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Summary

The inverse Gaussian or the first passage time probability distribution for
Brownian motion with a drift is particularly important for modeling and inter-
preting observed distributions of time intervals in many different fields
of research. In this paper we deal with the problem of selecting a subset of k
inverse Gaussian populations which includes the "best" population, i.e. the
(unknown) population which is associated with the largest value of the unknown
means. The shape parameters of the inverse Gaussian distributions are assumed
to be equal for all the k populations. When the common shape parameter is
known, a.procedure R] is defined and studied which selects a subset which is
nonempty, small in size and just large enough to guarantee that it includes the
best population with a preassigned probability regardiess of the true unknown
values of the means. For the case when the common shape parameter is unknown a
procedure R2 is proposed. For the procedures R] and R2, we obtain exact results
for k=2 concerning the infimum of the probability of a correct selection. For
k > 3 a lowerbound on the probability of a correct selection is derived for each
case. Formulas for the constants d] and d2 which are necessary to carry out the
procedures R] and R2, respectively, are obtained. An upper bound on the expected
number of populations retained in the selected subset is given.

If the best population is defined as the one associated with the largest shape
parameter, it is shown that with a suitably chosen statistic, this problem concides
with the problem of selecting a subset of k normal populations which includes
Vthe population with the smallest variance. Similarly, for the selection of a
subset containing the smallest shape parameter, the problem reduces fo selection

in terms of the largest scale parameter of the gamma distributions.



On Subset Selection Procedures for
Inverse Gaussian Populations*

by

Shanti S. Gupta Hwa-Ming Yang
Purdue University University of Toledo

1. Introduction, Basic Concepts and Notation

The inverse Gaussian or the first passage time probability density
function (p.d.f.) for Brownian motion with a drift is particularly important
for modeling and interpreting observed distributions of time intervals in
many different fields of research. For example, Hasofer (1964) considered the
inverse Gaussian model for the emptiness of dam, Marcus (1975, 1976) used it
in communications noise and highway noise models, Banerjee and Bhattacharryya
(1976) applied it in a study of purchase incidence models, Chhikara and Folks
(1977) studied it in reliability and life testing, among others. Also the
statistician often finds himself dealing with data of considerable skewness
with no obvious choice of distribution suggested by physical consideration.

In such cases the choice is always made upon the basis of goodness-of-fit

and upon the ease of working with the chosen distribution. Because of the ease
due to the exact sampling distribution theory of the inverse Gaussian it would
appear to be a strong candidate in such cases and for this reason, Chhikara and
Folks (1977) suggested that the use of the inverse Gaussian over the lognormal
-would be perferable.

The probability distribution of the first passage time in Brownian motion
with a drift was first derived by Schrodinger (1915). Tweedie (1956, 1957a,
1957b) studied the properties of it and proposed the name inverse Gaussian
distribution for it. This distribution is also known as Wald's distribution

(cf. Wald (1947)).

* This research was supported by the Office of Naval Research contract
N0014-75-C-0455 at Purdue University.



In this paper, we consider the problem of selecting a nonempty (small) sub-
set of k different inverse Gaussian populations which contain the "best"
i.e. the population which is associated with the largest unknown mean or the
distribution which is associated with the largest shape parameter.

The inverse Gaussian distribution has two parameters with p.d.f. expressed,

in two alternative parametizations, as

9 .
g(x; vs oz, a) = a —  exp gaiéﬁﬁﬁl—s, Xsv,05 @ > 0 (1.1)
ovV2rx3 25° x
= (0, otherwise,
and
A = NES 2
fxs usn) = ( 3) 2 exp g— 5 B s Xsush- >0 (1.2)
21X 2u° X

0, otherwise.

Expression (1.1) is convenient for interpretation in terms of Brownian
motion.  Suppose W(x) is a Brownian motion (Wiener process, see Cox and Milier
(1965)) with drift v and variance parameter-oz, i.e. a stochastic process with
the following properties:

(a) W(0) = 0 a.e. and W(x) has independent increments;

(b) for any time interval (x],xz), W(xz)-W(x])*is'normal1y distributed
with mean v(xz-x])_and variance 02(X2—X]), then formula (1.]) gives the p.d.f. of
the first passage time X of W(x) with positive drift v to barrier a > 0.

