonable procedures.

(iv) The goal of statistics is to communicate evidence about uncertainties,
and the correct language of uncertainty is probability. Only subjective prob-
ability provides a broad enough framework to encompass the types of un-
certainties encountered, and Bayes theorem tells how to process information in
the language of subjective probability.

(v) Axioms of rational behavior imply that any ‘coherent’” mode of
behavior corresponds to Bayesian behavior with respect to some prior dis-
tribution.

(vi) The Likelihood Principle seems irrefutable, yet the only general way of
implementing it seems to be through Bayesian analysis.

(vii) Bayesian posterior measures of accuracy seem to be the only meaning-
ful measures of accuracy.

Many papers and books have been written about these reasons, and no
attempt will be made to review or explain these reasons in detail. A few
comments seem in order concerning the importance and effectiveness of each
of these reasons, however. :

Reasons (i), (ii), and (iii) do not bear directly on Assumption I, but do lend
considerable support to the Bayesian position. Reason (i) is important, especially
when it is realized that choice of such things as a model is really just a (perhaps
rather extreme) use of prior information. Nevertheless, reason (i) is not very
effective for ‘conversion’ since it can always be argued (incorrectly or not) that in
many problems no (or very little) prior information is available.

Reason (ii) is very suggestive, pointing out a frequently occurring one-to-one
correspondence between ‘good’ classical procedures or methods and Bayesian
procedures. In testing between two simple hypotheses, for example (the
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‘dichotomy’ discussed from this perspective by Lindley and Savage in, for
instance, Savage et al. (1962)), the classical Neyman-Pearson tests are the
Bayes tests. In selecting a test, therefore, one can either make a grand
intellectual leap to « and B, or can carefully consider the available prior
information (and information about the loss or consequences of accepting and
rejecting and cost of experimentation) and select the test on Bayesian
(decision-theoretic) grounds. To me the essence of reasoning is to reduce a
complicated problem to simple components, analyze the components
separately, and recombine to get an answer. I distrust grand intellectual leaps.

Another example, involving current research, is the work on finding alter-
natives to the least squares estimator, due either to pursuance of the Stein
phenomenon (that in three or more dimensions the usual estimator is inad-
missible) or ridge regression ideas. Again there is a one-to-one correspondence
between ‘good’ procedures (say, as measured by mean squared error) and
Bayesian procedures (as shown in the normal case by Brown (1971)). One can
thus select an alternative to the usual estimator either by a (mystical to me)
intuitive method, or by considering which 6 are a priori most likely to occur
and selecting a Bayes estimator designed to do well for these 6 (while preserv-
ing mean squared error dominance if desired). Further discussion of this
example is given in subsection 4.5.

Reason (iii) is certainly not very good for conversion, but is the reason
Bayesians tend to become more and more Bayesian as time progresses.
Application of Bayesian reasoning will time and again clear up muystifying
situations, and easily arrived at Bayesian procedures (say, with respect to
noninformative prior distributions) often perform much better than com-
plicated and difficult to determine classical procedures. (It is a shame that the
very simplicity of much of Bayesian analysis is considered an indictment of it; 1
may find very stimulating a difficult mathematical derivation of, say, a minimax
rule, and not be so intellectually excited at the routine calculation of the
corresponding noninformative prior Bayes rule, yet (if done sensibly) the latter
rule will virtually always be better.)

The last four reasons all pertain to the validity of Assumption I, and indeed
are very related. They correspond to essentially four different modes of
argument for Assumption I, however, and hence are listed separately.

Reason (iv) has been eloquently argued by many scientists, philosophers,
probabilists, and statisticians (cf. Jeffreys (1961), de Finetti (1972, 1974, 1975),
Good (1950), Jaynes (1981), and Lindley (1982)). We often work very hard in
elementary statistics courses to suppress in students their natural instincts to
talk about the ‘chance that @ is in the interval’ or the ‘probability that the
hypothesis is true’, telling them that (although these are what they really want
to know) we must be ‘objective’ and create an artificial language of confidence
statements and error probabilities. Such artificial languages do not seem able to
withstand deep scrutiny.

Reason (v) is compelling to many, but is perhaps a touch overemphasized.
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The axioms of rationality are, for the most part, very believable, and it is
interesting to know that any coherent method of behavior corresponds to
Bayesian behavior with respect to some prior distribution, but this does not say
that the right way to behave is to write down a prior distribution and perform a
Bayesian analysis. Indeed I would term this latter behavior incoherent (in a
broad sense), in that the prior distribution used can only be an approximation
to true prior beliefs (see the next subsection). The value of rationality and
coherence is that they indicate that my ‘optimal’ analysis will correspond to a
Bayesian analysis with respect to my ‘true’ prior distribution (admittedly
circularly defined here), and hence indicate the direction in which I should look
to determine my optimal analysis. See Section 3.3 and Berger (1982d) for
further discussion and references.

Reasons (vi) and (vii) are often the most convincing to non-Bayesians. They
bring out the key point that many Bayesians became Bayesians, not because
they were infatuated with prior information, but because they could see no
other meaningful solution to the conditional inference problems besetting
classical statistics.

The Likelihood Principle is wonderful, in that so much follows from so littie.
The Likelihood Principle essentially says that if the family of distributions {Py}
has densities {p,} with respect to some dominating measure and the observation
from the experiment is x, then the evidence about 6 obtainable from the
experiment is contained in the likelihood function .(8) = ps(x) (considered as a
function of ). The appeal of the principle is partly the fact that (as shown by
Birnbaum (1962)) it follows from the Principles of Sufficiency and Con-
ditionality; indeed all that is needed of the Conditionality Principle is that if
one chooses between two experiments based on the flip of an (independent)
fair coin, then the evidence about # obtained is precisely the evidence obtained
from the experiment actually performed. These latter principles seem so
self-evident that it is hard to disagree with the Likelihood Principle, yet belief
in the Likelihood Principle forces a complete revolution in thought; one must
then think conditionally on the actual observation x. Further investigation (cf.
Basu (1975) and Berger and Wolpert (1982)) leads to the conclusion that [(8)
can be meaningfully used only by considering it as a probability density with
respect to a measure 7, which should reflect prior beliefs about 6. Hence the
result of this line of reasoning is that one must view things in a Bayesian
fashion.

Reason (vii) is related to the Likelihood Principle, in that it argues that only
conditional measures (based on the posterior distribution) given x are sensible
for evaluating the evidence about 6, but it is less foundational and more of a
‘proof by counterexample’. For instance, consider

Example 1. Suppose X = 6§+ 1 or 6 — 1 with probability ; each (8 € R'), and
that a 75% confidence interval of smallest size for 6, based on independent
observations X; and X, is desired. This is obviously given by
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the point 3(x, + x,) if |x;— x2| =2,

C(xy, x2) = {the point (x;+1) if |x;,— x| =0

(or we could have chosen (x;—1) if |x;— x5 = 0). But if |x;— x| =2, we are
absolutely certain that 6 =3(x;+ x,), while if |x,— x| =0 we are equally un-
certain whether 8 = X;+1 or 6 = X, — 1 (barring specific prior information). In
either case, it seems absurd to report C(X,, X,) as being a 75% confidence
interval. The point, of course, is that frequentist measures such as ‘confidence’ can
be totally misleading for given data x. The frequentist can protest that such
measures as ‘confidence’ are not to be interpreted conditionally, but what is the
sense in proposing a measure of accuracy which clearly presents a false image
of the information about € contained in the data. (The Bayesian posterior
credible regions for this situation are, of course, very sensible.)

Examples are available for essentially any non-Bayesian measure of ac-

curacy (or at least any frequency measure of accuracy), showing that the
measure can very inaccurately portray the information about 8 contained in the
observation x. After seeing enough of these examples, posterior measures start
to look very attractive.
- All sorts of classical defences and objections to reasons (vi) and (vii) can, of
course, be raised, such as bringing in questions of design, stopping rules in
sequential analysis, analysis in nonparametric situations (where a likelihood
function may not exist), allowing ‘conditional’ frequentist statements, etc., but
they all seem to be answerable. Further discussion here would be inappropriate
and can be found in Basu (1975) and Berger and Wolpert (1982), which also
contain earlier references.

2.2. Justification for Assumption 11

Assumption II seems almost transparently obvious, yet there is considerable
resistance to it among many Bayesians. Hence a brief discussion seems in
order.

In the first place, there are situations in which it seems simply unreasonable
to expect that beliefs can even be modeled by a single prior distribution.
Consider the following simple (though admittedly artificial) example, essen-
tially given in Zaman (1982). .

Example 2. Consider 3 boxes labelled A, B, and 2B, one of which contains a
ball. The only information you have is that box 2B is twice as likely to contain
the ball as box B. You are to determine your subjective probabilities pa, ps,
and p,p of the ball being in the indicated box. Clearly you should have
D2 = 2ps, but it is not clear what else can be said. Since nothing is known
comparatively about A and B, it seems that one should have ps = pp, but by
the same reasoning one would say p, = p,p, and both cannot hold. It does seem
reasonable to suppose that one’s prior probabilities should satisfy the con-
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straints pp < pa < p,p and p,p = 2pp, but it is unreasonable to expect anything
more precise to be concluded.

Even if in. a situation where it is reasonable to expect beliefs to be
expressible in terms of a single prior distribution 71, can this actually be done?
Consider, for instance, any of the axiomatic systems which guarantee the
existence of 7. (In the situation of Example 2, at least one of the axioms in
any system will be violated.) The prior =y is obtained by various betting or
comparison schemes, but is exactly nailed down only after an infinite process of
elicitation. This is clearly the case when @ is infinite (or when the associated
o-field of events is infinite) since there are then simply an infinite set of
probabilities to determine. Even when @ is finite, the axiomatic systems
formally call for considering an infinite number of bets or comparisons. In the
betting schemes, one must compare all possible wagers, and indeed should
really base the bets on a utility function which itself takes an infinite amount of
time to perfect; and in the comparison schemes one must compare events with
the infinite set of measurable events from some auxiliary—say, uniform—
distribution. And all this assumes that @ is known, whereas in many situations
the possible states of nature are only vaguely comprehended (cf. Shafer (1979,
1981a, 1981b) and Barnard (1982)).

From a strictly intuitive viewpoint it is also clear that the single prior axiom
systems are, in a sense, inapplicable, since there is obviously a lower limit to
the accuracy of prior elicitation. I cannot believe that anyone could ever
distinguish between P(A)=0.25 and P(A)=0.250001 (or P(A)=0.25+10"1%®
if an extreme case is needed) in terms of subjective elicitation. Thus Savage
(1961) says

“No matter how neat modern operational definitions of personal
probability may look, it is usually possible to determine the personal
probabilities of important events only very crudely.”

Similar views can be found in Koopman (1940), Good (1950, 1962a, 1973
(priggish principle 3)), Savage (1954), Smith (1961), Dempster (1967, 1968),
Fine (1973), Kyburg (1974, 1976), Suppes (1975), Levi (1980), Rios and Girén
(1980), De Robertis and Hartigan (1981), and Zaman (1982).

Some Bayesians argue that the concept of a ‘true’ prior 7y is-meaningless, in
that the approximate prior 4 that one arrives at after a finite amount of time
is your true prior at the moment, and should hence be used as such. In the face
of infinite @ this is clearly not very reasonable, since in a finite amount of time
an infinite set of probabilities cannot be specified without introducing a large
degree of arbitrariness. Even if only a finite @ is involved, it seems unreason-
able to look upon 4 as any form of truth, since further thought would likely
cause further refinement and there is always a considerable fuzziness in
subjective elicitation. The distinction between wr and w4 is made very suc-
cinctly by Dickey (1976a, 1976b), who calls them the ‘actual prior distribution’
and the ‘operational prior distribution’, respectively, and points out situations in
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which 4 can be known to be a good approximation to #r. (It is possible to
argue philosophically that w7 is essentially an imaginary quantity itself—cf.
parts of Levi (1980)—but it is often a useful imaginary quantity to consider.)

As an aside, it is interesting to observe that, in the above light, the
subjectivist Bayesian objections to the objective Bayesian use of ‘nonin-
formative’ priors seem less forceful. In a situation where there is very little
prior information about 6, a noninformative prior may be a better ap-
proximation to s than any hastily derived proper subjective approximation
TTa.

Another situation, in which working with a class of priors is clearly un-
avoidable, is when group conclusions or decisions must be made and the priors
of all members of the group must be considered. (See Weerhandi and Zidek
(1981) and Zidek (1982) for discussion and earlier references.) The issue of
scientific communication is related to this, the (often unattainable) ideal being
that of presenting a conclusion which would be the conclusion for any reason-
able prior that a user of the information might have. (Among the works
bearing on this issue are Hildreth (1963), Dickey (1973), and Jackson, Novick,
and DeKeyrel (1980).) Although ideas in these areas must bear a strong
relationship to those discussed in this paper, we will not be formally consider-
ing such group situations.

The above arguments do not, of course, establish that a serious problem
exists with standard (i.e. single prior) Bayesian analysis. Indeed I am very
sympathetic to the claim that single prior Bayesian analysis is the ideal goal and
that the major problem remaining is that of developing good prior elicitation
techniques. There is a very substantial and growing literature on the subject of
prior elicitation (cf. Kadane, Dickey, Winkler, Smith and Peters (1980) for
discussion and other references), and as better elicitation methods become
available it is natural to expect the need for consideration of Bayesian
robustness to decline. The validity of Assumption II from a philosophical
viewpoint seems clear, however.

2.3. Reasonable classes of prior distributions

In subsection 2.2 it was argued that quantification of prior beliefs can never
be done without error, and hence that one is left, at the end of the elicitation
process, with a set I" of prior distributions which refiect true prior beliefs; i.e.,
7rr is an unknown element of I'. Some comments are in order concerning the
specification of I

The first and most crucial realization is that, in quantification of prior
beliefs, only prior probabilities and relative likelihoods can accurately be
elicited. In other words, such features of the prior distribution as percentiles
and shape features (unimodality, monotonicity, symmetry, smoothness, etc.)
can be elicited with some confidence, while features such as moments and exact
functional form are much harder to accurately determine. The reason for this is



74 J.0. BERGER PArT II

simply that assessment of probabilities of events (and hence of percentiles of
the prior distribution) is certainly feasible, as likewise is intuitive comparison of
the ‘likelihood’ of the various 6 (at least to the extent of leading to reasonably
certain structural information about the prior density). To specify a prior
moment, on the other hand, demands very accurate specification of the ‘tail’ of
the prior distribution, which will almost never be feasible. Consider the
following example.

Example 3. Suppose 6 is an unknown normal mean, and that a necessarily
brief period of prior assessment results in the conclusions that
pr=-1)=p"(-1<0=<s0)=p"(0<o<1)=p (1< )=

1
3

and that 7 has a symmetric unimodal density. Thus I" could reasonably be
chosen to consist of all priors with symmetric unimodal densities having median
0 and quartiles =1. (To be certain of robustness, it would probably be better
to choose I to consist of all priors with medians within £; of zero and quartiles
within &, of =1, with similar leeway for error allowed in the specification of
symmetry. This will not make much difference in this situation, however.)

In this example, I" contains both the conjugate prior N(0, 2.19) (normal with
mean zero and variance 2.19) and the %(0, 1) prior (Cauchy with median zero
and scale parameter 1). The normal prior has all moments, while the Cauchy
prior has no moments whatsoever. It seems very unlikely in this situation to
expect detailed knowledge of the tail of the distribution (i.e., detailed know-
ledge of a set of very small prior probability), so any attempt to specify I" by
prior moments seems fraught with peril.

An alternative reasonable approach to specifying I is to approximate 77 by
a specific assessed approximation 4, and then let I" consist of all priors ‘close’
to 4. Again, ‘close’ should be measured in terms of close probabilities, such as
in the class

I={m:w(:)=(1-¢e)ma(-)+eP(-),
P an arbitrary probability distribution}, 2.1)

where ¢ reflects the believed accuracy of the prior assessment. This class I" was
first considered in Schneeweiss (1964), Blun and Rosenblatt (1967), and Huber
(1973). Other reasonable classes can be found in Berger (1980b).

Much of the literature involving classes of priors chooses I to be either the
set of priors with certain moments in specified ranges or a set of priors of a
particular functional form with parameters in specified ranges. While these
tend to be much easier to work with than are I' such as in Example 3 or (2.1),
they are unsuitable, as discussed earlier.

Easily specified classes, such as (2.1), are often somewhat too large, in that
they do not incorporate probably available smoothness information about 7. In
(2.1), for example, it may well be felt that = definitely has a unimodal
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continuous density, which would place severe restrictions on the contamina-
tions P allowed. Thus if, in doing a robustness analysis with respect to a I" as in
(2.1), robustness seems hard to achieve, make sure this is not due to unrealistic
features of I'. Of course, if robustness with respect to I' is obtained, then one is
also robust with respect to the more reasonable subclass.

It is, of course, possible to have I' much less clearly specified than in the
above examples, such as when @ is a high dimensional vector or, even worse, a
nonparametric index. Only extremely crude or general features of the prior
might then be obtainable, so I" could be very large.

2.4. Updating I’

Since we will primarily be concerned with posterior measures, the question
of updating I’ by the data is obviously crucial. When making posterior
conclusions, the obvious class of posteriors to consider is simply

r*={m(-|x): mer}.

Unfortunately, more flexibility must be allowed if realism is to be achieved.
The main difficulty is that, especially in multivariate problems, it would be far
too time consuming (if even possible), to accurately ascertain even the most
important features of the prior ahead of time. After seeing the data, however,
one can determine which features of the prior will have a real impact and must
carefully be considered. For example, in a complicated linear model the data
may illuminate which variables are important and hence should be the focus of
the prior elicitation. Or the data may indicate that some variables are ac-
curately determined by the data, and hence prior information concerning them
is likely to be less important, while other variables are very inaccurately
determined from the data (due, say, to multicollinearity) and hence need
accurate prior specification. Thus the data may cause further prior elicitation
resulting in a reduced class I'* (which will then be updated by the data in the usual
Bayesian fashion).

Major objections to the above approach can, of course, be raised, most
troubling being the apparent dependence of the prior (not just the posterior)
on the data. This offends many Bayesians, and also smacks of cheating and
adhocery to non-Bayesians. To Bayesians, I can only reply that there is no
choice. Typical situations have high dimensional @, for which it is very
unrealistic to suppose that suitably accurate prior specification can be achieved;
i.e., only very large I' can be determined prior to experimentation. It will be
very unlikely that robustness can be achieved with respect to such a large I
Hence a narrowing down of I'" will be needed, with the data indicating where
further refinement is necessary. Note that the data is not to be used to shape
your beliefs, but only to indicate how this narrowing down should be done, and
when a point is reached which allows reasonably robust Bayesian conclusions
to be drawn. As Hill (1965) says,
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“...it is only the degree of care we take in approximating our prior,
not the prior itself, that depends on the data.”

