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ABSTRACT

Let LA TRER be given populations associated with unknown real param-
eters O75---s0 5 which are related to a common underlying exponential family.
Permutation invariant sequential procedures of the following type are con-
sidered. At stage m, observations are drawn from all eligible populations,
i.e. from those which have not been eliminated so far. Then either the pro-
cedure stops and makes a final subset selection from the eligible populations,
or it selects a subset from the eligible populations and proceeds to stage
m+1.

Under a general loss structure (favoring large parameters), it is shown
that at all stages the finally selected subsets have to be associated with
the largest sufficient statistics from the eligible populations. In fact,
these natural final decisions are proved to be uniformly optimum in terms
of the associated risk. Under the assumption of a strongly unimodal expo-
nential family, several consequences are derived with respect to optimality
of natural subset selections at various stages. Especially, in the class
of gq-stage procedures with fixed predetermined subset sizes at the q stages,
the natural procedure is uniformly optimum in terms of the risk. AIl re-
sults are derived using the Bayes approach with respect to permutation
symmetric priors. The technique of backward induction is used, and the
concept of decrease in transposition (DT), introduced by Hollander, Proschan

and Sethuraman (1977), plays a crucial role throughout the paper.

*Research supported by ONR contract NOOO14-75-C-0455 at Purdue University,
West Lafayette, IND, U.S.A.
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1. Introduction.

Let Tysee sty be given populations which are associated with unknown
parameters Bys---58) €05 where ¢ c R is an unbounded or bounded interval.
Let the goal be to find a subset (of random or fixed size) of populations
with large parameters. Sequential procedures will be studied in a general
framework which covers the control and non-control, elimination (screening)
and non-elimination, truncated as well as open-sequential settings.

Assume that at every Stage meN = {1,2,...} samples {X.. }

ijm j=1,...,nm
can be drawn from Tis i=1,...,k, where N, is a fixed common sample size.
Let all the observations be real-valued, independent, and have densities
with respect to u, the Lebesgue measure on Z = IR or the counting measure
on X =Z (or any other lattice on R). Finally, it is assumed that all

these densities are members of an exponential family & = {c(e)exp(6x)d(x),

X € x'}e o’ where 6 = 8, holds for observations from i i=1,...,k. Let
Uim = Xi]m + ...+ Xinmm be the sufficient statistic for o, at Stage m with
respect to the samples at Stage m and let wim = U1.1 + ... 0+ Uim be the over-

all (up to Stage m) sufficient statistic for 054 i=1,...,k, meéN. For

notational convenience, let U = (Ujo...5U )5 Vo= (Ups..oslp)s W=

(WypoeeeoWy) = Uy + oo U 8= (8y5...,6,) and Ng =np * - ¥, melN,

1Research supported by the Office of Naval Research..Contract NOOO14-75-C-0455.
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in the following. Note that for every meIN, the density with respect to

b = weeeoxu of U and W_ are, respectively,
(m) ko k k
(1) fe (u) = LS (ei)exp(eiui)dn (ui), u e.x1 , 6€Q , and
= i=1 'm m
(mhw)= ; cy (6:)exp(o.w.)d, (w.) wexk eEQk wh
G () = I Oy \95)6XPROgW Gy Wi ls MEL T S =R uhere

cr(e) = c(e)r, and dr denotes the r-fold convoltution of d w.r.t. u.
Next, an explicit definition will be giVén of what is understood to

be a (randomized) sequential selection procedure. Briefly, such a procedure

| can be described as follows: At every stage, it decides either to stop
(v), how many populations to retain (p), and which populations to select
finally (v), or not to stop (1-y), how many populations to retain (@) »
and which populations to select for further examination at the next stage ().
There is one restriction, however, which is to be emphasized: Once a certain

population has been eliminated at one stage, it may never be selected at subse-

quent stages.

To make the definition more understandable, let us introduce the

notation S = (s],...,s withs < s, ;€ -.. € Sqp» for the situation

m) _
at the end of Stage m-1, if populations LF with i€ St have been selected
at the end of Stage r, r=1,...,m-1. Thus, S] =Sy = {1,...,k} is the initial

situation, 52 = (s],sz) means that the populations with indices in Sy have
been selected at the end of Stage 1, and so forth. By identifying populations

with their indices, selections from {1,...,k} are to be understood in a natural

way.
Definition 1. (Sequential selection procedure (y,9, %, ¢,0)).