Expression (1.2) is useful for deriving some results which are parallel to
that of the usual normal distribution. It is known that the parameter p is the

mean and A is a shape parameter.



From (1.1) and (1.2) it is easy to see that the relations y = a/v and
A= a2/o2 hold. Therefore, comparing k inverse Gaussian means “1Is is
equivalent in some sense to comparing the associated drifts of Brownian motion.
Note that the inverse Gaussian distribution is a member of the exponential family.
From now on we will use (1.2) to formulate our problem.

For a random variable X distributed according to (1.2), we denote
X~ I(u,r). For this distribution X is a shape parameter, the mean is y and the
variance is p3/x. If X]""’Xn is a random sample from I(u,Ar), Schrodinger

(1915) showed that the maximum 1ikelihood estimates of w and X are given by

n/

i

u=)'(and>\

nHe~13

(17%; = 1/%),
1

where

N n - : . . -
Tweedie (1957a) proved that X ~ I(u,A), A;Z]G/Xi-l/x) ~ xﬁﬁ], the chi-square
54

distribution with n41 degrees of freedom and that they are stochastically inde-
pendent. The statistics X and z(l/Xi'u 1/X) jointly are sufficient and complete
for (u,A), and X is a complete sufficient statistic for p if 1 is known,

Let TyseeesM, be k independent inverse Gaussian populations with means

ui,...,pk and shape parameters Ap,....A,, respectively. Let urY S g

be the ordered pi's. It is assumed that there is no prior knowledge of the
correct pairing of the ordered and the unordered pi's. Let Xij’ j=1,...n1,

i=1,...,k be independent samples for MyoeessTy, respectively, and let

Xi =

I~

1 ._ X . -
Xij/ni’ i=1,...,k denote the sample means. Let X(1) and n(1) denote

j=1



the sample mean and sample size associated with the unknown population
T(4) with mean Ml i=1,...,k.

Given any P*, 1/k < P* < T, our goal is to select a subset of these k
populations such that the subset contains the best population with probability
at least P*, no matter what the true configuration of “1IS' Selection of a subset
which contains the best population is called a correct selection and is denoted
by CS. Therefore, we are interested in defining (and studying) a selection

procedure R such that

inf P_(CS|R) > P* (1.3)
uea =
where @ is the set of all k-tuples (”1""’“k)’ My > 0, i=1,...,k. This require-

ment will be referred to as the P*-condition. In Sections 2 and 3, we discuss

the cases of known and unknown common shape parameter X, respectively. For

each case, a conditional selection procedure is proposed and studied. In

Section 4, the problem of selecting a subset which contains the larges shape
parameter is considered. It is shown that with a suitably chosen statistic this
problem is equivalent to the problem of selecting a subset of k normal populations
which includes the population with the smallest variance. In other words, the
problem of selecting the inverse Gaussian population with the largest (smallest)
shape parameter reduces to the problem of selecting the gamma population with

the smallest (largest) scale parameter.

2. Selection of the Inverse Gaussian Population with the Largest Mean When

Xi = A, 151,...,k is Known

2.1. A Conditional Selection Procedure Rj

When the common shape parameter is known, we propose the following

conditional selection procedure Ry:



R]: Select the population s if and only if

X, > max X, - d,(t), given T= )} X..=1t,
T= g 31 ij W

where t > 0 and d](t) is the smallest positive value to satisfy the P*-condition.
It is known that for two independent random samples X]]""’X1n’ from

I(p],x) and X,qs...5X from I<“233)’ the joint p.d.f. constitutes a three-

21 2n

2
parameter exponential family and may be written in the form

exp(yt + ou + nv),

-2 . -2 '
where b= - A(n]u] + Nou, )/2(n]+n2), (2.1)
8 = - Af 2 _2) n.n,/2(n +n,)
1 H2 172/ eV /e
n=-}\/2’

and t, u, v denote the values of the statistics

" N2
T = 121 X5 ¥ jZ] X1j )
"
U= X] - X,> where Xi = QZ] X;p/nys 1= 152,
. 2
and V= 121 Xq; + jz] ij )
respectively.

For k = 2, the following theorem gives us an exact result.