A more troubling situation is when the data reveals that I" was in some
sense wrong, and not just too big. One could argue that I' should have been
kept flexible enough to encompass all possibilities, but realistically the data will
often suggest new relationships, hypotheses, or models that were not included
in, and may even contradict, the original specification of I. One must then go
back and suitably enlarge or change I, as observed in de Finetti (1972, Ch.
8) and Savage (1962). As Savage said, however,

“It takes a lot of self-discipline not to exaggerate the probabilities you
would have attached to hypotheses before they were suggested to you.”

The disturbing nature of allowing the data to affect I" directly does not seem
quite so bad if a slightly different perspective is adopted. Instead of viewing the
situation as that of updating prior information, think of it as an attempt to
quantify (after the experiment) the relevant experimental and nonexperimental
information, and then combine the two. This, of course, is the view that
outsiders, evaluating a robust statistical analysis, will take. A good analysis will
present a suitable summarization of the data along with a description of the
experimenter’s I' and his conclusions. In evaluating this, an outsider would
consider the suitability of I', and alter I to reach his own conclusions if needed.
How I' was obtained is essentially irrelevant; either it seems a reasonable
representation of the nonexperimental evidence or it does not. The emphasis
here is on the effect of the data on opinions, or on the prior to posterior
transformation, a concept convincingly promoted by Dickey (1973). Another
way of thinking of this is that one learns by passing a variety of reasonable priors
over the likelihood function (6) and seeing what happens. The strict prior to
posterior mode of reasoning is then deemphasized. (Indeed, Schafer (1981b)
argues convincingly that practical Bayesians almost never think in this strict
mode, but instead view the problem as that of combining different sources of
information.)

The clear difficulties of updating, by merely conditioning on the data via
Bayes rule, have led to the development of other theories or methods for
Bayesian or pseudo-Bayesian analysis. (See, for example, Jeffrey (1968), Shafer
(1976, 1979, 1981a, 1981b, 1982), Teller (1976), and Diaconis and Zabell
(1982).) These alternatives are interesting, but I remain unconvinced as to the
practical necessity of developing a methodology which goes beyond post-data
modification of I', followed by updating via Bayes rule. First of all, most of the
examples against Bayesian updating can be handled by allowing post-data
modification of I'. Secondly, complex situations are understood by trying to
break them into simple components for separate analysis; the prior—data, or
alternatively, experimental-nonexperimental information decomposition is a
very useful such breakdown, with a known method (Bayes rule) for recom-
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bination. Although contamination of information is certainly a real danger, and
there may be situations where this breakdown is not necessary, in the over-
whelming majority of the cases it is successful. A final argument for staying
within the framework of Bayesian conditioning is that, as alluded to earlier, it
is very important in statistical reports to separate the information contained in
the data from that in the prior, and so this breakdown should be attempted
even when not convenient.

While the above reasons argue against basing one’s methodology on non-
Bayesian updating, it would be foolish to rule out alternate methods com-
pletely. (See the discussion of this issue in Shafer (1979, 1981a, 1981b).) Also,
certain ideas derived from these alternate viewpoints are useful in post-data
modification of I One such idea is the use of Jeffrey’s rule, as discussed in
Diaconis and Zabell (1982) and Shafer (1981a).
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3. Measures of robustness

The natural Bayesian measure of robustness is insensitivity of the final
(posterior) conclusion to the choice of 7 € I'. This will be discussed in the next
section. Though of central importance, this measure of robustness will be seen
to be inadequate in some situations, necessitating measures of robustness of
procedures based on overall performance, such as Bayes risk, r(m, 8), in
decision theoretic situations. This will be discussed in subsection 3.2. Sub-
section 3.3 discusses the role of each of these two methods of measuring
robustness.

3.1. Posterior robustness

Assumption I, being the cornerstone of the robust Bayesian viewpoint, must
be followed. Hence, after observing all the data, any inference or decision
made should be satisfactory from a posterior viewpoint.

Definition 1. An inference or decision is posterior robust with respect to I' if it is
satisfactory with respect to (-] x) for all w € I".

This definition is necessarily very vague, but could be tightened up in specific
situations, such as in the following reasonable definition for decision theoretic
settings.

Definition 2. In a decision theoretic setting (see subsection 1.3), an action agg is
g-posterior robust with respect to I' for the observed x if

sup |p(m, x, ag)— inf 'p(m, x, a)| <& . 3.1
el acd

It is important to realize that whether or not posterior robustness exists will
often depend on which x is observed. Thus Barnard (1982) says

“We should recognize that ‘robustness’ of inference is a conditional
property—some inferences from some samples are robust...”

Consider the following example.

Example 4. Assume that X ~ N(6,1) is observed, and that it is desired to
estimate 6 under loss L(#,a)=(#—a)’. Here O = = R'. Suppose I' =
{mn, mc}, where my is the N(0,2.19) distribution and m¢ is the €(0,1) dis-
tribution. (This I’ is a very specialized subset of the I' in Example 3, but
behaves similarly in many respects.) If 7y were the true prior, then one would
want to use the Bayes estimate

2.19
M) =17719%
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while if 77c were the true prior, then one would want to use the Bayes estimate

J 6(1+ 63! exp{—3(x — 82} dO

8Cx) = .
f (1+ 671 expl—3(x — 6)% do

Table 1 gives a few values of 8" and 5€.

Table 1
&Y and 8¢

x 0 1 2 10

s 0 069 137 6.87
§¢ 0 052 127 9.80

An easy calculation shows that, for squared error loss,

Ip(ﬂ" X, aO) - H‘}f p(’”s X, a)’ = (aO - lu“rr(x))z 5

where u,(x) is the posterior mean for . Since 8" and 8¢ are p,, and u,.,
respectively, it follows that the posterior robustness of either 8™ (x) or 8€(x) is
measured by

[6% (x)— 8 ()P

From Table 1 it is clear that either action is quite posterior robust (i.e., 8V (x) is
close to 8€(x)) for x near zero, while for x = 10, neither action is posterior
robust. (For large x, the tail of the prior becomes very significant, and 7 and
7c have substantially different tails.)

If posterior robustness is attainable in a given situation, then the problem is
essentially solved. If posterior robustness is not attainable, however, as hap-
pens in Example 4 when x = 10, then something else most be done. The natural
thought is to attempt further elicitation of the prior distribution, and indeed it
is precisely when posterior robustness does not obtain that more detailed
elicitation is indicated. If this resolves the issue, fine, but if further elicitation is
not possible or won’t prove helpful (as in Example 4 for x = 10, where the prior
tail will be next to impossible to accurately specify), then we must look beyond
posterior robustness. (Of course, the above example is extreme, in that if
encountered in practice one would seriously suspect the model for X. Extreme
examples like this are useful for emphasizing the issues, however. They also
provide insight which can be used in less extreme situations. Sections 5 and 6
deal with more practical issues.)

3.2. Procedure robustness

Faced with the (X, 0) experiment, one can talk about the procedure §(X) to
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be used when X is observed. Although the Bayesian tends to think condition-
ally on the observation X = x, it is certainly possible to consider the collection
{8(x): x € X} of inferences or decisions to be made for all possible X. (This
may seem an unnecessary complication, but is logically sound.) Since, pre-
experimentally, the Bayesian thinks that X will be occurring according to the
marginal distribution m(:), he would (in a decision theoretic setting, for
simplicity) evaluate the overall performance of a procedure by

r(m 8) = E"[p(m X, 8(X))].

A reasonable method of measuring the robustness of a procedure in such a
situation is given in the following definition.

Definition 3. In a decision theoretic setting, the procedure 8°is e-procedure robust
with respect to I' if

sup [r(m, 8% — ir;f r(m )] <e.

Example 4 (continued). Calculation shows that r(me, V)= o, r(my, 6V) = 0.697,
r(me, 6°) <1, and r(my, 6€)=0.736. Hence the procedure robustness of &€
(with respect to I') is measured by

r(mn, 8€) = r(mn, 8%) =0.049,
while that of 8V is measured by
r(7TC7 5N)_ r(WC) 80) =%,

Clearly 8¢ is much superior according to this measure of robustness. (Of
course, the use of an unbounded loss function can be criticized, but even for
many reasonable bounded losses §¢ would prove far superior.)

Many Bayesians object to the use of r(w, 8) as a measure of anything,
because it involves an average over the sample space. A statistician should be
responsible for the long run performance of his methodology, however. In the
situation of Example 4, for instance, the Bayesian who time after time uses the
conjugate prior Bayes rule 8V will have very bad long run performance if 7¢ is
the true prior fairly regularly, while the Bayesian who uses 8¢ suffers no such
danger when my is the true prior. In other words, if a Bayesian is to employ a
methodology leading to the use of a procedure 8, he should be concerned that
his methodology is sound, as reflected by r(s, 8). This is not to say that a
procedure & is good for all x if r(7, §) is good (the fallacy in reasoning underlying
frequentist statistics), but does say that § is bad if r(w, 8) is bad. (Discussion of
other reasons for considering r(s, 8) will be given in subsection 4.4.)

Many Bayesians react to the above argument by asking how r(m, ) can be
bad if 8(x) is chosen to be good from a posterior viewpoint for each x.
Example 4 provides an illustration of how this can happen. From the viewpoint
of posterior robustness, 8V (x) and §€(x) were equivalent, in that the posterior
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robustness of each (with respect to I') was measured by
[V (x) -8 ()P .

But from the procedure robustness viewpoint, it seems clear that 8¢ is
considerably better than &%,

From the procedure robustness viewpoint, several specific criteria have been
proposed for the selection of procedures. The two most common are the
I'-minimax and I'-minimax regret criteria, which propose the use of the
procedure 8* which minimizes

sup r(m, 8%) (3.2)

or
sup [r(m, 8*) ~ inf r(m, 8], 3.3)

respectively. Discussion of the literature on these criteria will be delayed until
Section 5.

3.3. Discussion

It is important to realize that posterior robustness is the ideal goal. If it can
be attained, the problem is solved. Also, when posterior robustness is not
present, a careful Bayesian will attempt further refinement of I" or, if possible,
attempt to obtain more data. Unfortunately, situations where posterior
robustness is simply unattainable are common, such as when (i) because of time
or mental limitations further refinement of I" is impossible; (ii) no more data
can be obtained; or (iii) Bayesian analysis is technically too difficult to imple-
ment for a convincing variety of plausible priors (as in many nonparametric
problems).

What alternatives are available when posterior robustness cannot be found?
First, one could simply say that there is no clearcut answer to the problem. This
is reasonable, at least in those situations where I' is clearly defined and
different priors in I' give substantially different answers. If, however, the
problem is due to technical difficulties in implementing the Bayesian approach,
or if an answer simply must be obtained, then something else must be tried.

The ndtural Bayesian inclination would be to put some ‘metaprior’ on I’
itself and use the resulting Bayes rule. If technically feasible, this may well be a
good ad hoc solution. We stress ‘ad hoc’ because the assumption is that no
further prior elicitation is possible. Thus the metaprior is simply some arbi-
trarily chosen distribution used as a technical device to obtain an answer. The
analysis with metapriors can be very formidable, however, especially with I’
such as discussed in Section 2.3. Also, there is nothing to guarantee that the
resulting answer will be good. Hence it may well be useful to consider
procedure robustness and/or use of frequency measures as an aid in obtaining
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an answer. A more extensive discussion of the use of procedure robustness and
frequency measures will be given in Sections 4.4 and 4.5.

The complaint can be raised that use of procedure robustness may violate
Assumption I and the Likelihood Principle, and also that use of such measures
as (3.2) and (3.3) and frequency measures will violate the rationality or
coherency axioms. This is a valid complaint, yet carries no real force since a point
has been reached where there is no clearcut ‘coherent’” way to proceed. Here,
coherent is being used in a broad sense, since it would formally be coherent (in
the usual sense) to arbitrarily select some metaprior on I" and do a Bayesian
analysis, yet few Bayesians would say that arbitrary choice of a prior (i.e. a
choice not based on any subjective opinions) is necessarily good. Thus Levi
(1980) says

“We should, therefore, recognize a distinction between principles of
rationality regulating an agent’s commitments and the suggestions which
may be made when he cannot live up to them.”

It should be stressed that we are not recommending any definite way of
proceeding when posterior robustness is lacking. Often, putting an artificial
prior on I' may work. Often (see Sections 4.4 and 4.5) use of procedure
robustness or frequency measures may prove helpful. Or entirely different
statistical methodologies may provide good answers. In fact, the coherency
arguments essentially suggest that no single automatic prescription concerning
what to do in this situation will always prove successful.

It is crucial, finally, to recall that we are contemplating straying from the
Bayesian path only to select from among answers which are plausible from a
posterior Bayesian viewpoint, and hence will not be knowingly violating
Assumption I or coherency by any substantial amount. Thus Good (1976) says

“...non-Bayesian methods are acceptable provided that they are not
seen to contradict your honest judgements, when combined with the axioms
of rationality.”
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4. Implications of the robust Bayesian viewpoint

The major implications of the robust Bayesian viewpoint have already been
discussed, but the flexibility of the approach allows incorporation of various
sensible, yet ostensibly ‘non-Bayesian’, techniques. Some of these are briefly
discussed below.

4.1. Data analysis

The data summarization part of data analysis is justifiable from any view-
point, so it is the interactive modeling aspect which is of interest. This activity
always involves the combining of subjective knowledge with the data to suggest
or modify models for the phenomenon being studied, and is hence essentially
Bayesian in nature. As discussed in subsection 2.3, it seems sensible and
necessary to allow modification of I" based on the data, and indeed, with this
option, the robust Bayesian and data analyst behave in essentially the same
way. The differences are, first, that the robust Bayesian believes in quantifying
the subjective information (to the extent possible) in I, rather than incorporat-
ing it in an ad hoc fashion; and, second, the robust Bayesian uses posterior
measures in evaluating the evidence for any model or conclusion. This last
feature eliminates, in a sensible fashion, the problems of evaluation of the
strength of the evidence for a mode! selected by the data. (The posterior weight
given to the model is based on a product of the prior weight and likelihood
according to the data, automatically discounting the ‘significance’ of the data
for the model it selects.) Hence, contrary to popular opinion, the robust
Bayesian is not the slave of a particular prior distribution he must pre-
experimentally specify, and can engage in sensible data analysis (as opposed to
non-Bayesian data analysis).

4.2. Randomization

Most statisticians are convinced of the value of randomization in statistical
design (e.g. random allocation of subjects to two treatments), yet the single prior
Bayesian position does not allow this. If all unknowns in the situation have been
identified and their true prior distribution obtained, then the optimal Bayesian
design will not require any form of randomization. When, however, uncertainty
in the prior information is admitted, randomization becomes available.

The use of randomization to a robust Bayesian, however, is essentially
limited to the effort of avoiding experimenter induced bias. In other words,
because the robust Bayesian is worried that there are experimental factors
which he has not thought of and which may be correlated with any nonrandom
subject selection or allocation scheme, he will find randomization to be useful
in (hopefully) preventing such bias.

The robust Bayesian does not (as an ideal) find randomization to be of use
in drawing conclusions from the data. The probabilistic mechanism of ran-
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domization will usually be independent of 6, and hence by Assumption I the
robust Bayesian will want to draw conclusions conditional on the given selected
sample. Of course, even the non-Bayesian agrees with this to some extent, the
‘selection’ of a new randomization design if the original design doesn’t look
random enough being one example. And even the most ardent anti-Bayesian
would not go through with a standard classical analysis based on the ran-
domization if significant cofactors were revealed which, by bad luck, turned out
to be highly correlated with, say, the treatment groups. Yet the Bayesian
conditional viewpoint argues against making any use of the randomization
mechanism. Arguments for this viewpoint can be found in Basu (1971) and
Basu (1980). (See also the discussion by Lindley in Basu (1980).)

It is possible to argue that robustness considerations allow the use of the
randomization mechanism. For instance, Rubin (1978) argues that the prior
specification is so immensely complicated in typical situations that it will often
be better to ‘ignore’ part of the data (i.e. the known outcome of the ran-
domization) to simplify the needed prior specification. The probability
mechanism of the randomization does then become part of the Bayesian
analysis and can indeed simplify matters.

The danger in this is, of course, the usual danger befalling any attempt to
analyze data in violation of Assumption I; the analysis conditional on the data
could differ substantially from the analysis averaging over data points that
could have been obtained. Although this is something that will probably occur
fairly rarely, it is unappealing to adopt as a basic method of analysis tech-
niques which can lead to conclusions at odds with all the actual data. Note
that the robustness advocated in this paper is not of this potentially danger-
ous type, since satisfactory conditional posterior behavior behavior is of primary
importance.

There may, of course, be very pragmatic considerations involved. For
example, a randomized design will be useful if it seems important to convince
others that the experiment was ‘unbiased’ (although this is rather illusory
impartiality). Also one can be very sympathetic to the argument that any
Bayesian analysis here, much less a robust Bayesian analysis, is simply un-
manageable.

Discussion of the randomization issue can also be found in Savage et al.
(1962), Hill (1970), Good (1976 and earlier), Basu (1980), Lindley and Novick
(1981) and Berger and Wolpert (1982). Also, the debate in safnpling theory
concerning the use of superpopulation models as opposed to analysis based on
the probabilistic mechanism of the sampling rule is essentially the same as the
randomization debate. Indeed Godambe and Thompson (1977), Godambe
(1982) and Royall and Pfefferman (1982) specifically argue that suitable random
sampling plans can lead to a form of Bayesian robustness. Other discussion and
references can be found in Cassel et al. (1977), Basu (1978), Hajek (1981) and
Berger and Wolpert (1982).



SECTION 4 THE ROBUST BAYESIAN VIEWPOINT 85

4.3. Classical robustness

By classical robustness is meant robustness with respect to the distribution
P,(-) of the observation X. This is obviously a crucial aspect of statistical
analysis and can be included in the robust Bayesian framework by the simple
expedient of allowing @ to be a nonparametric index set (indexing the
distributions for X which are of concern) and having I' reflect the prior
knowledge available about these distributions. Indeed, to many Bayesians the
difference between ‘model’ and ‘parameter’ seems fuzzy at best. The subjective
choice of the model is often a far more drastic use of prior information than is
use of prior distributions on parameters of the model.