The definition is giQen by induction with respect to the stage number m > 1.
The starting condition is S] =5 = {1,...,k} and ry = k.
Stage m: If Sm = (s],...,sm),-take additional observations from populations

m; with i€s_, i.e. observe U; when i€s . The decisions at this stage
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are based on 5 different decision functions. It will prove to be useful
to write them as functions of ym = (91,...,ym), but it is understood (and

clearly indicated by notation) that they depend only on the really observed

U1.p with i¢ sp, p=1,...,m. The decisions are made according to the

following scheme.

Either, with probability Yg (ym), the procedure stops, then, with probability
m

N (vm), it decides that L e{O,J,...,rm} populations are to be selected

m+1°"m

S (Vm), it selects S

p g_smwith
m+1? m+1 > m

+1

from S and finally, with probability U

ISm+1I = (where |:| denotes subset size); or, with probability

T-v (y ), the procedure does not stop, then, with probability
Sm m =

&}m+];5m(ym), it decide; that r ., € {1,2,...,r } populations are to be selected

from s _, then, with probability ¥

. (v.), it se]ects'sm+]§5 S with

LA REML
lsm+]| = o410 and © the procedure continues at Stage m+l.
This process is continued until it is stopped. The procedure is said to

be truncated at Stage q if Yg = 1 for all possible S

; !

Our main interest is on permutation invariant sequen-

tial selection procedures which treat all k populations symme-

trically. More precisely, they are defined as follows.

Definition 2. (Permutation invariant procedures).

A procedure (y, ¢, 9 ,¥,9) is called permutation invariant if for every
m > 1, the 5 decision functions at Stage m are permutation invariant in
the following sense. Let Sm = (s],...,sm), ym =V and permutation o of

(1,...,k) be fixed. For notational convenience, let c(Sm)=(o(s]),..,o(sm)),

where U(Sr) {o(i)]i€ 5.} r=1,...,m, and let o(ym) = (o(g]),...,o(gm)),
where o(u ) = (u0(1)r,...,u0(k)r), r=T,...oms vy = (Upseosul). Let

a(sm+]) have an analogous meaning. Then



(2) = o ,
YO(Sm)(Ym) Ysm( (!m))
cpr‘m+1;0(sm)(ym) T rm+];5m(0(ym))’
wg(sm+1);rm+1’0(sm)(ym) = wsm+1;rm+]’sm(c(ym)),b

and the conditions for o and @ are the same as for ¢ and y, respectively.

Remark 1.  The symbol o is being used simultaneously for a permu-
tation of (1,...,k) as well as for several other operations. There shoulds,
however, be no confusion in the sequel, since the argument of o(-) always

will indicate in a natural way which operation is meant in the context.

Many procedures of the above type have been proposed in the Titerature.
A few examples for the non-control case will be given in Section 3. An
example for the control case is considered in Gupta and Miescke (1982a)
where 2-stage procedures are studied. Further references and examples
can be found in Bechhofer, Kiefer and Sobel (1968) and Gupta and
Panchapakesan (1979). In contrast to non-control
settings, in control problems (where e],...,ek are to be compared with a
control value eo), the empty set may be selected finally with the inter-
pretation that "no population is better than the control".

A first step towards reasonable procedures is to find appropriate
candidates for decision functions ¢ and y. The present paper is focussing
on that point. It will be shown that two natural versions y* and ¢* (cf.
Definition 3) are optimum under fairly general assumptions on the loss
functions. Since cost of sampling has no influence on these results, no
assumptions in this respect are made explicitly in the following. It should
be pointed out, however, that in subsequent steps, where v, o and g are
considered, cost of sampling would play a crucial role for finding

optimum procedures.



Assumption (L1) (Loss structure).

Form > 1, let Lm(9’5m+1) be a real-valued loss which occurs at geszk, if

at Stage m the procedure stops at the subsét-configuration Sm+1‘ Let Lm
be permutation invariant and favoring parameters with large values. More
precisely, let

(3a) L (8,0(S

for every permutationos of (1,...,k), and
(3b) Lm(9’5m+1) f-Lm(g’Sm+1)’

if the following holds for one pair (i,j) with 0. f_ej: For every

q€{l,....m1} with i€ s and id S’ s = (sq\{i})u {J}, and § = s , other-

q
wise,

Assumption (3b) states that it is worthwhile in terms of
loss to exchange the roles of two populations in a sequence of selected

subsets Spey = (51,... ) if the better of the two populations

’Sm+1

is eliminated at an earlier stage than the worse one.