Theorem 2.1. For a given P*, 1/k < P* < 1, k = 2, let d](t) be the smallest value

such that

%ﬁﬂo(ﬁ - Xp < dy(t)[T=t) = P

where 2, = {E69|u-l=...=uk > 0} .

Then, inf P (CS|R) = P

(CS|R,) = P* .
neo = ]

neR,

Note that the infimum of P(CS|R) does not depend on the common value of My =U,=He

Proof: Since A is known, the joint p.d.f. of X .o X and X X

11°°" ]n] 21°7 "2 2n2
belongs to a two-parameter exponential family. It follows from an argument similar

to that in Lehmann (1959, p. 136) that

oo K1) = Fig) = 4(0[10)

P,(CSIR)

| v

Pomo (K1) = Kg) = H{0)T=t)

=P£€QJCMRﬁ .
Hence inf P_ (CS|Ry) =P (CS|Ry) = P*
LEQ H 1 BEQO 1

Lemma 2.1. If two random variables Z and X are independent of another random
variable Y, and if the just p.d.f.'s fZ,X and fZ,X+Y exist, then

fZ,X+Y(Z’t) =_£ fZ’X(z,x)fY(t-x)dx ; (2.2)

t
= é fZ’X(z,x)fY(t-x)dx, (2.3)

if both random variables X and Y take only positive values.

Proof: The proof is straight forward and hence is omitted.
For k > 3, based on the Bonferroni inequalities and Lemma 2.1, we drive

a lower bound on the probability of a correct selection in Theorem 2.2.



Theorem 2.2. For k > 3, and given P*, 1/k < P* < T and T = § Xij = ts Tet
1,3

-P* H
Pf =1 - %:%—- and let dgg)(r) be the smallest value such that for any

uER, = {gJu] = ... =w =u>0} and any 1,j,j#i,

< d%) (r) | Ty =v) = Py (2.4)
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d](t) = max {dij (r) |T<i#j <k, 0<r <t} {2.5)
then

inf P (CS|R) > P .

LER B .

Proof: For all p€q
PEFCSIR])

=P (X( y 2 max X(.

- dy () [T=t)
w00 24 550 Ma) T At

I

1 - Pﬂﬂx(k) < ]5?;ﬁ-1 X(j) - d1(t)|T=t)
k=1 '
22 -kt 1P (U< d(0)]T=) (2.6)

For any j, 1<j<k-1, using Lemma 2.1 we have



Py (Ugp < 4 (8)T = 1)
t
= (f) P(Uj = dq(8) Ty =r) ijk(r)-fT_Tjk(t—r)dr/fT(t)
f (1)
3é P(Ujp = 45 /() [Ty = ) ijk(r)-fT_Tjk(t—r)dr/fT(t)
> Py .

. * *
Hence inf P (CS|R,) > 2-k + (k-1) P, =P
u 17 = 1
et =

2.2. Evaluation of Values of d](t) for the Procedure R]

For two independent random samples X]]""’X]n1 from I(u],x) and XZ]""’X2n2

from I(UZ]A), let T =) X]i + 7 ij, then it follows from Tweedie (1957a) that
T~ I((n +n2)u, (n]+n )2 2) if IS Chhikara (1975) derived the conditional

1 2
p.d.f. g(u|t) of U = X] - XZ’ given T = t, uy=u,, as
1/2
n,n,(n,+n )2 At3 / n.n,(n;+n )2 Auz
a(uft) = |12 B T P A , (2.7)
2m(t+n, u)”(t-nqu) P 2t(t4n,u) (t-nqu)
t t
- — < U < —
2 M

By using the one - to-one transformation
1

(n]nzx)ﬁ(n]+n2)u

[t(t+n2u)(t—n1u)]%




it can be shown that the P*-percentile point i(P*) = i(P* ., Nys Moo t) of ¥,
given T=t i.e., the solution of the equation

i(P*)

/ g(u|t)du = P*

- 00

is given by the following equation

n,-n 2nonsa nin i (3
é(do(t)) + n?+n; eXp< l 2 > %1-¢[<dg(t) + ‘ﬁl 2 ) ]§ = px | (2.9)

where
do(t) = 1'(P*)(n]+n2)f[n]n2 A/t(t+n2 1(P*))(t-n] 1'(P*):|;2L~ R (2.10)

and ¢ is the cumulative distribution function (c.d.f.) of a standard normal

distribution.
When‘n] =n,=n, the equation (2.8) will simplify to do(t) = z{P*), the
P*-percentile point of the standard normal distribution. Hence we have
1
2 3 2
i(p0)-| 2 {pt 2] - (2.11)
' dn " +z"(P*)tn
\

which is increading in t, if n is fixed. Note that i(p*) >~ 0as n+ o if t = Q(n).