Classical robustness results tend to be in terms of measures such as ‘asymp-
totic minimaxity’ (cf. Huber (1972)), which can be related to procedure
robustness. Procedure robustness is of interest here because Bayesian analysis
when Py is uncertain can be technically very difficult. A number of successful
Bayesian analyses of model robustness problems have been carried out,
however. For the most part these studies proceed by embedding a standard
family of distributions in a larger parametric family (such as embedding the
normal distributions in the class of all ¢-distributions), and then performing a
Bayesian analysis. Excellent discussions of this, along with earlier references,
can be found in Box and Tiao (1973), Dempster (1975) and Box (1980).

One important point brought out in the Bayesian view is that model
robustness should be viewed conditionally. If a data set gives residuals which
are a gorgeous fit to normality, worrying about robustness to normality is a
waste of time. Discussion and examples can be found in Dempster (1975) and
Barnard (1982). Efron and Hinkley (1978) and Hinkley (1983) also discuss
important situations in which model robustness should be investigated con-
ditional on shape features of the data. All this is in line with our view that
having valid conditional (posterior) measures is of primary importance.

4.4. Uses of frequency measures

Frequency measures can have a role to play in robust Bayesian analysis. The
basic idea of frequency measures is, of course, to also consider x other than
that which occurs. The simplest form of such reasoning, which can be useful to
a Bayesian, is simply to imagine possible data x, compute the Bayes rule for a
prior being investigated and see if the result makes sense. In the situation of
Example 4, for instance, the fact that 8N appears inadequate for x =10
provides a warning that 8" might also be inferior for a smaller (yet possible)
observation such as x = 5. Several very interesting examples of this type of
reasoning are given in Diaconis and Freedman (1983). Looking at the behavior
of a Bayes rule for a variety of x (often extreme x) may point out unsuspected
and unacceptable features of any chosen prior. This has been called the ‘device
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of imaginary results’ by 1.J. Good and has been extensively promoted by him
(cf. Good (1965, 1976, 1981)).

More formally, frequentist measures, such as operating characteristic curves
and risk functions can be of interest through their relationship to procedure
robustness. (This was briefly discussed in subsection 3.2, but, since the issue is
quite controversial, an expanded discussion is in order.) The basic reason for
this relationship is (1.2), namely that

Ep(m, X, 8(X)) = r(m, 8) = E"R(8, 5) . @.1)

(Although R(6, 8) and p(sr, x, 8(x)) were defined as frequentist risk and pos-
terior expected loss, respectively, through appropriate choice of the loss
function they can be made to represent nondecision theoretic measures such as
coverage probability and posterior probability of containing 6, respectively.) If,
now, R(0, 8) is known to be ‘good’ for all 6, then from (4.1) it follows that
Emp(m, X, 8(X)) will be ‘good’ for all #. Although this doesn’t guarantee that
p(m, x, 8(x)) is actually good for the observed x and 7 of interest, there is a
good chance that it will be. Conversely, if R(6, 8) is bad for some 6, then
before using & it is imperative to make sure that such 8 are really very unlikely
a priori. In Example 4, for instance,

R(6, 8V) = 0.471 + (0.0983)6?

which is terrible for large 6. Looking at this risk would cause one to realize
that, unless the large 6 really are as unlikely (subjectively) as indicated by the
tail of the presumed normal prior, then use of 87 may not be wise.

Besides this aspect of using frequency measures as a check on Bayesian
robustness, two closely related reasons for admitting consideration of
frequency measures should be discussed. First, there are simply many problems
which have a good frequency answer, and yet which do not have clearly
trustworthy Bayesian answers. Because of (4.1), the frequency procedure has a
good chance of also being sensible from a conditional posterior Bayesian
viewpoint. Thus it can be viewed as a good ‘stab in the dark’. Of course, as
Bayesian methodology expands, there will be less and less need to depend on
such frequency evaluations. (See Berger (1982d) for examples, discussion and
references.)

The final reason for consideration of frequency measures and procedure
robustness is that, like it or not, the majority of users of statistics are not going
to be extremely well trained, and will probably not be capable of careful
Bayesian sensitivity analyses. For such users it is necessary to provide pro-
cedures, which are as Bayesian as possible and yet are automatically robust.
Since these procedures will be used repeatedly, their long run frequency
performance is definitely relevant. Example 4, for instance, suggests that in
estimating a normal mean it would be reasonable to ask the unsophisticated
user to specify a ‘guess’ and an estimate of the accuracy of this guess, and then
fit this to a Cauchy prior and calculate the Bayes estimate (all of which could
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be automatically done by a computer). Fitting to a conjugate normal prior is
contraindicated, however, at least for such automatic use. This section con-
cludes with a very brief review of some useful frequency concepts.

A. Design, prediction and sequential analysis

In these problems it is absolutely imperative to average over the data likely
to occur and no Bayesian would think otherwise. Of course, these problems
also have a large Bayesian component. In design, for instance, one must use
subjective gusses for 6 to predict what data will occur and hence what design to
use. Also, a Bayesian will have the goal of obtaining good conditional per-
formance, which may lead to a quite different design than a classical design.

B. Confidence procedures
If C(x) is a confidence procedure for 6 with confidence level 1 - «, then
Py(C(X) contains 8)=1—«.
As in (4.1), it follows that
E"P e eE C(X)=1-a, @.2)

so that, for small &, C(x) has a pretty good ‘chance’ of containing 6 (according
to a valid posterior measure) no matter what 7 is. This use of confidence
procedures was discussed in Pratt (1965).

Morris (1983a, 1983b) has advocated the development of procedures satisfy-
ing (4.2) for all priors 7 in a feasible class I', and has called this ‘empirical
Bayes confidence’. For the reasons discussed earlier, this may well be a valid
objective, as long as it is kept in mind that the real goal is to obtain a set with
good posterior probability of containing 6 for the given observation x. Similar
ideas are employed in Godambe and Thompson (1976) and Godambe (1982) to
argue for use of frequentist concepts in obtaining robust Bayesian confidence
procedures in survey sampling. Other work on the relationship between
frequency and Bayesian confidence methods can be found in Welch and Peers
(1963) and Stein (1981b), which also contain earlier references.

C. Minimaxity

The robust Bayesian interest in minimaxity arises from the fact that

sup r(m, 8) = sup R(8,6), 4.3)

and hence a minimax decision rule (i.e. a rule minimizing the right hand side of
(4.1)) is also the ‘most procedure robust’ Bayesian decision rule (being I'-
minimax when I is the class of all priors). Although realistic I" will rarely be so
large that
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sup r(, 8) = sup R(6, 8),

€l [
a minimax rule can provide a basis of comparison for procedure robustness.

D. Admissibility
If 6 is inadmissible, there will often exist a 6* such that
R(8, 8*)< R(6, 8)

for all 6, and hence such that r(m, 8*)<r(s, 8) for all priors 7 for which the
Bayes risk exists. Because of procedure robustness and (4.1), it can be convinc-
ingly argued that this should preclude consideration of inadmissible decision
rules. (See also Hill (1974).) The restriction to consideration of only admissible
rules can be a very helpful reduction of the problem, particularly in areas such
as sequential Bayesian analysis where even determination of a Bayes rule can
be very difficult.

E. Asymptotics

Much of the frequentist work on asymptotics has relevance to a Bayesian.
Some such work is discussed in Section 5. Also, asymptotics can be helpful in
determining Bayesian robustness. For example, in Diaconis and Freedman
(1983) it is shown that certain partially nonparametric Bayes rules can be
inconsistent, giving real cause for concern as to the robustness of use of the
corresponding priors.

F. Significance testing

There are sometimes relationships between P-values in significance testing
of a hypothesis and posterior probabilities of the hypothesis (cf. Good (1950),
Jeffreys (1961), Pratt (1965), and Berger and Wolpert (1982) which has later
references), and this may sometimes justify use of the often much easier to
compute P-values. Also, in Section 5 the role of Bayesian significance testing in
Bayesian robustness will be briefly discussed.

We have, of course, barely touched the surface of the possible uses of
frequency concepts in robust Bayesian analysis. Invariance concepts, for in-
stance, can have many uses. Also, many explicit frequentist procedures turn out to
be perfectly satisfactory from a Bayesian viewpoint.

4.5. Estimating a multivariate mean: The Stein effect

We conclude this section with an example interesting from several aspects.
First, it is an example wherein both the frequentist decision theorist and the
robust Bayesian decision theorist end up wanting to solve the same problem.
Second, it is an example wherein the Bayesian can be amazingly robust and the
frequentist can make significant use of prior information at no or little cost.
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Finally, it illustrates the fact that good robust Bayes procedures need not be
Bayes procedures for any prior in I, and indeed can violate natural Bayesian
intuition.

Suppose we must simultaneously deal with p independent estimation prob-
lems (p = 3), where X; ~ N(6, 1) is the observation in the ith problem, and the
loss in estimating @ = (64, ..., 6,) by 8 = (8y,..., 8,) is =81 (6;— ;)% The 6; are
a priori known to be independent and, as a quick approximation, are felt to
have N(0, 1) prior distributions, to be denoted =¥, i =1, ..., p. (Different prior
medians could be allowed in the following analysis.) This last facet of the prior
distribution is deemed uncertain, however, and hence robustness is sought with
respect to the class of priors

.

I'= {w =[] m: m =1~ ¢e)nd + &P, P; arbitrary probability measures} .
i=1

4.4)

(It is essentially certain that the 6; are a priori independent, and ¢ is the
assumed error in the approximations a¥.)

A non-Bayesian frequentist analysis of the problem must take note of the
Stein phenomenon, which is that estimators 8* exist which are better than the
natural estimator 8%x) = x, i.e.

R(8,5*)<R(6,8%=p forall 6. @.5)

The frequentist finds himself forced somewhat into the Bayesian ballpark,
however, since any such 8* is significantly better than 8° only in a relatively
small region of the parameter space. Intuitively, therefore, 8* should be
selected by deciding where significant improvement is most desired, and it
seems manifest that significant improvement will be most desired for those 6
felt likely to occur a priori. A very reasonable way of proceeding, therefore, is
to elicit a rough prior distribution 7,4, and then to find that * which minimizes
r(ma, 6%) subject to (4.5). (Such a §* will clearly perform best for those 6 felt a
priori to be most likely.) The frequentist willing to sacrifice some minimaxity
(here p is the minimax risk) for more Bayesian gain would be interested in the
problem

Minimize (74, 8), subject to R(6,8)<p+C. . 4.6)

A fascinating feature of this situation is that a robust Bayesian can become
concerned with the same problem. Indeed, suppose he seeks procedure
robustness by trying to be I'-minimax (see (3.2)) with respect to the I' in (4.4),
and furthermore does the ‘obvious’ thing and restricts attention to coor-
dinatewise independent rules, i.e. rules of the form ‘

8(X) = (61(x1), 82(X2), ceey 8p(xp)) . (47)

(Since the 6; are a priori independent, any Bayes rule with respect to a prior in
I' will be of this form.) A relatively simple game theoretic argument shows that
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this problem is then equivalent to the problem in (4.6) (with § restricted to be
of the form (4.7) of course), in that there exists a continuous increasing function
p such that C = p(e) defines an equivalence of solutions. It is interesting to see
what happens if the restriction to estimators of the form (4.7) is dropped, so we
will consider the general problem posed in (4.6).

Exact results on problems of this form are very complicated but simple
approximate solutions are given in Berger (1982b) and Berger (1982c). For the
special case considered here, and when C=0 in (4.6) for simplicity, the
approximate solutions are

* _ %x if |xt2S4(p—-2),
8%(x) = {(1—2(p—2)/lx|2)x if |xP=4(p-2).

This estimator is minimax and hence not only satisfactory from the frequentist
viewpoint, but also procedure robust with respect to the class of all priors. The
estimator is also quite acceptable from the posterior viewpoint, since for
IxP<4(p~2),
8*(x)=3x = 8V (x),

where 8V is the Bayes procedure with respect to the approximate prior
¥ =11%_, w¥. (For the class I' in (4.4) posterior robustness is achieved for
small |x| by any Bayes rule with respect to a prior in the class, while for large

|x| posterior robustness is not attainable.) As to Bayes risk, this estimator
astonishingly has

_ (=", 8%
r(mN, &N)

as indicated in Table 2. Thus when p =5, for instance, 6* is only 7% worse
than 8~ if " is the true prior. Indeed sup,err(m, 8*) will be very satisfactory,
as indicated by the crude upper bound

sup r(m, 6*) < (1 - pe)r(w™, §*)+ pe.
TE

(Compare this with the fact that sup,err(m, §¥) =)

That one can have such fine Bayesian performance and be so robust (or,
from a frequentist viewpoint, be minimax) is quite surprising. What is even
more surprising from a Bayesian viewpoint is that we know a priori that the 6,
are independent and hence we know that our ‘true Bayes rule’ would be of the

Table 2
Bayes risk ratio of * to 8"

)4 3 4 5 6 7 8 9 10 15 20

A 1296 1135 1.0727 1.0427 1.0267 1.0174 1.0117 1.008 1.0016 1.0004
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form (4.7). But it is shown in Efron and Morris (1971) that if only estimators of
this form are considered, then about the best that can be done is to have an
estimator 67 with A = 1.4 and sup, R(6, 87) = (1.3)p. This is 40% worse than 6~
when 7V is true and 30% worse than a minimax estimator in terms of minimax
risk (indicating considerably less procedure robustness), which is significantly
inferior to the performance of 8*. Hence good robust Bayesian procedures can
differ substantially from what a straightforward Bayesian viewpoint might
dictate and need not be Bayes with respect to any prior in I'. (The ‘formal’
Bayesian solution to this problem of putting a metaprior on I" would probably
also work, although care might be needed in choosing the formal metaprior
and the resulting procedure would probably be extremely messy.)

This example was, of course, very special, particularly in that the ap-
proximate priors for each §; were assumed to have equal variances. (Talking in
terms of ‘variance’ is convenient for specifying 74, here, but I" does not assume
that the prior variance is known.) Almost certainly in reality, a priori in-
dependent 6; will have different approximate prior variances. Some partial
results for the general nonsymmetric situation can be found in Berger (1982b).
Similarly, it will often be unrealistic to assume that the error in the specification
of each of the 7 is the same value &. The almost astounding power of the
Stein effect in achieving Bayesian robustness in this ‘ideal’ situation, however,
certainly argues for its value in less ideal situations.



92 J.0. BERGER ParT 11
5. History and guidelines

There has been comparatively little research in Bayesian robustness and
only a few specific guidelines are available in attempting to achieve robustness.
In subsection 5.1 we briefly review the literature on Bayesian robustness,
although this was not intended as a review article per se, and hence little more
than a categorization of results is attempted. In subsection 5.2 the few available
guidlines are presented.

5.1. History

5.1.1. Posterior robustness
A. Asymptotics

It is intuitively plausible that, as the sample size goes to infinity, the in-
formation from the data becomes conclusive, and hence the conclusions will
depend very little on the prior (automatically achieving posterior robustness).
Results in this area can be divided into the categories of ‘stable measurement’,
‘consistency’, and ‘sequential analysis’. Summaries of much of this work can be
found in De Groot (1970).

A(i). Stable measurement. The principle of stable measurement is roughly
that, as the sample size goes to infinity, the posterior distribution of § becomes
essentially proportional to the likelihood function (i.e. the prior distribution
washes out). This concept was extensively promoted by Savage (cf. Edwards,
Lindeman and Savage (1963) and most of the other works of Savage listed in
the references). Blackwell and Dubins (1962) explored a similar concept.

Since the likelihood function will generally be asymptotically normal, it is
reasonable to expect the posterior distribution to be asymptotically normal.
Results in this direction were obtained by Le Cam (1956), Johnson (1967, 1970),
Walker (1969), Dawid (1970), Brunk and Pierce (1977), Heyde and Johnstone
(1979) and Ghosh et al. (1982).

One difficulty with stable measurement is that the sample size which is large
enough for the asymptotics to apply will often depend on the observations
themselves. Hence, in a sense, one is forced to do a complete posterior
robustness check even for large samples.

A(i). Consistency. Results concerning the consistency of Bayes estimates (and
hence a degree of asymptotic robustness with respect to the prior distribution)
can be found in Le Cam (1953), Freedman (1963, 1965), Fabius (1964), Schwartz
(1965), Berk (1966, 1970), Strasser (1981), De Robertis and Hartigan (1981) and
Diaconis and Freedman (1982). These results tend to say that, if 8 is in the
support of the prior distribution, then the Bayes estimates are consistent for 6
and otherwise they are not. The results of Freedman (1963, 1965) and Diaconis
and Freedman (1982) indicate, however, that Bayes estimates can be in-
consistent even when 8 is in the support of the prior, unless care is taken in the
selection of the prior.



SECTION 5 THE ROBUST BAYESIAN VIEWPOINT 93

A(iii). Sequential analysis. Asymptotic sequential Bayes decision theory is
concerned with sequential Bayes decision problems when the cost of each
observation is very small. As the cost goes to zero, the number of observations
likely to be taken goes to infinity, allowing the large sample Bayesian asymp-
totics discussed previously to apply. Most of the results on this subject obtain
limiting forms of the Bayes stopping rule or Bayes risks. See, for instance,
Chernoff (1959), Schwarz (1962, 1968), Kiefer and Sacks (1963), Bickel and
Yahav (1967, 1969), Gleser and Kunte (1976), Fortus (1979), Vardi (1979a,
1979b) and Woodroofe (1980). Often, this limiting form is independent of the
assumed prior distribution, indicating a large sample robustness. Certain seem-
ingly robust nonasymptotic Bayes stopping rules for estimation problems can
be found in Alvo (1977). (See also Berger (1980b) for a general discussion.)

B. Sensitivity theory

Sensitivity analysis is a standard name for the process of investigating
changes in the conclusions caused by changes in the initial assumptions
(including the prior distributions). Such analysis is present in many good
Bayesian papers. Dempster (1976) gives an interesting general discussion of this
with examples. Any attempt to mention all such works would be nearly
hopeless, so instead only the more formal works concerned with developing
bounds on the range of the posterior conclusions based on variation in the
assumed prior distributions will be mentioned. (Such works will be called
Sensitivity Theory.)