The main purpose of this paper is to show that under fairly general conditions
the natural candidates for y and ¢, y* and J*, say, to be defined below,

are optimal with respect to the risk (expected loss) or the Bayes risk.

Definition 3. (y* and y*).

For every fixedm>1, S , r Y

m> mt]

px (v_) be equal to a positive constant for all s cs_with
i1 k125 M m+1 m

|5m+1| = e which satisfy max{wim!1e sm\ Sm+1} §_m1n{wjm|J€ Spt1}s and

let it be equal to 0 otherwise. Thus, s ., c s_with |sm+1| = 1oy s

largest values of Wip=Usp -

selected if it is associated with the r i

m+1

+ Usp i€ S where ties are broken at random. Let ¢* = y* be similar.



2. Auxiliary Results.

Since by assumption (3a) the loss is permutation invariant, every per-
mutation invariant sequential selection procedure p = (Y,@,¢ ,U,0) has a
risk (expected loss) R(g,P ), say, at 6€ Qk, which is likewise permutation
invariant, i.e. |
(4) R(e,P) = R(o(8),P), for every permutation o of (1,...,k).

Here and in the sequel we assume that the risk always exists, a con-
dition which is met at least for every truncated procedure, where the action

space is finite. (4) can be rewritten as

(5) R(e.p) = T R(a(8),p) (k!)7), seak,

where the sum is taken over all permutations o of (1,...,k). Thus for every
fixed geszk, R(0,P) can also be interpreted as the Bayes risk for
that prior which gives equal mass 1/k! to every point o(8), o permutation
of (1,...,k). It will prove useful and interesting on its own to
study the form of Bayes procedures with respect to any permutation invariant
prior t, say, which is defined on g (Qk), the Borel sets of Qk. By doing
this in the fo]Towing, we will assume tacitly that the loss as a function
of §652k always is measurable and integrable properly. In the Bayes approach,
the parameter vector is viewed to be random, denoted by
Q = (@],...,ek) in the sequel, which has the probability distribution <.
The Bayes risk of a procedure p under a (permutation invariant) prior
then is given by
(6) r(z,e ) = E[R(e,p )] = [ R(e,p )dz(8).
oK

When studying the form of Bayes rules, typically posterior expectations

and the technique of backward induction will be applied. To simplify the

derivation of the main results, some useful facts will now be presented



and proved separately for convenience.

To begin with, let us consider a fundamental property of multivariate
distributions which was called "property M" by Eaton (1967) and, more recent-
ly, "decreasing in transposition property (DT)" by Hollander, Proschan and

Sethuraman (1977). Let ®(-) stand for "Borel sets of" in the following.

Definition 4. (Decreasing in transposition property (DT)).

k +~ IR is said to be decreasing in trans-

K, be s,

Let A,Beg (IR). A function h: Akx B

position (DT), if for every fixed a€ A

(7a) h(a,b) = h(c(a),o(b)), for every permutation ¢ of (1,...,k), and
)

(
(7b) h(a,b) < h(a,s(b)), if for some permutation ¢ and i, j€ {1,...,k},

(aj-2;)(b;-b;) < 0, 5(1) = §, 5(3) = 1, and 5(r) = r for r # i,j.

A family {Pb } K of probability measures on g (Ak) is said to be decreas-
- 'beB
- k

ing in transposition (DT) if for every be B, P, has a density h(a), a€ A%,

with respect to a permutation invariant sigma-finite measure v on aﬂAk); such
that h is DT .

Lemma 1. Let A, Be @(R). If a family {Pb} . Of probability measures
T 2§ beB

on @ (Ak) is DT, then the posterior family with respect to every permuta-

tion invariant prior on @& (Bk) also is DT.

Proof: According to Definition 4, let Pb have a density hb with respect to

v, b€ Bk, and Tet p be a permutation invariant prior on @ (Bk). Then, at

a€ Ak, the posterior distribution has a density s with respect to p, which

at be Bk is given by

(8) g,(b) = h (a)a(a), where q(a) = 1/fk hy(a)do(e).
a b k¢

Since q(a) = q(o(2)) for every permutation o of (1,...,k), it is easy to see

that g is DT . Thus, the proof is completed.