Corollary 2.1. For k=2, the constant dT(t) associated with the procedure R] is

given by
d,(t) = i(P¥), (2.12)

where i(P*) is given by (2.9) or (2.11).

Corollary 2.2. For k > 3, the constant d](t) associated with the procedure R]

is given by
d; (t)

max{i(P?, ni> Ny r) | 1<i#j<k,0<r<t}

it

1(Pf, n, n, t), if Ny =...=n =n. (2.13)



2.3 An Upper Bound on the Expected Subset Size and Other Properties of Procedure Rj

For any given values- of k and P*, the size of the selected subset S by using
the procedure R] is a function of the true configuration E_=(u],...,pk) and it
also depends on Nysessay. Note that S is an interger-valued random variable which
takes values 1 to k inclusive. Hence, (in alalogy with power of the hypothesis
testing problem) EE_(SIR]) can be Tooked upon as a measure of the efficiency of
the procedure R]. We now discuss how to evaluate it. We consider the space of

alt slippage configurations of the type u[]]=...=u[k_]]?u and p[k]=6p,’5 > 1; and

n =
2
Then, for any uc(s), the expected size of the selected subset is

we denote this space by Q(s). We also assume that ny = =Ny N,

Eu (S|R;) P, (X(k) 3_] mai ] X(.)—d](t){T=t)
= <J<k-
+ (k-1) PE_(X(]) 3_2£?ixk X(j) - d,(t)]|T=t)

PE_(X(]) - x(k) < dqy(t)[T=t)

| A

+ (k-1) RE(X(k)- X1y < dp(2)[T=t)
t/n x+d1(t) , ,

(2.14)

| A

where

t/n

Ry ML TR tine g Dor) Ty (Eerdansfy e,

f;'((k) ]T/n(xlt/n)zf)_((k)(X)fT/n—T((k)/fT/n v(t/n) s

and
t/n

Frnlt/ml=] fT/n-X(k)

(r)fy

(t/n-r)dr.
X)

10



Note that f («) is the p.d.f. of I{(k-1)u, n(k—1)2A).

T/n-i(k)

Remark: The density function of statistic T in @(s) or in any other non-
homogeneous space is difficult to evaluate in an exact form. One of the
reasons for such difficulty is that the inverse Gaussian random variables
have only restrictive additive property as explained below (see Chhikara
and Folks (1975)). We know that if X1,X2,...,Xk are independent inverse
Gaussian variables with parameter Wy and s then ZXiMI(zui,g(zui)z)
if and only if Ai/u12=g for all i. The sufficient part was shown by

Tweedie and the necessary part was given by Chhikara (1972) and Shuster
and Miura (1972).

Let lﬁ(X]1,...,X]n],X2],...,X2n2,...,Xk],...,ank) be a random vector,

then 5ﬁ§€ﬂ2”, where N=n.+...+n, . A selection rule can be denoted by

@(_§)=(¢] (5),...,q)k(§)), where qﬁ;(ﬁlj H{N+{O,1] is the probability that

s is included in the selected subset when X=x is observed. Similarly,

T

LX) seesiy (X)),

: T T
a conditional selection rule can be denoted by @'»(§)=(¢i

T .
where ®3 (x) is the conditional probability that m: is included in the
selected subset, given T=t, when X=x is observed. It is easy to see that

T=T, ¢1(§)=O or 1 ahda@T(é)#Q_when rule R1 is used.

N

Definition: A selection rule is scale invariant if for every x€R", for

(x).

every real number c>0 and for every i=1,... .k, P (Q§)=@1

We may define scale invariance for conditional selection procedures

11



in a similar way, then we have the following theorem:

Theorem 2.3. With equal sample size, the procedure with constant d](t)

given by Theorem 2.1. or Theorem 2.2. is scale invariant.