B(i). Bounds on the posterior distributions. There have been many works
seeking to bound the amount of variation in the posterior distribution itself (or
certain posterior probabilities) for classes I" of prior distributions, or the closely
related ‘upper and lower probabilities’. Results for classes of priors can be
found in De Groot (1970), Huber (1973), Chamberlain and Leamer (1976),
Dickey (1976b), Leamer (1978), Davis (1979), Hill (1980c), Rios and Gir6n
(1980) and De Robertis and Hartigan (1980). (Some of these works are closely
related to stable estimation.) Results in Stein (1965) are also relevant.

The idea of ‘upper and lower probabilities’ is essentially to try and find
upper and lower bounds on the prior distributions (these bounds will typically
just be finite measures, i.e., will not have mass one) and from these obtain
bounds on the posterior distributions. Such ideas can be found in Boole (1854),
Koopman (1940), Good (1950, 1962a, 1976), Smith (1961), Dempster. (1966,
1967, 1968, 1971), Beran (1970, 1971), Fine (1973), Huber and Strassen (1973),
Kyburg (1974, 1976), Kleyle (1975), Suppes (1975), Williams (1976), Suppes and
Zanotti (1977), West (1979), Levi (1980), De Robertis and Hartigan (1981) and
Wolfenson and Fine (1982), although several of these works propose alter-
native modes of reasoning based on the upper and lower probabilities.

B(ii). Bounds on posterior actions and expected loss. Sensitivity theory is often
concerned with bounding the variation in the optimal posterior action or
posterior expected loss caused by variation in the prior. Results for finite
parameter spaces can be found in Isaacs (1963), Fishburn (1965), Fishburn,
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Murphy and Isaacs (1968) and Pierce and Folks (1969). More general theories
can be found in Skibinsky and Cote (1963), Dickey (1974, 1976b), Bansal
(1978), Kadane and Chuang (1978), Rios and Girén (1980) and De Robertis and
Hartigan (1981). Leamer and Polasek (cf. Leamer (1978) and Polasek (1983),
which also contain earlier references) give bounds on the posterior Bayes
action for a wide variety of problems involving variation of (hierarchical)
conjugate priors, an analysis they call ‘global sensitivity’ analysis. They also
discuss ‘local sensitivity’, which is essentially the rate of change of the posterior
Bayes action with respect to change in the parameters of the conjugate prior.
Although not generally as useful as global sensitivity, local sensitivity can be of
assistance in identifying those prior parameters which have the greatest
influence on the conclusion, and hence which must be considered most care-
fully.

C. Partial prior knowledge

There are a number of results in the literature concerned with determining
reasonable posterior actions when only limited facets of the prior distribution
are known. For example, Stone (1963), Hartigan (1969) and Goldstein (1974,
1979, 1980) consider estimation problems were knowledge is available
concerning only the first two moments of the prior distribution. The estimators
that result from such an assumption are linear estimators, and much of the
huge literature on linear estimation (including much of linear filtering theory in
stochastic processes) can be recast in this light. A serious concern is that prior
moments are almost never knowable (see subsection 2.3), and that resulting
linear estimators will often not be robust (see also subsection 5.1.3.A).

Other analyses based on limited prior knowledge can be found in Godambe
and Thompson (1971), Hill (1975), Leamer (1978), Levi (1980) and Lambert
and Duncan (1981).

D. Detecting a lack of posterior robustness

It is particularly important to identify common statistical situations in which
posterior robustness is lacking, since such situations call for very careful
consideration of prior information.

When the likelihood function is flat the prior distribution will be the main
factor in determining the posterior distribution and hence the conclusions are
liable to be very sensitive to the prior. This commonly occurs in high dimen-
sional situations where, due to such problems as multicollinearity or often
simply a lack of sufficient data for all the parameters of interest, the likelihood
function will be flat in certain directions. Among the many discussions of this
issue are Hill (1977), Leamer (1978), Hill (1980a), Posasek (1983) and Smith
and Campbell (1980). The latter article addresses this problem in a critique of
ridge regression, and references a number of other ridge regression papers
dealing with the same issue.

Another situation in which the likelihood function is flat is in the random
model analysis of variance when the usual unbiased estimator of the between
variance component is negative. This is discussed in Hill (1965), Hill (1970) and
Hill (1980a). .
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The value of m(x) (the marginal density of X) can be of use in determining
robustness, in that a particularly small value of m(x) indicates that surprising
data has occurred; the data and the prior information would seem to be in
conflict. In such situations the likelihood function will tend to be concentrated
in the tail of the prior distribution, a very uncertain part-of the prior. Of course
the initial implication of a small value of m(x) is that the situation was
incorrectly modeled and hence (prior) assumptions concerning the data model
need to be reconsidered or discarded. Excellent discussions of this and other
references can be found in Jeffreys (1961), Dempster (1971, 1975), Box and
Tiao (1973), Geisser and Eddy (1979), Box (1980) and Good (1965, 1983).

5.1.2. Procedure robustness
A. Asymptotic Bayes risk
One can work with decision problems and Bayes risk r(sr, 8) as the sample
size goes to infinity. Asymptotic approximations to r(s, §) are then available.
Some work in this direction can be found in Chernoff (1952, 1956, 1970),
Lindley (1960), Rubin and Sethuraman (1965), Rubin (1971, 1972), Johnson and
Truax (1978), Burnasev (1979), Woodroofe (1980), and Ghosh et al. (1982).
Some of the articles mentioned in subsection 5.1.1.A are also of this type.
Interesting robustness phenomenon can occur, when asymptotics are con-
sidered, as shown in the following example due to Rubin (1971).

Example 5. Consider the situation of testing a ‘fuzzy’ point null hypothesis.
This concerns the reasonable formulation of the point null testing problem in
which the null hypothesis can be phrased as Hy: 6 € @y = (6, — &, 6p— €), where
¢ is quite small. (Rubin (1971) formulates the problem solely in terms of losses,
in which case 6, *+ ¢ are the points at which the losses in accepting and rejecting
are equal.) The prior density 7(6) is assumed to have a sharp peak inside &,
and to be fairly flat away from the peak. (This corresponds to common sense
evaluations when a point null is involved.) Relevant also, are the loss functions
La(0), of accepting H,, and Lgr(#), of rejecting H,. The Bayesian will be
making a decision based on the weight function

W(8)= 7(8)[La(0) — Lr 0],

accepting Hy if

f w(0)ps(x) 46 <0, 5.1)

and rejecting otherwise (since (5.1) implies that the posterior expected loss of
accepting is smaller than that of rejecting). The sample size is assumed to be
large enough so approximate normality holds, i.e., ps(x) is N(6, 0?/n). Three
cases must be distinguished:

(i) Somewhat large n (i.e., € < o/V'n). In this situation H, can essentially be
treated as a point null, in that
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f W (6)pa(x) d = pay(x) LO W(8)do + LEGO W (0)ps(x) d6. 5.2)

The mass of the weight function in @, is comparatively easy to specify. Also,
outside of @, W(0) will be a fairly smooth function and, since n is somewhat
large (so that the region with high likelihood is fairly small), it should be
possibly to specify the last integral in (5.2) fairly accurately. Thus we have
reasonable Bayesian robustness (i.e. the subjective inputs that are needed are
fairly easy to elicit.) B

(ii) Extremely large n (i.e., o/Vn <g). Here it will essentially be known
whether 8 € 0, or not, so the prior will not matter. (Robustness with respect to ¢
could be a concern, however.) This situation is the usual ‘stable measurement’
situation.

(iii) Moderately large n (i.e. all n not covered in cases (i) and (ii)). Here,
surprisingly enough, robustness is lacking, in that the shape of W(8) in @, is
very important. (See Rubin (1971).) This is disturbing, in that determining the
shape of the prior in this region is almost jmpossible. (Of course, the overall
risk will be small since n is moderately large, but Rubin (1971) has shown that
even mild misspecification of the shape of W(#) can cause an increase of Bayes
risk of 40% in the most favorable cases, with much larger increases in
unfavorable cases.) The phenomenon observed in this example, of robustness
for somewhat large n and extremely large n, but not for n in between, is
striking.

B. I'-minimax and I'-minimax regret procedures

The I'-minimax and I'-minimax regret criteria (see subsection 3.2) are
natural criteria to follow if procedure robustness is sought. The basic concepts
were originally developed in Robbins (1951, 1964) and Good (1952). Other
general discussions can be found in Menges (1966), Blum and Rosenblatt (1967),
Kudo (1967) and Berger (1980b).

The I'-minimax regret criterion seems somewhat more reasonable than the
I'-minimax criterion, in that it is based on the loss in risk by not using the
theoretically optimal Bayes rule, rather than the absolute Bayes risk. The
danger in using r(sr, 8) itself is that there could be an ‘unfavorable’ prior 7, €
I with excessively large Bayes risk

r(o) = igf r(m,, 8),

in which case the I'-minimax procedure would be the Bayes rule with respect
to . Unless there is some reason to be especially concerned with m,, however,
it would be better to eliminate its prominence by using the I'-minimax regret
criterion. The I'-minimax regret criterion will, on the other hand, be somewhat
more difficult to work with, so if I" contains no ‘unfavorable’ prior it might be
better to consider I'-minimaxity.
Recall from subsection 2.3 that I" should generally be specified in terms of -

percentiles and relative likelihoods. This has been done in the I'-minimax
literature on testing, multiple decision theory and nonparametrics. The lit-
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erature on estimation, however, makes unfortunate use of I" specified by prior
moments.

Results on I-minimax estimation can be found in Jackson, O’Donovan,
Zimmer, and Deeley (1970), Solomon (1972a, 1972b), De Rouen and Mitchell
(1974), Watson (1974) and Morris (1982). Testing and multiple decision theory
results can be found in Rubin (1965, 1971), Randles and Hollander (1971),
Gupta and Huang (1975, 1977), Berger (1979), Gupta and Kim (1980), Gupta
and Hsiao (1981), Miescke (1981) and Hsiao (1982). Some nonparametric
Iminimax studies were done in Doksum (1970), Campbell and Hollander
(1979) and Lambert and Duncan (1981).

C. Controlled frequentist risk

As discussed in subsection 3.3, the frequentist risk R(6, 8) can be a good

indicator of procedure robustness. In particular, if

R(6,8)<C (5.3)

for all 6, then r(ar, 8) =< C for all m, giving an upper bound on the possible harm
from use of the procedure 8. Theoretical work finding bounds on the frequen-
tist risk of Bayes estimators can be found in Le Cam (1982), which also contains
some earlier references. Studies of particular Bayesian estimators which seem
to have good frequentist risk have been done in Novick (1969), Strawderman
(1971), Lindley and Smith (1972), Efron and Morris (1972, 1973), Clevenson
and Zidek (1975), Leonard (1976), Rubin (1977), Faith (1978), Berger (1979,
1980a, 1982a, 1982b, 1982c), Dey (1980), Dey and Berger (1983), Albert (1981),
Berliner (1983), Ghosh and Parsian (1981), Hudson and Tsui (1981), Stein
(1981), Berger and Wolpert (1983), Bock (1982), Wolpert and Berger (1982)
and Zheng (1982).

A more systematic approach to the robustness problem is the restricted risk
Bayes approach, initiated by Hodges and Lehmann (1952), which seeks to
minimize the Bayes risk r(y, 8) for a chosen prior , subject to the constraint
(5.3). This guarantees robustness (in a conservative sense) with respect to the
class of all priors. Interestingly, as discussed in subsection 4.5, the restricted
risk Bayes problem often corresponds to the true I-minimax problem with

I={m: w()= (1— e)mo(-) + eP(-), P arbitrary},

where &, of course, depends on the C in (5.3). Results for the restricted risk
Bayes problem can be found in Efron and Morris (1971), Shapiro (1972, 1975),
Masreliez and Martin (1977), Bickel (1979), Marazzi (1980) and Berger (1982c,
1982b).

5.1.3. Robust priors

The difficulty of working with a class I" of priors makes very appealing the
idea of finding prior distributions which give Bayes rules which are naturally
robust with respect to reasonable misspecification of the prior. Indeed as
Huber says in the discussion of Box (1980)
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“Essentially, by now the Bayesian approach should be concerned not
with the ad hoc construction of super models but with deriving reliable
guide-lines on how to choose the super model (within the inherent
arbitrariness) so as to guarantee robustness, and how to do so in a best
possible fashion.” :

A. Conjugate priors are often not robust

Conjugate priors, by definition, have tails of the same type as the tails of the
likelihood function; this can cause robustness problems as indicated in sub-
sections 3.2 and 3.3. Priors with tails flatter than the tails of the likelihood
function are generally superior (at least for estimation problems). This obser-
vation has been made in Anscombe (1963), Tiao and Zellner (1964), Lindley
(1968), Dawid (1973), Hill (1974), Dickey (1974), Meeden and Isaacson (1977),
Rubin (1977), Umbach (1978), Ramsay and Novick (1980) and Berger (1980a,
1980b). Rubin (1977) gives an excellent numerical study showing the value of
choosing flatter tailed priors.

Incidentally, conjugate priors in estimation problems in exponential families
tend to result in linear estimators (see Diaconis and Ylvisaker (1979)), indicat-
ing a general lack of procedure robustness of linear estimators (except for those
arising from noninformative priors). This can be seen directly by examining risk
functions of linear estimators.

Of course, a major advantage of conjugate priors is that they are very easy
to work with. Hence if posterior robustness is present, it is often appealing to
use conjugate priors. If robustness is of concern, yet simple pesteriors are
desired, an attractive way to proceed in estimation problems is to use a (robust)
flat tailed prior, calculate (usually numerically) moments (or maybe percentiles)
of the posterior and then match these to a distribution (usually conjugate) of
desired simple form. For instance, if X ~N(6, 1/n) is observed, and it is desired
to estimate 6, a Cauchy prior will tend to be robust but will result in an ugly
posterior. Calculating (numerically) the first two posterior moments and
pretending that the posterior is normal with these moments should be reason-
ably accurate and will result in a posterior which is easy to communicate and
use. Uses of this idea can be found in Bakan and Oleksenko (1977), Morris
(1977) and Berger (1980b).

B. Noninformative priors

Noninformative priors are designed to be flat and as uninfluential as
possible. They tend to work well (if carefully determined) and can hence be
considered to provide robust solutions to problems where very little is known a
priori. The literature on this subject is vast. Much of it is summarized (and
other references are given) in Jeffreys (1961), Zellner (1971), Box and Tiao
(1973), Bernardo (1979) and Berger (1980b).

There are problems with the use of noninformative priors, however, prin-
cipally the arbitrariness in their definition. (Bernardo (1979) seems to have the
most workable definition of what he calls reference priors.) Hence even the
user of noninformative priors should be concerned with robustness with respect
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to the class of reasonable noninformative priors. Also, if a noninformative
prior is being used as an approximation to a vague proper prior, it is wise to,
at least informally, verify that the results obtained are suitable for vague proper
priors.

In testing problems, standard noninformative priors cannot be used when
they give infinite mass to one of the hypotheses. Such situations can be handled (in
a robust fashion) by use of ‘reference informative priors’ (cf. Jeffreys (1961) and
Zellner (1982)).

C. Priors on the boundary of admissibility

While flat-tailed priors tend to be desirable, priors with tails that are too flat
may give rise to inadmissible decision rules, especially in higher dimensions.
The most important example is estimation of a p-variate (p = 3) normal mean
under quadratic loss (although almost any sensible loss gives similar results).
The usual estimator (the vector of sample means or the least squares estimator
in a linear regression) is the (generalized) Bayes estimator with respect to the
(noninformative) uniform generalized prior on RP. This estimator is inad-
missible, because the prior has tails which are too flat.

Much of the recent work in admissibility has been to find the ‘boundary of
admissibility’ in various problems. Priors with tails flatter than those on the
‘boundary’ will tend to give inadmissible decision rules, while priors with
sharper tails will tend to give admissible decision rules. Since flat tails are
desirable for robustness, yet inadmissible decision rules are unappealing, priors
on this ‘boundary’ are natural choices for use. Results of this nature can be
found in Stein (1965, 1981), Brown (1971, 1979), Strawderman (1971), Straw-
derman and Cohen (1971), Berger (1976a, 1976b, 1980a, 1982c), Srinivasan
(1980), Berliner (1983), Ghosh and Parsian (1981), Berger, Berliner and Zaman
(1982) and Hwang (1982a, 1982b).

D. Maximum entropy and reference priors

An appealing idea when faced with a class I" of possible priors is to choose
that prior which maximizes entropy or some measure of loss, or minimizes
some measure of information. Such priors are likely to lead to robustness in
that they are as noninformative as possible subject to being in I" and have been
called ‘minimax information’ priors (Good (1968)), ‘maximum entropy’ priors
(Jaynes (1968, 1981) and Rosenkranz (1977)) and ‘reference’ priors (Bernardo
(1979, 1981)). .

The most extensively developed such theory is that of maximum entropy
priors, much of the development being due to E.T. Jaynes. While I would call
the theory highly successful, there are certain difficulties which are cause for
concern. First, when © is infinite and the partial prior knowledge is (sensibly)
the specification of certain percentiles, the maximum entropy prior does not
exist. Even when @ is bounded, the maximum entropy prior in this situation
will have unpleasant jumps. Finally, it is not really clear that a maximum
entropy prior will be robust. For example, if ® = R! and the first two prior
moments are known (an unrealistic assumption of course), then the maximum
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entropy prior is normal with the given moments. Although this is not terribly
unreasonable when the first two prior moments are exactly known, it still seems
preferable to use a flatter tailed prior; say a t-distribution with the given
moments and a small number of degrees of freedom.

E. Multistage Bayes priors :

Multistage (or hierarchical) priors are priors composed of several stages: at
stage one the prior is assumed to be of a given functional form (usually the
conjugate prior form) with unknown parameters (called hyperparameters); at
stage two these parameters are given a prior distribution with possibly un-
known hyperparameters; with the process repeating until the final stage (sel-
dom more than the third stage), at which point a completely specified prior
distribution (often noninformative) is given to the hyperparameters of the
preceding stage. Such priors are particularly useful in multivariate situations
where relationships among the parameters are thought to exist and can be
modeled in stages. They are also a useful enrichment of the class of conjugate
priors when either robustness or more flexibility is sought, in that Bayesian
calculations can be done in stages with these priors and will often be relatively
easy if the first stage is of a conjugate form.

A multistage prior can, of course, be thought of as a single stage prior;
merely integrate out the multistage prior over all hyperparameters. The
robustness of the multistage prior follows from the fact that, virtually always,
the single stage version has flat tails. If, for example, @ = R! and the first stage
prior is N(u, 72), putting a prior on 72 and integrating will usually result in a flat
tailed prior.