The next fact is more closely related to the setting of the sequential

selection problem under consideration.

Lemma 2. Let m > 1 be fixed and let t be a permutation invariant prior of

oon @ (Qk). Based on the joint distribution of (e,W W ),

k. If the function

T
let Pw denote

the conditional distribution of Wo+p> given W, =W, WEX

d(x), x€x, is log-concave, i.e. if the basic underlying exponential family

3 is strongly unimodal, then the family {PT } is DT .

W k —=

~lwex
Proof: Let d be log-concave. Clearly, this holds true if and only if in
the family 3, every density c(e)exp(ex)d(x), x€x, is log-concave, 8¢ Q.
Since in the discrete as well as in the continuous case, log-concavity of
densities with respect to u is being preserved under convolutions (cf.
Barndorff-Nielsen (1978)), the function dr(x), x€x, is log-concave for

every reNN.
Let m > 1 be fixed and let t be a permutation invariant prior on B(Qk).

The joint (marginal) distribution of (ym+],wm) in view of (1) has the fol-

lowing density with respect to My

w)dt(e), u, wezk.

1
(9) ™D (yw) = f f;m+ )<g)g§m)(
k
9]

Therefore, the conditional distribution of Wo4p> given W = w, has the density

with respect to i

(10) £ ™) (z]y) - a('“”)(z-w,w)/fk g™ (e (2), zexk.
k2

After inserting the exponential families (1) into (9) and (10), one gets



(11) £ (2 |w) - oy (2)8,(2)oy w7, zexX,

k
where o (x) = [

: k
d (z;-w.), zex".

HAax

and Bw(g) = 1

Obviously, the functions o, are permutation invariant. Moreover, standard
arguments show that g is DT if and only if dn is log-concave. Since

m+1

(m+1)

the latter is given, ¢ is DT and the

proof is completed.

In the remainder of this section, it will be shown that the loss struc-
ture, which is described in Assumption (L1), 1is preserved under certain
operations. First a slightly more general and closely related structure

will be introduced for convenience.

Definition 5. (Property 8 (m,A)).

let m > 1 and Ac g (R) be fixed. For every m+l disjoint subsets tlaeees

t i1 S {1,...,k} with U Ut g S {1,...,k}, let Tm+1= (t1,...,tm+]),
k

and let = (a,T ,1), a€ A", be a real valued measurable function of a. =

m
is said to have Property & (m,A), if for every a¢€ Ak and Tm+1 the follow-

ing two conditions are satisfied.

(12a) 2 (@0(T 1)) = £ (o(a)sT q)

c(Tm+]) = (c(t]),...,c(tm+1)), for every permutation o of (1,...,k), and

(12b) £m(§’Tm+]) < im(f_isTm_ﬂ)a

if the following holds for one pair (i,j) with a; < ay: There exist integers

o < g <m+ 1, such that iet,, jet , t, = (t NG ulil, EB= (tB\{i})U{j},

t, =t f 8.
and tq tq or q # a,B
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Remark 2. The relationship between the assumed loss structure (L1) and func-

tions which have Property & (m,2), m > 1, is of a fairly natural type. Let

k

m > 1 be fixed and let Lm(9’5m+]) be the loss at o€ o for Sm+1 = (s],...,sm+]),

51

U

ce. 25.qs at Stage m. Let Jh(sm+]) = (51\32’52\53""’sm\§m+]’sm+])

= (t],...,tm+1) = Tm+1’ say. Then, t],...,tm are the populations which have

been eliminated at Stages 1,...,m, and tm+1 are the populations which are

- k
=L (8,S » DEQ .

m+])

selected at the end of Stage m. Now, let iim(Q,Tm+])

Then it is easy to see that Lm satisfies the loss assumptions (3) if and only

if £ has Property § (m,2).

Lemma 3. Let m > 1 and A, Be 8 (R) be fixed, and let £ have Property &(m,A).

Lg;_{hb} be B be a family of densities with respect to a permutation invari-

ant sigma-finite measure v gﬂ_@.(Ak), where h is DT . For every T .,, let

(13) % (0 Tg) = [ (@ Ty p(2)dv(a). be BX.

A

Then Qim has Property & (m,B).