Proof: From Corollary 2.1. and Corollary 2.2. we see that the constants
d1(t) given by Theorem 2.1. or Theorem 2.2. have the property

d (ct)=cd1(t) for all c>0,

1

so we have

T(cx)

o1 X (ex)=g, '

x) for all c¢>0, and i=1,...,k,

hence the theorem is proved.

2.4 Applications to a Test of Homogeneity for Hy=e Ty

When the common shape parameter A is known, for the problem of the
test of homogeneity of k inverse Gaussian populations, i.e. the test of
hypothesis:

null hypothesis HO:u]=u2=...=uk
versus H]fui'S are not all equal,

we propose the following conditional procedure (at level o) ¥(T).
The procedure ¥(T) is:

The null hypothesis HO is rejected if and only if X[k]-X[1]>d](t),_

given T=t, where d(t) is given by (2.12) or (2.13) with P*=1-0/k.

It is easy to see that the procedure ¥(t) has the probability of

12



of type-one error less than o, since under null hypothesis
= P(X[]]<X[k]—d1(t)[T=t)

= P(Xj<X[k]-d1(t) for some j|T=t)

k - -
5_§=]P(Xj<X[k]-d1(t)|T=t)
= k-kP(X]>X[k]-d](t)|T=t)

= k-kP*

= 0O
For k=2, it has been shown that the procedure ¥(t) is an UMP unbiased test,
see Chhikara (1975) (also Lehmann (1959)).

3. Selection of the Inverse Gaussian Population with the Largest Mean
when the Common Shape Parameter A is unknown

1 X_-l
R

L~

k
With the same notations as before and let V= }
i=1

3.1. A Conditional Selection R2

Select the population T if and only if

X.> max X.-d,(t,v), given T=t, V=v
1= . 2
1<j<k

where t>0, v>0; dz(t,v) is the smallest positive values chosen to satisfy

the P*-condition.

For k=2, we have the following theorem:

13



Theorem 3.1. Given 2 <P* <1, k=2, T=tand V =v, let

[n]hz(n]+n2-2)]% (n]+n2)u
h(u) = 5
{[tv—(n]+n2) ](T+n2u)(T-n]u)}

. §

=

. [ - nyp(ngtny)™ ] K . (3.1)
2
[tv-(n]+n2) ](t+n2u)(t—n]u)
where 1
(n]n2)2(n]+n2)u
-1 < 5 1
{[tv-(n]+n2) ](t+n2u)(t-n]u)}2

and let

dy(tav) = h™'(c(tv), (3.2)
where the constant ¢ = c(t,v) is determined by _

(n,+n —3)/2
) n,=n, [tv-(n]—nz)2 1.2 (
He o . ofc) + 1-H, i c'»==P*
tiny*ng2 ny+n, tv—(n]+n2)2 ( tingny-2
(3.3)
where
¢' = {c2 + 4n,n,(ny+n,-2)/[tv-(n,-n )2]}%
1721 2 12

and Ht;n]+n2—2 denotes the c.d.f. of students’s t-distribution with n +n,-2
degrees of freedom. Then inf P(CS|R2) = inf P(CS|R2) = P*,

Proof: For fixed t and v, h(u) is a monotone nondecreasing function in u, hence

h'] exists and

oy - 2 2 2 . aso0 2
h " (w) = {(ny-nq) ty™ + ty[(ny+n,)™ y= + 4]23/2(T4nyn,y") (3.4)

14



1 1 1
where y = w[tv-(n]+n2)2]2/(n]n2)2(n]+n2)[n]+n2-2+w2]2
With the same notations as that in Section 2, it follows from an argument similar

to that as in Lehmann (1959) [see P.136] that

inf
18 PE_(CSIRZ)

= 1gf PE_(R(])-X(Z) < dy(t,v)[T=t, V=v)
= Pog (X(])-X(Z) < dy(t,v) [T=t, V=v)

Po=0 (h(U) < h(d,(t,v))|T=t, V=v)

2
- Pe=0 (h(U) < c(t,v)|T=t, V=v)

= P*,

by the definition of c(t,v) (see Chhikara (1975), p.81)."