The literature on multistage priors is too large to be mentioned here. Good
(1952) was the first to extensively discuss the technique and has a very
substantial body of work on the subject and its relationship to Bayesian
robustness (cf. Good (1980, 1983)). Lindley and Smith (1972) is also an
important landmark.

F. Empirical Bayes priors

If X;,...,X, are observed and the X; have distributions depending on 6,
where the 6; can be assumed to be generated from a particular prior dis-
tribution 7, then 7, can itself often be estimated from the data. This is the
empirical Bayes idea, first formalized by Robbins (cf. Robbins (1955, 1964)).
The approach is particularly easy if m, is chosen to be of a known functional
form (say the conjugate form) with unknown hyperparameters, and these
hyperparameters are estimated from the data. (This is then actually very closely
related to the multistage Bayes approach, with similar answers being obtained
under either method.) Providing all the data is used to estimate the hyper-
parameters (as opposed to, say, using just ‘past data’ to estimate the hyper-
parameters) the resulting prior seems to be quite robust. This is because
‘extreme’ data (the bane of nonrobust priors) will tend to give hyperparameter
estimates leading to flat priors. For more thorough discussion of this see Berger
(1980b).
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The empirical Bayes literature is also too large to mention. Good discussions
and references can be found in Maritz (1970), Berger (1980b) and Morris
(1983b).

5.2. Guidelines

The (woefully) few guidelines that have been discussed for achieving
Bayesian robustness are summarized here, with a few additional observations.

5.2.1. General considerations

As stressed in subsection 2.3 and elsewhere, it is very important to consider
robustness with respect to reasonable classes of priors. Unfortunately easy-to-
work-with-classes, such as classes of conjugate priors and classes based on prior
moments, are usually unsuitable.

It cannot be overemphasized that if posterior robustness obtains for the data
at hand, then the search is ended. This can often best be discovered by simply
varying the prior (over I') and seeing how the conclusion changes. Increasingly
easy to use interactive computer systems should eventually make this relatively
easy to do. It will often suffice to merely check posterior robustness for several,
fairly different, priors in I'. For instance, in Example 3 (subsection 2.3), if
posterior robustness with respect to the normal and Cauchy priors is present,
then posterior robustness with respect to all of I' probably also obtains. Two
useful indicators of a lack of posterior robustness are a flat likelihood function
(or more commonly a likelihood function which is flat in certain directions of
©) and a surprisingly small value of m(x).

When posterior robustness is lacking, the situation must be reconsidered.
First of all, one naturally looks for experimental causes or modeling failures
accounting for this unpleasant situation. If nothing is turned up, further
refinement of I' is called for. If the limit of the elicitation process has been
reached however, then now, and only now, does procedure robustness and the
possible use of frequency concepts (see Section 4.4) come into play. (Of course,
if one is developing procedures for automatic use by nonsophisticated users,
then posterior robustness is relevant from the start. To many this may be
deemed to be a major purpose of the theoretical statistician.) One could
formally attempt some type of I'-minimax or I'-minimax regret analysis but this
will tend to prove enormously difficult. Indications of a lack of posterior
robustness can be obtained from frequentist measures of the performance of a
procedure; if the frequentist measure looks bad for certain I" which are not
completely implausible, concern is indicated.

A natural Bayesian attempt to obtain procedure robustness would be to put
a metaprior on I itself. Since we are assuming that the elicitation process has
ended, this would be merely a technical device to hopefully achieve robustness.
Experience indicates that this probably works reasonably well, although it is
difficult to do. (For one example, see Dickey and Freeman (1975).) It will
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usually be nearly impossible to construct a reasonable metaprior with support
equal to all of I', so careful selection of a representative subset of I" on which
to place the metaprior would be needed. Note that this ‘two-stage’ prior could
be written as a one-stage prior and hence the technique can be interpreted as
simply a way of constructing hopefully robust priors.

Due to the difficulties of formally working with I for procedure robustness,
it may simply be best to investigate the robustness of a procedure with respect
to a few carefully chosen disparate priors in I".

The material on ‘robust priors’ in the preceding subsection will not be
repeated here, although it is certainly relevant to general guidelines.

5.2.2. Guidelines for particular types of problems

The following essentially obvious comments are not too much better than
nothing but may sometimes prove helpful.
A. Estimation

Posterior robustness will typically be obtained when the likelihood function
is concentrated in the ‘central’ portion of the prior. (This ‘center’ will usually
be similar for all 7 in I.) When this is not the case, flat tailed priors will at least
give procedure robustness. Note that in multivariate estimation problems it will
often be the case that the robustness situation is very different for different
coordinates of 6.

B. Testing

In testing problems the tail of the prior will usually be unimportant (in
contrast to the estimation situation), in that if the likelihood function is
concentrated in the tail of the prior there is usually very strong evidence for a
particular hypothesis. This robustness with respect to the tail of the prior is
very pleasant. Note however that the posterior odds of the hypotheses can be
drastically affected by the tail of the prior (as pointed out by Savage et al.
(1962)), so Bayesian measures of the strength of the conclusion are not
necessarily robust.

Conclusions in testing problems will, naturally, be frequently sensitive to the
prior mass given each hypothesis. This is unavoidable and, to a Bayesian,
completely sensible.

C. Design of experiments and sequential analysis

Optimal Bayesian designs are usually robust with respect to small changes in
the prior such as changes in the tail. At least this is true when overall average
measures of performance (say Bayes risk) are deemed relevant, since such
averages are dominated by the contributions from the ‘likely’ 6, or alternatively
the ‘likely’ x. (Of course, after taking the data and being faced with the need to
draw some conclusion, robustness may have to be completely reevaluated.)

Note that, in design, there may be real technical advantages in working with
frequentist measures averaged over the prior rather than posterior measures
averaged over the marginal distribution of X (which is more instinctively
appealing to a Bayesian). This is because the (decision) procedure to be used
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may be fairly accurately known (say, when the sample size will be moderately
Jarge) so that involving the (uncertain) prior only at the last stage can lead to a
technically easier robustness analysis.

Sequential analysis is, in a sense, just a design problem, in that the real
difficulty is deciding, at a given stage, whether to cease sampling or to continue
taking observations. This problem should again be relatively immune to such
things as the tail of the posterior distribution (upon which the decision to stop
or not is based). Of course, if the likelihood becomes concentrated in the tail of
the original prior, then this tail can become relevant through its effect on the
posterior. In a very practical sense there may be little problem with robustness
in sequential Bayesian analysis since it will often be the case that one simply
continues sampling until enough information has been accumulated so that
posterior robustness obtains.

5.2.3. Actual practice

In many realistic statistical situations involving complicated €, any type of
Bayesian approach becomes very difficult. Also the uncertainties in specifying a
prior for such @ are very acute, meaning that Bayesian robustness becomes a
very real concern. Unfortunately, one quickly encounters an instance of ‘“Type
11 rationality’ (cf. Good (1973)) in that if straightforward Bayesian analysis is
difficult, then a robust Bayesian analysis might be next to impossible. Type II
rationality simply says, in this situation, that if you cannot trust a single prior
Bayes analysis and Bayesian robustness results are unavailable, then it is
permissible to use some type of non-Bayesian analysis, providing it is deemed
to be the lesser evil. In other words, if the dangers of a Bayesian analysis with
an ill-specified prior seem large (and cannot be eliminated by robustness
considerations) and if an easier non-Bayesian or partially non-Bayesian analysis
seems sensible (see subsection (4.4)), then go ahead and abandon ship.

The need to compromise the ‘purist’ robust Bayesian position was already
encountered in subsection 2.4, where post data modification of I' was dis-
cussed. (Of course, allowing such modification somewhat alleviates the current
problem since all prior knowledge concerning a complicated @ need not then
be exactingly quantified prior to experimentation.) This compromise was still
within the general Bayesian framework, however.

A more significant departure from the usual Bayesian framework. occurs
when it is necessary to ignore data. Such situations surely abound in statistics.
Survey sampling provides one such situation, in that all sorts of data may be
available about the sample, most of which may seem irrelevant to the attribute
of interest. Constructing a general Bayesian (superpopulation) model for all the
data would be very difficult and, perhaps, would not be trustworthy. The same
issue arises in the use of randomization as discussed in subsection 4.2. Hildreth
(1963), Pratt (1965, with his discussion on ‘insufficient statistics’), Dempster
(1968), Hill (1975, 1980a, 1980c), and Good (1976 and earlier with his ‘Statisti-
cian’s Stooge’) also contain useful discussions on this issue.
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Ignoring data causes no real problem to a Bayesian if the data seems
unlikely to have an effect on the posterior distribution of the parameters of
interest. Often, of course, this can only be ascertained through, at least
informal, Bayesian reasoning. Consider the following examples.

Example 6. (Fraser and Mackay (1976)). Suppose independent observations

Xi, ..., X, from an N(u, o?) distribution are observed, where it is desired to
estimate p but o2 is also unknown. Independent observations Y, ..., Y, are
also available, where Y; is N(u;, 0?), u; unknown, i=1,...,m. If virtually

nothing is known a priori about the u; (and they are in no way related to w), it
is certainly reasonable to ignore the Y; when estimating u. (A formal Bayesian
analysis would certainly show that the Y; had almost negligible influence on the
posterior distribution of w.)

Example 7. In a medical trial comparing two surgical techniques a significant
relationship was found between the time of the day in which the surgery was
performed and the success of the surgery. Suppose the relationship was one of
the following: (i) the later in the day the surgery occurred the less successful it
was; (ii) when surgery began on even hours it was more successful than when it
began on odd hours; (iii) when surgery ended on an even minute it was more
successful than when it ended on an odd minute. The question before us is: can
we ignore the data ‘time of day’? The answer in case (i) is almost certainly no
and we better hope that the two treatment groups were not unbalanced
concerning this covariate. The answer in case (iii) is almost certainly yes; it is
hard to believe that this relationship is anything more than a coincidence. In
case (ii) the answer is not so certain and indeed some investigation is called for.
(Did certain surgeons work at certain times, etc.?)

The decision about ignoring data in Example 7 clearly involves prior
opinions. The point, however, is that it may be possible to informally reason
that certain data can be ignored without having to go through a full blown
Bayesian analysis. This is not really a violation of Bayesian principles either
since the posteriors obtained by ignoring part of the data are felt to be the
same as what would have been obtained by a sound Bayesian analysis with all
of the data. .

The real difficulty arises when it is necessary to throw away potentially
relevant data. The reason for doing this would be an inability to carry out a
(robust) Bayesian analysis involving everything. Hill (1975) considers a non-
parametric problem of this nature in which a trustworthy complete Bayesian
analysis seems almost impossible. Hill says

“When such a formal analysis simply cannot be made, or even when it
is merely very difficult and of dubious validity, then there is little choice
but condition on that part of the data that can be effectively dealt with,
and rely upon some form of stable estimation argument.”
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The last part of the comment can be interpreted to mean that if you must
ignore data, at least convince yourself that there is no reason to expect it to
have a large effect on the posterior (or, more properly, the final conclusion).
This point is extensively discussed in Pratt (1965) and also Dempster (1975)
which has interesting examples and other references.

The above discussion is not to be interpreted as advocating the frequently
encountered viewpoint of ‘using whatever approach works well for a given
problem’. Indeed the major point in this article is that the only way to ensure
that a conclusion being reached is sensible is to verify that it is sensible from a
posterior robust Bayesian viewpoint. But if a robust Bayesian analysis is not
implementable, then compromises must be made. The robust Bayesian makes
this compromise only when he has to, however, and only to the extent
necessitated by technical limitations.

Perhaps the most important practical advice the robust Bayesian has to offer
is ‘think like a robust Bayesian’. (In the same way it has been argued that the
most important thing to learn from decision theory is simply the ability to think
decision theoretically.) Merely thinking of problems from this perspective,
without even doing a formal analysis, will frequently illuminate the truth. Once
the truth (or the direction in which it lies) has been discerned, a method of
analysis can undoubtedly be found which is acceptable to the relevant audience
and leads to this truth.
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6. Final comments

In an (obviously unsuccessful) effort to keep from meandering from the
central argument, a number of side issues have been deferred to this final
section. These include a discussion of various criticisms that can be raised
against the robust Bayesian viewpoint (by non-Bayesians, Bayesians, and
foundationalists) and a very brief discussion of needed theoretical develop-
ments. Many of the criticisms are founded on very deep issues so all that can be
done here is to give a superficial view of the arguments and counter arguments.

6.1. Non-Bayesian criticisms

The primary non-Bayesian objection to the robust Bayesian viewpoint is, of
course, that Assumption I is wrong. Since an extensive justification of Assump-
tion I was not attempted here, this objection will not be pursued except for one
brief comment. Much of the philosophical difference in attitude between
Bayesians and non-Bayesians seems to be due to Bayesians being optimistic
about the existence of truth and pessimistic about the use of intuition while
non-Bayesians are just the opposite. The Bayesian feels there is (at least
theoretically) a single correct way of doing things, not many correct ways. Also
the Bayesian (and the decision theorist) do not trust intuition to properly
combine and relate all relevant factors of a problem to arrive at a conclusion.

Perhaps the most common non-Bayesian objection to anything Bayesian is
the Bayesian’s lack of objectivity. Bayesian rebuttals range from the sub-
jectivist opinion that ‘objectivity’ is a myth to the objective Bayesian assertions
that objectivity can only be attained if conciously sought from a Bayesian
perspective. The former viewpoint is reflected by the following quotation from
Good (1973).

“The subjectivist states his judgements, whereas the objectivist sweeps
them under the carpet by calling assumptions knowledge, and he basks in
the glorious objectivity of science.”

The objective Bayesian viewpoint is that the only way to avoid ‘biasing’ the
analysis is to do a Bayesian analysis with a noninformative prior distribution
(see subsection 5.1.3.B for references). Strong support for this view can be
obtained from ‘Reason (ii)’ in subsection 2.1. If a supposedly objective non-
Bayesian procedure actually corresponds to a Bayesian procedure for a very
biased prior distribution, the claim of objectivity seems somewhat silly. The
vehement condemnation of the use of noninformative priors by some non-
Bayesians is indeed somewhat mystifying since subjective prior beliefs are not
being incorporated. Of course, there are problems in finding and using nonin-
formative priors, but I have seen no better, easier to use and less error prone
technique for deriving reasonable objective procedures. (Although when being
a purist I would argue against the possibility of objectivity, for a variety of
robust Bayesian and Type II rationality reasons the noninformative prior
approach seems extremely valuable.) :
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It should be mentioned that there are several different non-Bayesian
theories that reject Assumption 1. Besides the various classical theories, these
include the fiducial inference of R.A. Fisher (see Wilkinson (1977) for an
up-to-date version), the structural inference of D.A.S. Fraser (see Fraser and
Mackay (1976) and Fraser (1979) for references), pivotal inference (cf. Barnard
(1981)) and the theory of belief functions (cf. Shafer (1982)). Since we are
foregoing a serious effort to justify Assumption I, these alternative theories will
not be discussed.

6.2. Bayesian criticisms

Many natural Bayesian objections to the viewpoint expressed in this paper,
such as the violation of the Likelihood Principle (and to an extent Assumption I)
by procedure robustness, have been discussed elsewhere. Several other criticisms
can be raised, however. Three are discussed in this subsection.

A. “Just report what the data says.”

A very admirable Bayesian desire is to provide a mechanism by which the
data can be easily assimilated to allow others to reach a conclusion. The
likelihood function of 8, [.(6), is the most basic such mechanism, since anyone
can determine his own posterior for 6 by simply multiplying .(8) by his prior
(or priors) and normalizing. Thus reporting the likelihood function is definitely
reasonable (cf. Box and Tiao (1973)). A similar idea (cf. Bernardo (1979))
would be just to report a noninformative or reference posterior, since this will
be more meaningful intuitively than /() and anyone can easily still determine
his own posterior. Considerable effort has also been spent on finding easier to
digest data communication vehicles such as Bayes factors between hypotheses
(cf. Dickey (1973, 1974)). A criticism of the robust Bayesian position is that, if
the above pursuit is the true job of the statistician, then he need not be
concerned with robustness, which afterall only becomes of concern when
data-prior interactions are being studied.

1 must have stated the criticism unfairly since it seems clearly unworthy. We
cannot, after all, abandon the user at the critical point of combining the data
with his prior information, particularly when some action or conclusion must be
taken. Also it is frequently impossible to even separate data from prior
information in a useful way. For example, the usual likelihood function is very
model dependent but the model is often unknown and should be considered
part of the parameter.

B. “Why single out the prior? Model robustness is just as serious a problem.”

First of all, since the data model was allowed to be part of ®, we did not
really ignore model robustness. On the other hand, there are sometimes
reasons to be more concerned about the parameters than the model. For
example, the model may have some theoretical basis while prior opinions about
parameters of the model might be much more subjective. Of course, there are
many problems in which the reverse is true, where the choice of a model is
somewhat arbitrary and will have a much more profound effect on the answer
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than the choice of a prior on the parameters of the model. Nevertheless, the
prevalent statistical attitude is to trust models more than priors and in dealing
with this attitude the robust Bayesian viewpoint can be very helpful. Also, even
when considerable uncertainty about the model exists, it may cause less of a
problem than uncertainty about the prior information, as the following exam-
ple indicates.

Example 8. Suppose X, ..., X, is an independent sample from a location
density f(x — 6) on R' where f(z) is symmetric and unimodal. It is deemed
reasonable to model f as a z-distribution with quartiles (8 = 1) but specification
of the degrees of freedom, «, is judged to be impossible. Prior elicitation
reveals that 8 is thought to have median zero and quartiles =1, with the prior
having a symmetric unimodal density. It is desired to estimate 6. Although the
model and prior uncertainties seem similar here, the likelihood function will be

L) =117 0),

which, even for moderate n, will most likely have sharper tails than the prior.
(The tail of [,(8) will be like the nth power of the tail of f.) This indicates that
the robustness problem with respect to f will be less serious than that with
respect to the prior.

C. “Robustness is a rare problem and can be dealt with entirely within the
Bayesian framework.”

These issues have been discussed throughout the paper. I have argued that
posterior robustness will be lacking in a significant portion of our problems (at
least at the present stage of Bayesian development) and that techniques of
proceeding, which at least partly lie outside the pure Bayesian framework, can
prove useful. Some people may argue that the non-Bayesian components of the
robust Bayesian viewpoint will seldom be needed while others will argue that it
is these non-Bayesian components which will be of most use. This is exactly
what we should be arguing about: what is the best method to achieve the
robust Bayesian goal. (See also Berger (1982d).)