Proof: Let ko = 0 and k],...,km+16{1,...,k} with k] + ...+ km+] = k be fix-

ed. For every~Tm+] = (t1""’tm+1) with ]tr| = kr’ r=1,...,m1, and every

k - =
€A™, Tet KL=k  + ... + ko, 1= 0,1,...,m+1, and

(14) X (@5(o(1)500cs0(k)))= =22 (@sT 1q)s k= (Kysennakoiq)s

for all permutations o of (1,...,k) with t = {o(K _1#1),...,0(K)}s v =1,

...m+1. Let E = {1,...,k} and take the following auxiliary function

XE:AkXEk

»-IR,'whe?e for every a€ Ak, ?(k(g,g) is defined by (14) if gEEK
is a permutation of (1,...,k), and where afk(g,g) = 0, otherwise. Let 5€k
be defined analogously with respect to ;ﬁ]. Then an equation analogous

to (13) holds for ?}k and X
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Now Tet £ have Property ® (m,A). Then, apparently, Xy is DT .
Thus if h is DT , by Theorem 3.3 of Hollander, Proschan and Sethuraman
(1977), ?Ek also is DT . Therefore, ;km has the properties (12a) and (12b)
for all T, with [t | =k, r=1,...,m+1, and a1l b€ B. Since this holds
true for every k as specified at the beginning of the proof, it follows

that =2 o has Property o (m,B). Thus the proof is completed.

Remark 3. Eaton (1967) considered 1-Stage procedures that select (in the.
present notation) the km+1 best, km second best,...,k] worst populations,

where k],...,k are fixed and predetermined with k] ot km+1 = k.. His

m+1
loss assumptions are analogous to Property 8 (m,2), where (12b), however,
is assumed to hold only for a=8-1. Eaton's (1967) main result states
that the natural rule is uniformly best in terms of risk, and it may be in-

teresting to note that his proof is essentially a combination of Lemma 1 and

Lemma 3 of the present paper. Further details are given in Remark 5.

Lemma 4. Let m>1and A€ g(R) be fixed. Let £ have Property &(m,A).

For every disjoint ty,....t < {1,...,k} with tyu...ut, = {1,.00.k), Tet

Ty = (ty5...5t ) and

(15) £ (g,Tm) = min{;zm(g,(t],...,tm_],tm,tm+]))|

m-1

s 2 N k
Ut = t, Nt =91 ac A",

Then £ has Property ®(m-1,A).

Proof: Let a€ Ak and Tm’ as specified in Lemma 4, be fixed. Then for every

permutation o of (1,...,k),
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2 (o(a),T )

m1n{iim(§,o(t],...,tm_],tm,tm+1))Itmutm+]=tm,gnntm+]= 3}

min{iﬁm(g,(c(t]),...,c(tm_ ), t ,t*

mH H*Ut

m+-l“'0'(t ) t ﬂtm+-| g}

< (a.o(T)),

where the first equality follows from the invariance property (12a) of £ 0
Thus, £ o1 has the analogous invariance property.

Additionally, let a pair (i,j) be fixed with a; < a5, for which there
,tm) with

~

exist o < 8 <mwith i€t, and jet . Let T = (tq,

B 1°
t (ta\&j})lj{i}, EB = (tB\{i})LJ{j}, and Eq tq for q # a,8. Two cases

[¢3

n

are considered separately.

Case 1: g s m - 1. Since in this case ty, = %m’ it follows that for all

disjoint tm,tm+1 with tmutm+1 = tm’

A

L@ (st ptst ) < 2 (as(ty,.. st

A

At )

m-1

holds, and therefore = .(a,T ) <  (aT).

Case 2: g=m. lett ,t be disjoint with tmljtm+] =t . Ifie tm’ let

m

tn = B\ Uiy and § =t g, and if det o, Tet & = (Tt M1 U3}

A

and tm = tm. Then in either case,

- ~

9tmstm+-|)) < £ (a,(t] e s ,tm_-l .t

>

£o(as(tys...0t

m-1 m’ m+1))

where tm’tm+1 are disjoint with tmljtm+] = tm; This implies

£n1(@T) <2 1(a,T ), and thus the proof is completed.

m-1

Remark 4. If a special sequential selection problem is given under certain
restrictions concerning the sizes of subsets to be selected (i.e., if there
are side-conditions with respect to ¢ or @ ), then an analogous result to

that of Lemma 4 can be proved in essentially the same way. The minimum in
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(15) has then to be taken additionally subject to these restrictions and

some obvious changes have to be made in the proof.