Coroliary 3.1. In Theorem 3.1, if we have a common sample size, say ny=n,=n,

then the constant ¢ is determined by

1

H .2n-2 (

tion-p (€) = P* e c=H P*). (3.5)

Thus ¢ is given by the P*-percentile of a t-distribution with 2n-2 degrees of

freedom. Consequently,
2.1
te(tv-4n~)=

d
n[CZtv+4n2

(tov) =

5 (3.6)

1
2

(2n-2)]

which is increasing in t and v, if n is fixed. Note that d2(t,v)v+ 0Das n-> o
if both t = 0(n) and v = 0(n).

Similar to Theorem 2.2., the following theorem gives a lower bound on the
probability of a correct selection in case of k > 3 where the common shape

parameter A is unknown.

15



Theorem 3.2. For k > 3, given P*, 1/k < P* < 1, T=t, V=v, suppose the common

-P*
shape parameter A is unknown. Let P¥ =1 - %:?—- and let dij(z) (t,v) be the

smallest value such that for any neQy = {Hju]=...=uk > 0}
PE_(Uij < dij (r,s)lTij rs Vij_s) p*
where
Y T T )
= X/ooy + X ,
SR CRCHI L)
and

(3) .
_ (2) ..
Let d,(t.v) = max{dij (ros)|1<i#3 <k, 0<r<t, 0<s <vl}
Then inf P(CS|Rp)> P*,
Q
Proof: Proof is almost the same as the proof of Theorem 2.2., hence it is omitted.

Corollary 3.2. In Theorem 3.2., if ny=n,=...=n,=n then d2(t,v) is given by (3.7)
-1

0 - * . » - -
with ¢ = Ht;2n-2(P])’ note that the procedure R2 is scale invariant.

4. Selection From Inverse Gaussian Populations in Terms of the Shape Parameters
In ranking inverse Gaussian populations in terms of their shape parameters, we
defined the best population as the one associated with A[k]. With the same

assumptions as given in Section 1, for all i = 1,...,k Tet

n 2
5 1 (X..-u ) :
S? = ; g ] SR LN TE is known, (4.1)
My j=1 X'ij
n.
T 1 .
= ) kx——-- :—+-> » 1 u; is unknown, (4.2)
j=1 iJ X



then xisf has a chi-square distribution Xi with Vs degrees of freedom where
i
n; or ni—1 depending on the case whether P is known or unknown. Therefore,

Vi
there is no need to deal with the cases of known or unknown means separately.
Using statistics S? , i=1,...k, the problem of selecting from inverse

Gaussian populations in terms of shape parameter is equivalent to the problem
of selection from normal populations in terms of variances (see Gupta and
Panchapakesan (1979)).

For anequal sample size case, parallel to the rule of Gupta and Sobel (1962a),
we propose @ rule R3.
R,: Select population s if and only if

3

2 -1 .2

where 0 < C = C(v,k,P*) < 1 is determined so that the P*-condition is satisfied.

Here q = {iji > 0}. It is easy to see that the infimum of P(CS|R3) occurs when

A[]] = A[Z] =...= A[k] and is independent of the common value. Thus we have
. _ % 2 k-1 , 2
1gf PA_(CS[R3) = é [1'Xv(CX)] dxv(x) (4.3)

and also we have supkE (S[R3) = kp*
o X

The c-values can be found in Gupta and Sobel (1962b) for k=2(1) 11, v=2(2) 50
and P*=0.75, 0.9, 0.95 and 0.99.
For an unequal sample size case, some results are available in Gupta and

Huang (1976) [see also Gupta and Panchapakesan (1979)].

n,
i -1

Remark 4.1. Let X, = [( ) X! >/n.:] be the harmonic sample mean of
—_— iH jea1 1 i
s and let

2 _ g-1 2 3 . .

S; =Kyt (X - 2u1), if u, is known,

M3
1o -

XjH - Xi , if M is unknown,

17



then using the statistic §? is equivalent to using the statistics S? » i=1,...k,

. 2 22 .
since Si = ”151 for all 1.

Remark 4.2. It should be pointed out that the problem of selecting the inverse

Gaussian populations in terms of x[]] is equivalent to the problem of selecting
-X/0. -1
. . . 1 1 X/91 X "
from gamma populations with densities ?153_61 e (ei ) s
those that have large values of 0. This problem has been solved in Gupta

(1963), where appropriate tables are also provided.
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