From a very pragmatic viewpoint also, the pure Bayesian position strikes me
as unwise. The only truly overwhelming problem facing Bayesians is that of
convincing non-Bayesians that the Bayesian viewpoint is correci. The major
stumbling block in the entire controversy is that Bayesians (as a whole, not
individually) have not openly admitted the validity of Assumption II and been
willing to accept its consequences. This allows the non-Bayesian to refuse to
think about Assumption I, because he feels certain that Assumption II is
correct and hence that the Bayesians must be wrong. Again I am talking about
the overall image of Bayesian and not necessarily about the viewpoints of
particular Bayesians. Even accepting Assumption II but staying within the
purely Bayesian framework of posterior robustness will not provide a general
enough structure to satisfy many of the criticisms of non-Bayesians. The
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practicing Bayesian might find that he seldom needs to leave the pure Bayesian
structure, and hence that procedure robustness, etc. are concepts only rarely
needed, but having them available can never hurt and can, I believe, help
substantially in promoting the cause.

6.3. Foundational criticisms

While non-Bayesians attack Assumption I from above (loftily disdaining
from grubbing around in subjective probabilities), certain foundationalists
attack it from below (urging even deeper submersion in subjectivism). The
issue is whether reasoning in terms of a class I" of (countably additive) prior
probability distributions with updating by conditioning (and post data
modification of I') suffices, or whether more general or more basic concepts are
needed. I will basically argue that the above concepts not only suffice but are
what we should train ourselves to think in terms of. The robust Bayesian
viewpoint is not an attempt to model how intuition works but rather an attempt
to create a structure of components which are simple enough to be accessible
to intuition and which when combined give the truth. As Good (1976) says

‘The main merit that I claim for the Doogian philosophy is that it
codifies and exemplifies an adequately complete and simple theory of
rationality, complete in the sense that it is I believe not subject to the
criticisms that are usually directed at other forms of Bayesianism, and
simple in the sense that it attains realism with a minimum of machinery.”

My rebuttal to the foundational criticisms will thus tend to be that the
alternative structures proposed either have components which are not reason-
ably accessible to intuition or have unnecessarily complicated structures. I, of
course, admit that it may be personal taste rather than sound reasoning which
leads me to reject these alternative theories. Also, through lack of careful
enough study or just general thick-headedness, I may misrepresent certain
arguments or be foolish in my response to them, in which case I apologize and
look forward to being set straight. In any case, besides being somewhat fun,
‘these foundational issues serve well to illuminate the edges of the robust
Bayesian theory.

A. Measurability criticisms )

De Finetti (1974, 1975) and Good (1962a) argue that sometimes it is inap-
propriate to stay within the confines of measurable events. The real concern
here is that the data may cause one to desire an enlargement of the o-field (of
measurable events in @) that was originally chosen as adequate. This could be
subsumed under post-data modification of I', of course. In any case technical
measurability concerns are certainly not particularly relevant to the validity of
the robust Bayesian viewpoint.

At the other extreme Manski (1981) and Lambert and Duncan (1981) argue
that, in specifying a prior, the o-field of measureable events should be
restricted to those events about which prior information is to be elicited. This is
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somewhat appealing intuitively since a single measurable prior with respect to
this o-field would correspond to a class I" of priors in the usual setup with, say,
the Borel o-field. The difficulties with this approach are that (i) it is very hard
to update o-fields based on the data, surely an essential ingredient of the
approach; and (i) it will generally be much more revealing to investigate
robustness by varying 7 over I' than to simply make conclusions within the
restricted o-field formulation. The point is that by using the robust Bayesian
framework one is often alerted as to what features of the prior need special
consideration. Restricted o-fields may hide these facets of the prior. To some
extent my view may be based on simply feeling comfortable with usual
probability distributions and hence development of this alternate approach is of
interest, but I would be surprised if it led to a more useful framework.

B. “Finitely additive priors should be allowed.”

Among Bayesians there is a considerable faction that believes that insisting
on countably additive priors is too restrictive in that such conceivably desirable
priors as proper ‘uniform’ priors on R! or on the integers are prohibited.
De Finetti has long argued this (cf. de Finetti (1972, 1974, 1975)). Other per-
suasive cases have been made by Dubins (1975), Heath and Sudderth (1978),
Kadane, Schervish and Seidenfeld (1981) and Hill (1980b). The case for
allowing finitely additive priors also rests on the fact that the ‘rationality’ or
‘coherency’ justifications of Bayesian analysis lead only to finitely additive
priors, although under slightly stronger axioms countable additivity emerges
(cf. Savage (1954), De Groot (1970), Spielman (1977) and Kadane, Schervish
and Seidenfeld (1981)).

The arguments for staying within the countably additive framework are that
(i) the examples espousing a need for finite additivity are not really convincing;
(ii) even if ‘uniform’ type priors on unbounded spaces are needed, countably
additive improper priors can be used; and (iii) finitely additive priors require
extremely careful handling.

The first point is that, while convincing ‘thought’ examples have been
constructed of the need for finite additivity, I have not yet seen a real example,
involving an actual real world action that must be taken, in which my prior
opinions would be uniform on an unbounded set. I certainly admit, however,
that situations will exist in which I might want to use a ‘noninformative’ prior,
either as a robust approximation to my true prior beliefs or in a situation in
which the appearance of objectivity is deemed necessary. Such situations can
be dealt with either by using improper countably additive ‘noninformative’
priors or by using proper finitely additive noninformative priors. Each ap-
proach has certain theoretical drawbacks, which will not be discussed here.
They both also have the practical drawback of there being no clearcut definition
of noninformative priors and a careless choice can given unsatisfactory results.
(The situation for finitely additive priors is particularly bizarre: for instance,
there are 22" different ‘diffuse’ finitely additive priors on the positive integers as
opposed to the single (constant) countably additive diffuse (improper) prior.)
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The main difference, to me, lies in the ease with which they can be used.
Finitely additive priors frequently fail to have the Randon-Nikodym property
(that conditional probabilities on sets of measure zero can be uniquely defined
as limits of conditional probabilities of sets of nonzero measure) and hence
frequently do not have well defined conditional (posterior) distributions.
(Heath and Sudderth (1978) discuss some common statistical situgtions involv-
ing amenable group structures where meaningful posterior distributions can be
defined. See also Dubins (1969).) This makes the typical Bayesian conditional
analysis very difficult or impossible in general. Also, unconditional Bayesian
analysis can seem very silly if finitely additive priors are used, as the following
example shows.

Example 9. It is desired to estimate, under squared error loss, a normal mean 6
based on X ~ N(6, 1/n). If one were to be repeatedly faced with this problem
(with different 6;) then it might seem reasonable to ask for a procedure with
good average Bayes risk r(m, 8). If nothing was felt known about the 6, one
might be tempted to use a noninformative prior. Use of the improper count-
ably additive uniform prior will give infinite risks, so one is alerted to approach
the problem differently. The usual finitely additive uniform prior, however, has
finite Bayes risk equal to 1/n, but there are many estimators which achieve this,
among them 8%%)= % and §*(X)= % — 10'%/%. A posterior analysis of the
problem (which can be done here using Heath and Sudderth (1978)) shows that
8° not 8*, is correct, but the need for careful unconditional handling of finitely
additive priors is, at least, indicated.

It should be noted that there is no foundational reason not to allow finitely
additive priors into the robust Bayesian framework so that those who feel
comfortable with them are invited to do so.

C. “The use of probability distributions is too restrictive.”

The first point, made initially by Kraft, Pratt and Seidenberg (1959) (see
also Fine (1973)) is that there may exist ‘likelihood orderings’ of events that are
internally consistent and yet which are not consistent with any probability
distribution. Although unsettled by this fact, I would argue that it is irrelevant, in
that I would myself heavily distrust any likelihood ordering not consistent with
some probability distribution. The consistent modes of behavior are those
induced by probability distributions, so I would rather take them as my
‘primitives’ than I would a concept such as ‘likelihood orderings’. This is another
situation in which I am not concerned with modeling how the mind could work,
but rather with developing a framework within which the mind can successfully
work.

Many foundational theories have been proposed which are based on general-
ization of probability distributions. Various such attempts can be found in
Koopman (1940), Good (1950, 1962a, 1976), Smith (1961), Dempster (1966,
1967, 1968, 1971), Jeffrey (1968), Beran (1972), Huber and Strassen (1973), Fine
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(1973), Kyburg (1974), Suppes (1975), Suppes and Zanotti (1977), Levi (1980),
De Robertis and Hartigan (1981), Wolfenson and Fine (1982) and Rios and
Giron (1980). (Some of these deviate only slightly from the robust Bayesian
approach and hence are not really susceptible to the following criticisms.)

A starting point for several of these theories is a rather ill-considered
criticism of prior probabilities. They often begin with a ‘counterexample’ such
as the following.

Example 10. Suppose you pull a coin from your pocket and, without looking at
it, are interested in the event A that it will come up heads when flipped.
Suppose you (reasonably) judge the subjective probability of this event to be
close to 3. Next, you contemplate an experiment in which two drugs, about
which you know nothing, will be tested, and are interested in the event B
that Drug 1 is better than Drug 2. You (reasonably) judge your subjective
probability of event B to be 1 also. The argument now proceeds:

“Even though both probabilities were 3, you have a stronger ‘belief’ in the
probability specified for event A, in that if you were told that five flips of the
coin were all heads your opinion about the fairness of the coin would probably
change very little, while if you were told that in tests on five patients Drug 1
worked better than Drug 2 you would probably change your opinion sub-
stantially about the worth of Drug 1.” Thus, the argument goes, it is necessary
to go beyond probability distributions and have measures of the ‘strength of
belief’ in probabilities.

It is easy to see the flaw in this reasoning. Before getting any data I would be
equally secure in probabilities of 3 for each A and B, in that I would be
indifferent between placing a single bet on either event. My knowledge about
the events A and B is well described by a probability of 5. However, my
knowledge about the overall phenomena being investigated in each case is
quite different. A description of my overall knowledge about the situations is
more fully described by defining the unknown (and fictitious to a true sub-
jective Bayesian) quantities pc and py, reflecting the ‘true’ proportion of heads
and ‘true’ proportion of patients for which Drug 1 would work better than
Drug 2, respectively, and- then quantifying prior distributions (or classes
thereof) for pc and py. The prior distributions for pc will undoubtedly be much
more tightly concentrated about 3, than will the prior distributions for Dum. Note
that the subjective probabilities of events A and B are just the means of the
respective prior distributions. (I first saw an analysis of this common mis-
conception done by D. Lindley, though I cannot recall the reference.)

Thus prior distributions prove to be rich enough to reflect whatever is
reasonably desired. Even more interesting is the observation that, in taking
account of experimental evidence, one is almost forced to think in the correct
fashion. Thus, in Example 10, if at the beginning it was only felt necessary to
quantify the probabilities of A and B, reflection on the experiment to be
performed reveals that the data information can be combined with prior
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information via Bayes theorem only if prior information is specified in terms of
quantities such as pc and pu.

A second, more substantial, reason that alternative theories to Bayesian
analysis have been developed is the recognition of the validity of Assumption
11, and the perception that Bayesian analysis could not incorporate this
assumption (although there were numerous works, about 50 by ILJ. Good
alone 1 believe, indicating that Assumption II could be incorporated). Some of
the approaches do suggest alternate methods of dealing with probabilistic
uncertainty, such as using lower and upper probabilities. The robust Bayesian
approach seems much more straightforward, however, and does not demand
the introduction of all sorts of new and supposedly ‘intuitive’ criteria. Indeed I
have seen no new criterion that is obviously trustworthy and the very same
reasoning that forced me to accept the Bayesian viewpoint, as opposed to the
‘intuitive’ classical viewpoint, argues against the existence of any such other
criterion. This is a mild echo of E.T. Jaynes (1976), who said

“It doesn’t matter how many new words you drag into the discussion
to avoid having to utter the word ‘probability’ in a sense different from
frequency: likelihood, confidence, significance, propensity, support, credi-
bility, acceptability, indiffidence, consonance, tenability, and so on, until
the resources of the good Dr. Roget are exhausted . ... It doesn’t matter
what approach you happen to like philosophically—by the time you have
made your methods fully consistent, you will be forced, kicking and
screaming, back to the ones given by Laplace.”

(Author’s note: Laplace argued for noninformative prior Bayesian analysis. We
have, of course, allowed ourselves proper subjective priors also, but the following
of Assumption I is the most important part of Laplace’s methods.)

D. Updating I'

The fourth reason sometimes proposed for broadening Bayesian analysis is
the clear need to sometimes update the prior information by means other than
Bayes theorem. This problem was discussed in subsection 2.4.

E. Conclusions

A reading of the above suggests that the espoused robust Bayesian view-
point was constructed by starting with pure Bayesian analysis and modifying it
to handle every meaningful objection raised. This is exactly right. Assumption I
is the cornerstone and provides the starting point for the theory. At every stage
where additional flexibility was needed it was allowed into the theory, but in a
way which minimized the resulting deviation from Assumption I. Any attempt
to modify the theory, not satisfying this ‘minimum distance from Assumption I’
constraint, is unlikely to prove successful.

6.4. Future development
I agree with Dempster (1976) that

“The ultimate goal of research on Bayesian robustness should be to
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classify applied situations so that a plausible prepackaged robustness
analysis within each class will be available. I believe that only the faintest
beginnings have been made on this task.”

This would enable users to investigate robustness themselves, surely the most
desirable goal.

Because it will probably always be the case that many (most?) users of
statistics will not have the skill or the inclination to do such analyses however,
it behooves researchers to find specific robust Bayesian procedures or families
of robust prior distributions (to use in place of conjugate families where
warranted) for important situations. Again, relatively little has been done in
this area.

Alerting users to situations lacking robustness is also very important. They
can then know when, and on what, it is necessary to concentrate their prior
elicitation.

As a concluding comment, note that a common criticism of Bayesian
analysis is that it is too automatic. Thus Kiefer (1977) states that

‘.. .statistics is too complex to be codified in terms of a simple
prescription that is a panacea for all settings . ..”

As we have seen, robust Bayesian analysis offers no single prescription and
instead urges flexibility in thought and methods. It demands only that the
proper goal be kept in mind.
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1. Comment by Lawrence D. Brown™

Professor Berger’s robust Bayesian proposal ranks among the most im-
portant statistical ideas of the past decade. This idea has already been des-
cribed in several of his papers, which Berger cites in his references. Now he has
tried to supply a detailed pragmatic/philosophic rationale for this proposal. It is
an enormous task and he has done an admirable job.

My perspective toward the proposal differs somewhat from Berger’s.
Because of this I tend to give greatest emphasis to different aspects of it, and to
different unsettled issues. However, I believe I am in agreement with Berger
regarding the general structure of the proposal, its path of development, and its
broad potential applicability. I emphasize these facts now and will do so again
in closing, in order to try to make clear that the following comments are not
meant as criticisms but are offered in part as an additional path of support for
the theory and in part as suggestions concerning questions which should be
answered in order to solidify its foundations.

My perspective can be described in a few words as that of a pure, flexible,
collective, pragmatic frequentist. I will now try to briefly explain this mouthful
of words!

Here is the basic principle: Statistical (and other) procedures being used
today and being proposed for future use should be judged collectively and
realistically according to their long term expected consequences.

The preceding is a statement of general philosophy, not a mathematical
axiom. This principal is to some degree connected with an acceptance of
fundamental axioms of probability theory such as those of Kolmogorov. It must
be emphasized, however, that it is not a reexpression of these axioms nor a
logical antecedent or consequence of them. It does not confirm or deny the
possibility of structuring statistical practice on the basis of this system, or of any
particular axiomatic system. To this extent the perspective is pure in the sense
of being as yet unadulterated by additional layers of structure but it is flexible
in that it solicits the construction of further principles or axiomatic systems
consistent with its basic premise.

In operational terms the principle suggests attempting to codify as carefully
as possible the types of statistical reasoning and consequent procedures to be
used for all different classes of statistical problems. These procedures should
then be judged according to the question: If they are used as specified for the
next 5 (500? 50 000?) years how well will they do collectively. Since there is, it

*Cornell University, Ithaca, NY, U.S.A. These comments were supported in part by N.S.F.
Research Grant MCS 8200035,
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would seem, no universal standard, it is only possible to answer the question in
a relative sense: Do these procedures work better over the long run than some
others which have been proposed? The question should be interpreted in a
collective sense. It is undoubtedly true that each statistical situation has its
unique features. But this does not mean that each problem should be treated in
isolation. Theories of probability still apply collectively to the wide range of
statistical situations. (This does not deny the possible existence of issues—
for example epistemological questions—which properly lie outside this wide
range of situations.) This point may be clearly illustrated in relation to classical
theories of probability: The law of large numbers applies not only to independent
identically distributed events, but to independent nonidentically distributed
events as well. (And also to certain dependent events.) The only stipulation is the
Liapunov condition which specifies that no single event stands out in relation to
the others.

In viewing the collective aspect of this argument an analogy can be made
with Mill’s theory of utilitarianism. Mill’s subject was of course ethics, not
statistics, and the analogy is in other important respects not perfect. But there
are revealing parallels in the following quotation and elsewhere. Mill wrote in
his Utilitarianism :

“...the standard of what is right in conduct is not the agents own
happiness but the happiness of all concerned.”

The frequentist framework as so far elucidated is potentially consistent with
various Bayesian prescriptions. Indeed some of them viewed axiomatically
seem to be structured precisely to guarantee optimum long term behaviour.
Many Bayesian theories do not have the collective feature built into them, but
some do have or can be modified in an attempt to contain it.

There is however a further aspect to the frequentist point of view being
espoused here. It requires also firmly based pragmatic judgments concerning
proposed methodology. The question needs to be answered, ‘“‘How well will the
proposed methodology actually perform in practical situations (when used by
intelligent well-educated practitioners)?” It is here, of course, that Berger’s
‘Assumption II’, with which I completely agree, gains its relevance and
force.

Let me sketch why I think the frequentist orientation leads inexorably
through Assumption II to a robust Bayesian viewpoint; and also to point out
what I found to be the biggest surprise in Berger’s paper.