3. The Main Results.

In this section, permutation invariant sequential selection procedures
which are truncated will be studied, i.e. procedures which stop no Tater
than Stage g, say. Results which as well hold true for untruncated procedures
will be so indicated. The loss is assumed to satisfy Assumption (L1) given

in Section 1. To begin with, consider the risk function for procedure

P = (Yspops¥,¥) at 8 € ok,

(16) R(g, ?) =
;

I t~~10

15 ) Li(9’51+1)E§ t
i+1
i-1

1_ ~
mzl[]_YSm(ym)lplsm+1]; Sm(ym)w )

) (v
Sm+1’|sm+1|’sm -m

x ve (Vs) o (Ve (V)3
St P ls gy 1385721 s 4y3 449 1554751
where the second sum is with respect to S1.+1 = (s],...,si+]) with

= 1.
q

The Bayes risk with respect to a permutation invariant prior t on

S S$;S ... sy = {l,....k} and s, # @, and where yg

'| pu— —

S+
@(Qk) will be studied in the sequel according to the rationale given

at the beginning of Section 2. It is assumed that the Bayes risk (6)

exists. As has been pointed out, this condition is met if 1 has a
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finite support. By standard techniques the Bayes risklcan be seen to be of
o y
the following form. For notational convenience, let E " denote the condi-

tional expectation, given ym’ m=1,...,9. Then

(]7) r(TsP) =

r
1 |V
-1
=E[ve (V) I @ .« (V) T w. . (V)E T'[L;(0,S,)]
S'I 1 r-=0 rzss'l -1 S,c S Szarzss] -1 1v=°"2
2 2="1.
|52|=r2
"
*(1-ve (V1)) 1 e o (V Ve . (Vi)% «..
S0 2y TSyl Lo TspirgsSytel
2 2= "1
|52|=r2
I\-/m-'l rm l\_lm
xE [vg (V) ) P s (V) ) Vs _ip .S (v )E [Lm(9,3m+])]
m rm+]—0 mt1’"m Sn+1S S mtl’ m+l’m
St 17
r
(v (1) ) ¢ S B v )
+ -
S_*-m o r 3S_t-m S 3r ,S. 'Im
m rm+]—1 m+1°"m Sk S Sy W mEl
[Sme1 1741
E“‘lq'][ rzq ® (v.) ) (v )E“‘Iq[L (05S_,7)1]-1- 1
X ¥ R eoc]ees],
20 Tas135, -4 S__13r 1,5 '=q g'=’"qg+l
P+ 0 "g+1°’7q Sq+1€ Sq q+1°'g+1°"q
|sq+'ll=rq+'l

Both (16) and (17) hold for untruncated procedures which stop almost
certainlyin finitely many steps, provided of course that the Bayes risk
exists. One simply has to takeq = « in (16) and to omit the last factor

in (17) which is associated with Stage q.
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The first main result is with respect to the final de-

cision and is the following.

Theorem 1. Let ® = (y,9, ¢, ¥,9) be a permutation invariant, truncated or

untruncated, sequential selection procedure, and let P* = (v,¥¢, 9 ,y*,9).

Then under the assumptions concerning the loss and distributions which have

been made at Section 1,

(18) R(8>P *) < R(e,r ), for all g€ ok,

Moreover, if P is truncated, R(6,#) < « for all Qeszk.

Proof: Let m > 1 be fixed. Since, at Stage m, W _1is sufficient for Qeszk,

in (17) for every Sm+1’

|W

(19) E L (958,47)] = E TIL (958,401

can be seen to hold almost surely, since the 1.h.s. of (19) is a measurable

function of W .
In view of (1), under ¢ = ¢, Qeszk
k

. wm has a density with respect to
Mo gém)(w), wex =, which is DT . Let t be a permutation invariant prior

on # (Qk) for which the (truncated or untruncated) Bayes risk r(t,p ) exists.

Then, by Lemma 1, the posterior distribution of o, given W = w, wE:Ck, also
is DT .

. k - -
According to Remark 2, for 6€q” and S ., let T .. =7 (S ;) and

zim(Q,Tm+]) = Lm(9’5m+1)‘ Then, as noted there, S has Property & (m,Q).
Let

~ - |qu'-" k
(20) W Toaq) = B0 L (0,T q) s wex.