There are statistical estimation situations possessing a loss function and
others for which it is reasonable to act as if certain conventional loss functions
(such as squared error) are valid. In such a circumstance the frequentist
orientation leads inexorably to the possibility of proposing various decision
rules, calculating their respective risk function and eliminating those rules
which prove to be inadmissible. (One can reasonably decide to make minor
corrections and use some rule which is inadmissible by a numerically in-
significant amount if it possesses some other virtue, such as convenience.) But
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this activity does not lead to a unique choice of statistical procedure. There are
many admissible procedures from which to choose.

There may have been a brief period of euphoria during the development of
Wald’s (1950) Theory of Statistical Decision Functions when it was thought that
the minimax principle would provide a unique satisfactory answer in a variety
of situations. If it was ever thought so, the period was brief, for Wolfowitz who
collaborated with Wald on aspects of the theory wrote (1951) that the minimax
principle “might be the course of a very conservative statistician” and then
proceeded to examine the structure and appeal of a variety of nonminimax
rules.

Whatever the outlook historically, it is now clear that there are important
problems in which an otherwise plausible (and minimax) procedure is inad-
missible by a significant margin. The most outstanding example is of course
that involving the Stein effect. The situation is described in Berger’s Section 4.5
from the point of view of the frequentist position. In brief, there are many
possible minimax rules. The only sensible way to choose among them seems to
be to construct some crude prior distribution (Berger’s r,) and then minimize
the posterior risk among the minimax or C-minimax rules as proposed in
Berger’s (4.6). This leads to the procedure 8* described below (4.7), or possibly
to some slightly better, smooth alternative procedure such as that described in
Berger (1980a). Because of the restriction to (C-)minimax rules the deter-
mination of the prior need only be rather crude. It suffices in this special
example to determine only its mean and variance. (Perhaps, more realistically,
one should think in terms of more robust measures such as an «-trimmed mean
and variance.)

The same recommended procedure, 6*, can be arrived at through robust
Bayesian reasoning based on the class I, or some similar class. This is not
surprising since there seems to be a close mathematical link, though not a
philosophical one, between imposition of (C-)minimaxity and minimization of
maximum expected risk over a broad class of priors. (It would be interesting to
see if there is a valid, precise theorem to this effect.) To my taste the robust
Bayesian approach seems ultimately preferable since it removes the artificial
choice of C from the prescription. Furthermore C-minimaxity can only lead to
sensible answers in certain types of problems. On the other hand we need to
know much more about the possible consequences of various types of choices
for I before the robust Bayesian method can be used with confidence in a
variety of situations, especially those where it may not lead to proposal of a
(C-)minimax procedure.

The C-minimax and robust Bayesian proposals are both described above as
methodologically frequentist suggestions. One calculates risk functions first,
then integrates them against prior distributions, and choose that procedure
leading to the best value(s) of r(m, 8). (Best for the given 7 over the allowable
(C-minimax) & and/or ‘best’ as mr ranges over the allowable priors (7w €T).)
This methodology—suggested by the frequentist argument—Ileads automatic-
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ally to a procedure acceptable within the frequentist philosophy (subject of
course to the long term validity of the remaining assumptions concerning the
probability model and loss function, etc., and a sufficiently careful choice of =
(or IN)).

Here is the surprise: Although the above proposal is philosophically and
methodologically frequentist it can be implemented most of the time in a
Bayesian fashion. This is convincingly the case in Example 4 (Section 3.1) for
x=0,1,2 and in similar examples. Berger calls this phenomenon ‘posterior
robustness’. When posterior robustness occurs even the dogmatic frequentist
should act as if he were a dogmatic Bayesian.

1 think it would be revealing and useful to have at hand mathematical results
connecting the structure of the class I’ with the probability of occurrence of
posterior robustness. For example suppose X ~ N(6, 1), L(6, a)= (0 —a)* as in
Example 4 and I' is specified by (2.1) with 74 = N(6,1) and & = 0.1 which
seems like a plausible value. Then for x*= 8 one has

inf sup |p(, 3x) — p(m, x, ag(x))| ~ 0.6 .

ap(x) wel’
(For x?= 4 this quantity is ~0.1.) The value 0.6 seems unsatisfactory (but 0.1
may be O.K.) since p(m, x, ao(x)) < p(m, x, x) = 1. Now Pr{X?= 8}~ 0.05 (and
Pr{X?= 4} ~ 0.32). Hence posterior robustness holds 70-95% of the time in
this problem. (It may be that this type of calculation is unfortunately sensitive
to the choice of I' and to the choice of loss function. This too needs to be
investigated.)

At the risk of repeating what Berger has written, let me summarize the
preceding arguments as concisely as possible. I do this because I think there
may be at least a difference of emphasis between my position and that in Jim
Berger’s paper and this summary may help to isolate this difference.

(1) The frequentist approach leads naturally to the quest for a priori
information in order to choose among admissible procedures.

(2) Pragmatic considerations make it clear that a priori information cannot
be specified with perfect precision. (Assumption II.) Furthermore, Bayes
procedures for priors which are very close to each other (when viewed a priori)
may have very different long term (frequentist) performance.

(3) Therefore, expected risk (r(s, §)) must in principle be investigated over
all priors in the range of those which seem plausible. (This range is the class I'.)

(4) When posterior robustness over I’ is present direct use of Bayes rule
gives a satisfactory answer without computation of r(sr, §). Thus, although the
robust Bayesian proposal is in my view frequentist, it can be implemented a
large proportion of the time in a methodologically Bayesian fashion.

(5) There is much work to be done. Theoretical and numerical work is
needed in order to delineate what types of classes I we should really be looking
for in particular problems (see B below), what procedures are really robust
over these classes, and how posterior robustness is really related to robustness
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of r(m, 5). I think we also need to continue the process admirably begun by Jim
Berger of examining in depth the logical and philosophical aspects of a
comprehensive robust Bayesian philosophy.

In a spirit of furthering this continuing examination and in the hope of
giving Professor Berger something specific to comment on, let me mention
three specific issues which concerned me in reading his paper.

A. My first concern and only real criticism of the paper is what I view as the
imprecision of Assumption I. T suspect that it does not literally say what it is
intended to convey. Literally, its principle conclusion is that “the only trust-
worthy and sensible measures of this [posterior] information are Bayesian
posterior measures”. Does this convey implicity that these measures must be
derived by the conventional Bayesian methodology? I think not. But if not,
then what is the meaning and content of these measures—and are they really
“trustworthy and sensible”? Thus suppose the statistician quotes a posterior
distribution P(-) after observing some data x. This is presumably the type of
measure that Assumption I is promoting. If it is calculated according to Bayes
rule in the conventional fashion then it is indeed “trustworthy and sensible”
(so long as the prior was) and may be correctly interpreted in the same terms as
the prior. (For example, if the prior were a true (frequential) prior then P(B)
would be a statement about the (frequential) probability that § € B.) However,
suppose P(-) is calculated in a robust Bayes fashion. (Note that no precise
prescription has been given for doing this and perhaps none can be given.) Then
how can P(-) correctly have the same interpretation as would a prior? In fact,
does it even have any correct meaningful interpretation? It probably can be
given a meaningful interpretation through certain frequency calculations. If so,
however, this seems to me to place these pseudo-Bayesian measures as objects
within a frequentist setting rather than as primitive notions of an essentially
axiomatic nature. Until I feel I understand better the content of this ‘assump-
tion’, I remain somewhat open as to its possible interpretations and its position
in the overall construction of a rationale for a robust Bayesian methodology.

In this connection I note that there exist non-Bayesian ways to make sense
of measures which appear to be formally analogous to Bayesian posterior
distributions, but I do not think these have the universal applicability and
appeal of the more classical interpretations. There are, for example, betting
paradigms such as those expressed in Robinson (1979a, 1979b), Bondar (1977)
and Heath and Sudderth (1978). There is also the decision theoretic approach
expressed in Gatsonis (1982a, 1982b) and in Eaton (1982).

B. A related concern involves the class I'. If one begins with a class such as
I' of (2.1), makes an observation and examines the class of resulting posteriors,
one finds that it is a somewhat strange looking conglomeration. It is certainly
not a set satisfying a restriction like the original (2.1). Further, one sees that the
class of posteriors exhibits a wider range of contamination than the priors. If a
further observation is taken, with this class of posteriors being used as the
priors, an even stranger class results, etc. (Of course, with probability one as
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this process continues, 6 — X — 0 in probability uniformly over the original class
of priors.) From several points of view it would be more reassuring if an
efficient and plausible model of prior indeterminacy could be found which
would be stable under repeated sampling. Is there such a model?

C. The third issue I want to raise concerns Example 10 in Section 6.3.C. Let
me preface my remarks with a general statement. The reasoning throughout
Berger’s paper is inductive. Certain special examples (i.e. the Stein Effect) are
examined in detail. Something is found to be true in the example (i.e. a
convenient and reasonably efficient robust Bayesian procedure can be found).
A general conclusion is then magnified from the specific example to a broader
context (i.e. “Bayesian robustness will be valuable in less ideal situations”).
Even when the example is carefully chosen and carefully presented there is
always a danger in this type of analysis that an inaccurate conclusion will be
drawn because the example does not represent all instances represented in the
general conclusion. I think this has happened in Example 10.

The conclusion drawn from the example is that, “[ordinary] prior dis-
tributions prove to be rich enough to reflect whatever is reasonably desired”. It
may be that the example shows that ordinary prior to posterior calculations
suffice when it is desired only to draw inferences about potential future
independent identically distributed observations on the random variable which
has been observed in the sample. (I believe this to be true, though of course
jsolated examples such as Example 10 do not really provide a precise for-
mulation or proof.) However other things may be “reasonably desired”. The
following scenario gives one possible instance. I presume there are many
others.

Suppose the two drugs in Example 10 were two different drugs which are
generally recognized to be equally effective (e.g. Aspirin and Tylenol for
reducing a fever). A priori you entertain two concepts: («) Since they are
recognized after long experience to be equally effective they must indeed be so,
or (B) general experience is very imprecise, so they may very well differ in
effectiveness by a moderate amount.

For simplicity let us say conception (a) gives probability 1 to the value
pv =3. (A prior tightly concentrated in the region about 3 would be more
realistic, but the preceding is easier to calculate with and the qualitative
conclusions are the same.) Let us suppose conception () gives probability jto
each of py =%, }, 2. It would undoubtedly be very hard to provide a confident
statement concerning the relative probabilities of (a) and (8). (This of course is
one of the reasons compelling the use of robust Bayesian analyses.) But
suppose you could arrive at a figure of, say, 0.3 for the probability of (8). The
ordinary prior, p, which corresponds to this two-tiered scenario is one which
gives probabilities 0.1, 0.8, 0.1 to py =%, 3, 3, respectively.

If you then observe that Drug 1 works better in 5 of 5 trials you may indeed
use an ordinary Bayesian analysis with this prior. The resulting posterior
probabilities are approximately 0.03, 0.74 and 0.23 for py =% 3, 3. You can
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correctly state within this Bayesian framework that the probability is 0.03¢) +
0.74() + 0.23¢) = 0.52 that Drug 1 will work better on the next patient than will
Drug 2.

Suppose that a second similar question now arises (concerning, say, two
medicines for athletes’ foot). If you consider only the ordinary prior P, derived
previously, you would, I think, be led to the decision that relative effectiveness
of Desitin has nothing in common with the relative effectiveness of Aspirin
tested earlier and so the prior P is again appropriate for the athletes’ foot
problem.

However, consideration of the two-stage prior and earlier experimental
results indicate a probability on (B) of 0.56. This yields new probabilities P, in
the athletes’ foot problem of 0.19, 0.62, 0.19 for the values pjs =%, 3, 2. Passage
from the ordinary distribution P in the first problem to the ordinary dis-
tribution P’ in the second is inconsistent solely on the basis of the ordinary
distributions P, P’ and the 5 of 5 observation. It only becomes consistent
behavior when one permits use of two-tiered .distributions. (There is an
alternate method of analysing the preceding situation. One can describe an a
priori joint distribution of py and pjy in which py and pj are correlated and
each has marginal distribution P. However this method is ultimately more
complex than the two-tiered method. In principle it requires a priori
specification of the joint distribution of parameters for all potential statistical
problems, and simultaneously hides the two-tier structure upon which this
specification can sensibly and economically be constructed.)

Let me close these comments with a final remark concerning my fundamen-
tal agreement with Berger’s arguments. I note that in Section 3.2 Berger
remarks that “a statistician should be responsible for the long run performance
of his methodology”. He also observes in Section 4.4, concerning robust
Bayesian procedures, that “their long run frequency performance is definitely
relevant”. These are reasonable paraphrases of the frequentist position I have
tried to describe in the first part of my comments. The major difference is only
one of its emphasis within the overall theory. I place this responsibility for long
run performance as the primary goal and test for any further theory. Instead,
Berger places Assumption I first and only later comes to the frequentist test.
We both agree on Assumption II and on the consequent importance of
developing robust Bayesian methodologies; and this of course’is the main
lesson.
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2. Comment by Bruce M. Hill*

There are many important and interesting questions raised by this article.
The primary question that I would like to discuss concerns the approach to
robustness that Jim Berger recommends. This seems to be a compromise
between frequentist concepts, such as minimaxity, and the Bayes risk approach.
Although I think this can be a useful way to formulate the robustness question,
I think that it is important also to understand the subjective Bayesian content
implicit in such a formulation. For me it is pleasant but not quite enough to
know that 6* of page 44 is minimax and also has the Bayes risk values of Table
2. I would like also to know what underlying subjective probability assessments
lead to 6* as an approximation to my posterior expectation of 8. This is not
just a matter of idle curiosity because I hope, by such considerations, to learn
also when 6* is not a good approximation and then how to improve upon it.
On the one hand this point of view reflects the ordinary subjective Bayesian
concern to bring to bear as much as possible of the relevant information, so
that things fit together. On the other hand, it reflects a concern that if there
were not such subjectivistic content, then the apparent advantages of §* might
prove to be illusory.

The way that I would try to understand the situation is to think in terms of a
mixture model corresponding to two or more hypotheses. Let H; be a hypo-
thesis about the world such that given H;, one would approximately describe
his opinions about 8 by the prior density 7~ of Berger. This might be viewed,
more generally, as a prior distribution for 8 that one would use as a first stab at
the problem, or under ‘ordinary’ circumstances. But one would not want to
pretend that such a distribution ever completely describes ones opinions and so
we might want to think, perhaps only informally, about alternative real world
hypotheses to which one attaches some credibility and conditional upon which
one might have a very different opinion about 6. In particular it seems often
appropriate to choose the prior distribution for 6, given not H;, to be more
diffuse than given H;. This is not always the case, but often occurs because H,
is a relatively clearly formulated hypothesis, while not H; has not yet been
clearly delineated, and thus corresponds to a more confused situation. See for
example the discussion of ‘statistic acid’ by L.J. Savage (1961, p. 4.1). It is
important to observe that in this approach the components of 6 may be
conditionally independent, given a hypothesis such as H;, but unless Pr(H;) =1
or 0 they are marginally dependent. As discussed in Hill (1974, Section 4) there
are some interesting philosophical and mathematical aspects of the problem
seen from this vantage point, and the Stein ‘paradox’ disappears.

The estimator 6* behaves roughly like the posterior expectation of 6 under
the mixture model. If , is the prior density for # under H,, and if , satisfies
very weak conditions that reflect the relative diffuseness of opinion about 6,
given H,, then as [x|| 1 «, the posterior probability of H, goes to 1 and

*University of Michigan.
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E(6 | x)~E(0| Hy, x)~ x. See Hill (1974, Sections 4 and 7) for precise con-
ditions under which this occurs. On the other hand sufficiently small values of
|lx|| tend to support H, (although in a more limited way) and thus tend to yield
E(8 | x) close to E(0 | Hy, x). For me this is the essential part of the behavior of
8%, with the precise cutoff point 4(p —2) of no real importance, and in fact even
misleading since at best such a cutoff point must reflect very complicated
subjective considerations. Even from a risk function point of view it now
becomes clear how, under this mixture model, §* may be seriously inadequate.
For in the transition zone, between the large values of ||x|| that strongly support
H, and the small values of ||x|| that tend to support H, there will be an interval
of values of ||x]| such that both H; and H, will be given substantial posterior
probability. In turn this suggests that the risk function for 8* is such that real
improvement should be possible for ‘moderate’ values of |6]l. From a subjective
Bayesian point of view this stems from the fact that 8* ‘acts’ as though one or
the other of H, and H, were ‘true’, just as conventional significance tests either
reject or do not reject a null hypothesis and yet the data may be such that the
posterior probability of each hypothesis may be substantial. A related circum-
stance arises in the Bayesian analysis of random effects models (Hill (1980, p.
203)), where no matter how small MSB/MSW may be, the posterior expec-
tation of 6; gives nonnegligible weight to the corresponding row average Y..
All in all T expect there is very little real disagreement between Berger and
myself. I tend to think there are aspects of the subjective Bayesian approach
that are more important than either Bayes or frequentist risk properties, but I
would not want to ignore the risk function either. I think there are plausible
and convenient families of prior distributions for the Stein problem as in Hill
(1974, Remark 8, pp. 572, 578) and Hill (1980) and that the analysis is not so
messy as Berger says (second last paragraph of Section 4), so I would tend to
carry the Bayesian analysis somewhat further than he does, but of course one
has to stop somewhere. Where we differ most is perhaps with regard to the
desirability of self-imposed restrictions on the way in which one formulates and
solves problems. I try to see things from as many different perspectives as I can
in order to be as sure as I can that I have not lost something in my formulation
and that all the pieces do fit together. For me a robust Bayesian is simply one
who thinks carefully about his opinions, to whatever degree he thinks is
appropriate, and then analyzes the data to reflect such considerations.
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3. Comment by Joseph B. Kadane*

I have little trouble with the idea of a class I' of prior distribution and of
studying how the likelihood function transforms each to a posterior distribution
in some class I'*. 1 do have trouble, however, with the idea that one can change
I' after seeing the data. By allowing such a change, nearly every posterior class
I'* can be obtained with nearly every data set. If the point is only to identify
sensitive areas in which the posterior depends critically on features of the prior
not carefully considered beforehand, then I am less troubled. But Berger
proposes to go beyond this, without setting limits to the amount of change in I"
he would permit.

What kind of reporting would he suggest? Is the original I' relevant to a
reader, in Berger’s view? If the Bayesian viewpoint is to maintain its vitality, it
must insist on limits to the kinds of change permitted in I’ before trans-
formation to I'*. Perhaps some applied work providing examples of inference
done in Berger’s style would be enlightening.

Can a set of likelihoods be far behind?

*Carnegie-Mellon University.
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4. Comment by Dennis V. Lindley*

This admirable paper with its fine bibliography is'so crowded with important
ideas that it is hard to know where to begin any commentary. Assumption I is
the cornerstone of the argument, though to me it is not an assumption but a
consequence that follows from other, much simpler and intuitively appealing
assumptions: essentially justification (v). I would express the cornerstone
rather differently. To me, it says that any inferential or decision procedure
must be equivalent to one that uses probabilities for all uncertain quantities—
and if decisions are involved uses utilities and the maximization of expected
utility. You can obtain the procedure how you wish but, to be sensible, it must
match a Bayesian procedure. (It is for this reason that all samplingtheory
procedures must be rejected; because there is no prior that could possibly
reproduce them.) There is no obligation to take a prior and a likelihood,
multiply, normalize and to obtain a posterior: you may do it as you wish only
observing the rules of the probability calculus. In fact, it seems easiest to do it
in the usual way: but see Sturrock (1973).

In this view, what role does robustness play? Simply that one does not want
to be in a situation where a small shift in a probability here causes a large shift
in a probability there. (This remark applies equally to likelihoods as priors: we
have got so wedded to the idea of likelihoods being ‘known’ and priors not that
it is hard to be impartial between them.) Whether this consideration is
expressed by posterior or procedure robustness depends on whether or not the
data are to hand.

In the illuminating normal-Cauchy example (Example 4), if the Cauchy prior
is used, numerically large values of 6 will occur which, because of the normal
likelihood, will produce numerically large values of x. If the normal prior is
used, these values will not occur and the normal procedure will not take them
into account: that is, it will do extremely badly with the large values. Con-
sequently, it will be sensible to guard against them by using the Cauchy prior.
Similar considerations apply to the likelihood, a Cauchy one being more robust
than normal; illustrating the point that it is only the probability calculus

governing both prior and likelihood that matters.
A vigorous protest at the use of minimax ideas is in order. A minimax

procedure does not accord with any Bayes procedure and to use it .as an
antidote for robustness is to invite unsatisfactory procedures. If elicitation leads
to ambiguities, then further refinement seems appropriate. I met an example
recently where the decision maker had to provide a mean and a variance:
Lindley (1983). The former presented no problem but the decision maker only
felt comfortable with a range of variances, so a distribution was placed.on the
variance. This is surely the better way out of the problem of a class of priors:
put a prior over the class. Or, expressed differently, use a hierarchical model. If

*Minehead, England.
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normal or Cauchy seems doubtful put probability @ on one and 1—a on the
other: or better use ¢ with a distribution on the degrees of freedom. It should
always be remembered that we do not need 7(6) but, in Jeffreys’ notation,
m(8| H) and that H can change by introspection or deeper elicitation, as with
the variance.

My own view about Assumption II is that we should learn to measure
probabilities. Physicists, presented with Newtonian mechanics for thesfirst time,
did not dismiss it because they could not measure accelerations; they learnt to
do so. Surveyors do not deplore Euclidean geometry because they cannot
measure distances without error: they use techniques like least-squares. And
they discover that angles are easier to ‘elicit’ than distances: perhaps log-odds
are better than probabilities. We need to recognize real man trying to imitate
normative man and to develop the equivalent of the surveyor’s least squares.
This view has been described in Lindley, Tversky and Brown (1979).

There are many references in the paper to ‘long-run frequency’ properties.
The difficulty with these is to decide what ‘long-run’ is appropriate. We are
typically interested in an inference or decision that is specific to a single
occasion when ‘long-run’ ideas are irrelevant. If the decision is part of an
obvious sequence, as with routine quality control, then the ‘long-run’ idea is
germane but is adequately considered within the personalistic, nonrepetitive
framework when discussion of the sampling plan (rather than the handling of
the data) arises. Probability has nothing to do with ‘long-run’: it is only when
allied to exchangeability that frequency ideas surface and then the relevant
‘long-run’ is well-specified as being the set judged exchangeable. It is hard for
those trained in the Berkeley tradition to discard the inappropriate ideas when
changing to the Bayesian paradigm. It took me 25 years and even now I have to
be careful not to be beguiled by some apparently plausible argument. Strict
adherence to the alternative canon always provides a rescue.
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5. Reply to the comments by Jim Berger

It is a privilege to have four such distinguished statisticians as discussants for
the paper. Their comments are extremely valuable in illustrating different
related perspectives and in focusing a number of key issues. Foremost among
these issues is that of the use of frequency measures in Bayesian robustness.
Since this is perhaps the most involved and unclear consideration, I will delay
discussion of it until the end, first dealing with the other issues raised.

A number of Professor Brown’s comments are addressed to important
questions concerning the development and implementation of robust Bayesian
methods. He makes the crucial observation that “when posterior robustness
occurs even a dogmatic frequentist should act as if he were a dogmatic
Bayesian” (assuming of course that the posterior robustness is obtained for a
realistically large class I" of priors), but points out the need for theoretical
development to deal with situations lacking posterior robustness. His proposal
for examining the probability that posterior robustness obtains is interesting,
since it is certainly important to get some feel as to the extent of the problem
of a lack of robustness.

Professor Brown also expresses concern over the choice of I'. This is a
crucial and delicate problem, since there will constantly be the competing
desires to choose a large I' to ensure that nothing is left out and to choose a
small I" to make posterior robustness more attainable. The e-contamination
class in (2.1) will usually be large enough (for suitable £) to provide a feeling of
security, but it includes many undoubtedly unreasonable priors that could
destroy posterior robustness. In this respect, I view the process of robust
Bayesian analysis from the somewhat data interactive viewpoint in which one
starts with a perhaps crudely large I', checks for posterior robustness, and
progressively refines I (if needed) until posterior robustness is achieved. (Some
further comments related to this will be given later.) In any case, finding
suitably rich and reasonably easy to work with I' is important.

In desiring a class I which is stable (after transformation to a class of
posteriors) under repeated sampling, Professor Brown is probably asking for
too much. As he points out, when n—> the class of posteriors will usually
degenerate to a point mass at 6, and it is rarely reasonable to have all point
masses as priors in the original I'. Also, the class of posteriors resulting. from
(2.1) will evidence a wider range of contamination than the original I' only
when the data is itself inconclusive and raises doubts about the plausibility of
TA.

I found Brown’s discussion of Example 10 quite interesting and have no real
disagreement with it (except that my calculator would not reproduce a prob-
ability of 0.56 for (B)). Indeed, the discussion actually seems to support the
contention that the prior distributions provide a rich enough structure. If I feel
that the aspirin—tylenol experiment tells me something about the situation in
the second experiment (through its effect on my prior conceptions concerning
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the validity of ‘general experience’), then I should indeed attempt to in-
corporate this information. Attempts to do this could, as Brown mentions, take
the form of a complicated joint a priori specification for both situations or take
the form of a two stage prior. I have nothing against hierarchical priors as
conceptual tools, even though they always correspond to single priors. (Perhaps
I misleadingly came across in Example 10 as recommending only consideration
of single stage priors.) Thus Brown’s discussion reinforces the contention that,
when the need to involve certain information is recognized, a Bayesian will be
forced to consider an appropriately rich prior structure.

Professor Kadane expressed concern about allowing modification of I" after
seeing the data. I share the concern but, as argued in the paper, feel there is
little choice. In a large economic model or weather model there may be
hundreds of variables, and any attempt to construct accurate priors before
seeing the data seems hopeless and a possibly great waste of time. (Only some
of the variables may turn out to be important.) Furthermore, scientific surprises
and correctable modeling errors must be allowed for. (When looking at the
data it is not at all uncommon to realize that the model or prior being
considered is clearly inappropriate due to some oversight.) On the other hand,
indiscriminate changing of I' is clearly unacceptable. I made no attempt to say
what changes are, and are not, permissible, for two reasons. First it is unlikely
that such limits could be codified. Second, in a certain sense, the problem
seems moot, precisely becasue of reporting requirements. As an outsider
evaluating a statistical analysis I will look at I" and the likelihood function and
decide if they seem reasonable. Where I' came from is almost immaterial:
either it is plausible or not. Thus a prior chosen simply to be ‘compatible’ with
the data will hopefully look suspicious. There is obviously a certain danger in
allowing post data modification of I', but it seems a necessary evil in attaining
realism.

Professor Kadane also mentions that perhaps a set of likelihoods, not just
priors, is in order. Certainly this is true, and the brief discussion in Section 4.3
is admittedly inadequate. Although one can formally subsume uncertainty in
the likelihood into uncertainty in the prior (just enlarge @), the paper essen-
tially ignores model robustness. This was done in an attempt to keep the paper
within reasonable bounds, but was perhaps an error. As Professor Lindley
comments, treating the model and the prior separately is often a mistake—they
are both just an attempt to impose a subjective structure on the situation.

I was rather surprised at Professor Lindley’s expression of the cornerstone
of Bayesian analysis. From his statement, he would apparently have no
objection to a frequentist decision theorist choosing any admissible decision
rule, since such usually correspond to Bayes rules. I presume Lindley left out,
for the sake of brevity, the qualification that the prior to which the chosen
decision rule corresponds had better be an accurate representation of sub-
jective beliefs. I would, in any case, argue (see Berger (1982d)) that the
conditional approach to Assumption I tends to be more convincing than the
rationality approach, but the more reasons for being a Bayesian, the better.
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Professor Lindley comments that the impact of Assumption II can be
reduced by developing improved methods of eliciting subjective probabilities.
While certainly true, this doesn’t mean that Assumption II should be ignored.
The smaller I' is, the less Bayesian robustness will. be a concern, but a
nonsingular I" will always be present. Perhaps Lindley was trying to say that,
even if Assumption II is true, it does not follow that the Bayesian perspective is
wrong, with which I would, of course, wholeheartedly agree.

Turning finally to the main issue raised by the discussants, namely the
validity of the use of frequency measures, I will begin with some thoughts on
Professor Brown’s very interesting position. His logical and admirable presen-
tation that even a frequentist decision theorist should be highly interested in
posterior Bayesian robustness will, I hope, have a significant impact on the
frequentist school of statistics. Furthermore, it appears that our practical
positions may be close to identical: one should strive to attain posterior
robustness and (possibly) involve frequency calculations only when posterior
robustness is unattainable. Further delineation of our differences might thus
seem to be mere quibbling, but I feel that the difference between basing one’s
outlook on Assumption 1 or on Brown’s frequency principle does have a
profound effect on actual statistical practice, particularly in the extent to which
one becomes satisfied in an actual investigation that posterior robustness
obtains. (Formal verification of posterior robustness over a class such as (2.1)
will frequently be impossible.)

Professor Brown views Assumption I as somewhat imprecise and indeed it is
only later in the paper that my views on the subject are stated more clearly. My
interpretation of Assumption I is essentially that the only way to ascribe
meaning to a set of data is to see its effect on one’s prior opinions (in which I
include specification of -the model) through the prior to posterior trans-
formation. Thus there is a set of possible ‘meanings’ corresponding to the set of
posteriors obtained from I'. The reasons for saying that these are the only valid
meanings are (in my opinion) the conditionality arguments given in some detail
in Berger and Wolpert (1982). Though this is not the place for a discussion of
such arguments, I cannot resist one example.

Example. Suppose X is to be observed and is known to have either the
distribution P, or P; given by Table 1.

Table 1

x = 1 2 3
Py 0.005 0.005 0.99
Py 0.00501 0.98499 0.01

What ‘meaning’ should be given to the observation x = 1. From a common
sense viewpoint this observation indicates virtually nothing concerning the
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truth of Py or P;. I know of no way to say this in a frequency sense, however.
The most powerful a =0.01 level test of Py versus P; (which also has prob-
ability of Type II error equal to 0.01) fails to distinguish in meaning between
the observations x = 1 and x = 2. And, since conditional frequency approaches
are untenable here (a 3-point sample space cannot be divided into two parts on
each of which a conditional frequency analysis can be performed), it seems that
there is no frequency resolution to the difficulty. Even embedding the problem
in a decision theoretic setting will not help. If one must either decide P, or P,
under, say, 0-1 loss, then the procedure of basing one’s decision on the most
powerful o =0.01 level test has the very attractive risk 0.01, which seems
completely misleading when x =1 is actually observed (and P, is then con-
cluded to be true). Again, there is no conditional frequentist decision theoretic
solution to this inadequacy. Of course, the chance of observing x =1 is very
small (good frequentist procedures do not give obviously silly conclusions with
high probability), but nevertheless the view that one should always have a valid
frequency interpretation of a conclusion seems suspect.

The above example demonstrates the important point that, even though
there may be a 1-1 correspondence between admissible frequentist decision
procedures and Bayes procedures, there can be a major difference in what is
reported as the accuracy of the procedure (the frequentist risk or the posterior
expected loss). It could, of course, be argued that if the ‘real’ accuracy of the
procedure is important to know because of further decisions that might have to
be made, then these further decisions should have been incorporated in an
expanded original decision problem. This path out of the dilemma quickly
leads to the practical absurdity, however, of having to imagine and simul-
taneously solve all future decision problems which will be faced. Unless the
contradictions between frequency analysis and what could be termed ‘con-
ditional common sense’ can be resolved, I do not see how the frequency
principle can be used as the foundation for statistics.

While rejecting frequency criteria as fundamental, I am certainly willing to
defend them as sometimes valuable tools for use in achieving the conditional
Bayesian goal. In this light, let me now turn to the criticisms (or at least
warnings) concerning the use of frequency measures given in the discussions of
Professors Hill and Lindley. It will be assumed in the following that posterior
robustness is found to be lacking (for I'), and the issue is how then to proceed.

1t is useful to begin with a statement of the philosophical situation. Ideally, I’
has been constructed through utilization of all available subjective information.
When this is the case, Bayesian techniques of dealing with I' (such as putting a
metaprior on I') have no rational basis; if all subjective information has really
been utilized, any metaprior put on I' is completely arbitrary. In such a
vacuum, frequency measures are as reasonable as anything else as a basis for
proceeding and may even be preferred for reasons such as those in Section
4.4(B). 1 do not, however, give blanket endorsement to the use of frequency
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measures in such situations. Essentially one is in a state of irresolvable
ignorance and 1 am not so bold as to propose a foolproof method of resolving
irresolvable ignorance.

Although the philosophical scenario above is important for conceptual
reasons, it does not really settle the issue. In reality, I' will never be a finalized
summary of all subjective information and there may be good pragmatic
reasons for dealing with I' in a Bayesian fashion as proposed by Hill and
Lindley. For instance, after formulation of I, a frequently remaining subjective
belief may be that the elements of I" are roughly thought to be ‘equally likely’
to represent the ‘true prior’. This feeling would provide at least a partial
justification for putting a ‘uniform’ metaprior on I'. There are a number of
potential problems in attempting to do this, but the idea is appealing. An even
easier approach to dealing with the ‘equally likely’ situation is to choose (after
observing x) that prior in I' which maximizes the marginal distribution m(x).
(This is actually related to the use of a ‘uniform’ metaprior, the prior maximiz-
ing m(x) being interpretable as the most likely prior, a posteriori, for the
uniform metaprior.) There may, of course, be other kinds of ‘residual’ sub-
jective information after I' has been specified, such as smoothness constraints
on the priors. Different Bayesian methods may be useful in dealing with such
cases.

On the other hand, there may be substantial pragmatic reasons for proceed-
ing in a frequentist fashion. In particular, if a Bayesian approach is technically
too difficult (or too difficult for the ability level of the user) and an easier
frequency analysis is possible and can be given some kind of Bayesian motiva-
tion (as discussed in Section 4.4), then there is justification for adopting the
frequency analysis.

The example discussed in Section 4.5, and referred to in Professor Hill’s
discussion, is a good case in point. I am entirely in sympathy with Hill’s attempt
to intuitively understand 8* from a Bayesian perspective and indeed essentially
agree that his understanding is the right one. However, in actually implement-
ing this understanding, it is necessary to choose some particular prior on Hill’s
H, and this is not easy to do. For instance, there is no clear reason to choose a
prior on H; that destroys the independence of the 6, (For the I' in (4.4), for
instance, if independent metapriors are put on the ;, then, in the resulting
Bayes rule, 87(x) will only depend on x;.) There are metapriors (leading to
particular priors) which give estimators similar to &%, but they are not
significantly more intuitively plausible than others which lead to estimators
much less attractive than 8*. Of course, attractive is here being judged relative
to the I' in (4.4), which may be unreasonably large (in allowing arbitrary P;),
but the fact that one can get such attractive behavior for such a large I' by
frequency methods also supports the pragmatic justification for allowance of
frequency methods. (Using a too large I’ may entail a sacrifice of significant
possible gain that could result from a realistically smaller specification—it is in
this light that I understand and agree with Hill’s concerns about the subjective
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basis of 6*.) Also, in saying that 5* has ‘attractive’ performance, I am implicitly
including its conditional performance, based on the argument that if an
estimator has such good r(m, §*) for all w €I, then its conditional Bayesian
posterior performance (which is of paramount.importance) must also be pretty
good.

I must admit, however, to not being entirely convinced as to the ultimate
pragmatic necessity of employing frequentist measures in Bayesian robustness.
I am continually surprised at the success of even very simple Bayesian methods
(such as choosing a prior in I' based on maximizing m(x)), at the substantial
degree of robustness typically attained by Bayes rules resulting from ad hoc
metapriors on I" and at how forcing further refinement or involvement with I’
is generally more revealing than switching to a frequentist measure. The
existing examples where involvement of a frequentist measure proves easier
may essentially be due to the extensive frequentist theory upon which we can
draw. Of course, there is no reason not to draw on this theory when it does
prove helpful, while at the same time encouraging the more natural Bayesian
approaches. Also, the frequentist viewpoint is one of the ‘different perspec-
tives’ from which a problem can be viewed and may sometimes provide insights
as argued in Section 4.4.

In the above light, it is interesting to consider Professor Lindley’s final
comments. He is certainly correct about the difficulty in overcoming an
inappropriate tradition and I would be happy to support the position that strict
adherence to the alternative canon (Bayesian analysis) usually provides a
rescue (providing robustness is considered). I am uncomfortable with ‘always’,
however, and feel that there are sufficient philosophical and pragmatic grounds
to justify sometimes leaving the canon, providing this departure can be given
some justification in terms of the canon.

In conclusion, I would like to thank the discussants for their stimulating
comments, resulting in further clarification of my thoughts (and hopefully my
comments) concerning the robust Bayesian viewpoint. Our areas of agreement
strike me as being much larger than our areas of disagreement, and these
discussions hopefully bring us even closer.