By Lemma 3, iim has Property ® {(m,2% ). Therefore it is easy to see that

for every fixed sq,...,s and r_., f_lsml, (20) is minimized subject to
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S+l € Spy and [sm+]| = Tl for those S which are associated with

Fot] of the largest Wss i€ Sp® Since now wf,r S (w) gives equal mass to

>mt1’m
all such subsets and no mass to others, it follows that r(t,P *) < r(t,p ).
Let QEQk be fixed and let t be the prior which gives mass 1/k! to all
points o(8), o permutation of (1,...,k). Then by (5) it follows that
r(t,P ) = R(8,p) and r(t,p *) = R(6,P *). Therefore, (18) holds, and the

last statement in Theorem 1 follows directly‘from,(16).

In the remainder of this paper, four applications of the basic

result given in Theorem 1 will be studied.

Application 1: Procedures with Vector at a Time Sampling.

Assume that at every Stage m, samples of size n_ are drawn from all popula-

m
tions, until the procedure stops and makes a final decision. Thus, for

every m > 1, the complete vector U, is observed and ¢ g = 1(0) if
m+1’"m

Pl = (#)k, for every Sy - Then, as an immediate consequence of Theorem

1, the following holds.

Corollary 1. For every permutation invariant procedure, no matter which

stopping rule is used, in the truncated as well as in the untruncated case,

the natural final decision y* always is uniformly optimal in the sense of

(18).

A great variety of procedureS'for'severa1 goals and loss func-
tions which fit into this framework are covered by Bechhofer, Kiefer and

Sobel (1968); mbst of their procedures have the restriction Ny 7Ny = ..
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and do not eliminate (vector at a time sampling). In all of
their proposed procedures, the natural final decision rule is taken as the
"terminal decision rule". The results stated above confirm that this is

optimal in the sense of (18), uniformly in ¢ € Qk,

‘Example 1. Barron and Gupta (1972) have proposed a procedure to find a subset of
normal populations (with unknown means and a common known variance) which
contains the best population with a probability no less than a given P*.

The procedure is of the sequential type, usés vector at a time sampling, but does
not make- the natural fina] decisions. Instéad, populations are marked
"rejected" or "accepted" at various stages according to a specified rule

until all populations are marked, at which time the procedure

stops. In view of the results stated above, such a procedure can be im-

proved in terms of the probability of a correct selection, and thereby re-
taining the P*-condition, by simply replacing the finally selected popula-

tions by a subset of populations of the same size, which are associated

with the largest overall means.

Application 2: q-Stage Procedures with Fixed Subset-Size at each Stage.

Assume that the number of stages q, say, is predetermined, and that the
size of the subset to be selected at Stage m, Rm+],'say, is fixed in ad-

vanced as well, m=1,...,q. Thus, k = R] > .. > Rq+], YS] = ... =Yg

g-1
=1-Y =0and $, .« = ... = G, . =1 and ¢ « =1. In

this case it can be shown that the natural procedure is uniformly optimal

provided & is strongly unimodal.

Theorem 2. Let ® = (v,9 ,9 ,y,y) be permutation invariant, where v,

and ¢ are given as specified above, and let p * = (Y, ¥, ¢ ,p*,¢*). If
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the basic underlying exponential family. 3 1is strongly unimodal and the loss

satisfies the assumption (L1), then

(21) R(8,P *) < R(g,p ), for all geak,

i.e. P* is_uniformly optimal in the given subclass of procedures.

Proof: (Backward Induction). Let v be any fixed permutation invariant prior

on @ (Qk) which has a finite support. Consider (17) for any procedure
P = (v,9,9,9,9), where v,9 and ¢ are given as specified above. Clearly,
the Bayes risk r(r,pP ) exists.

We start at Stage q, the final stage. Here, by Theorem 1, the corres-

ponding component of y* is optimal.  Let Sq = (51,...,sq) with |s]l = Ry

and sy 2 c- 254 be fixed. According to Remark 2, let (tyse .ot

=y )=

...,[sql = R

q q

Tq = Jd_1(3q). Then, after having inserted the corresponding comTonents of
v
¢ and y* into the last line of (17), and after having replaced E -g-1 by

W

W, _
- 1 (the reasons are the same as were used for (19)), the last factor in

(17) which is associated with Stage q can be seen to be of the form

~ W

= g -9-1

(22) J:Lq_1(|/_\lq_],Tq) E [ q-1(Wq’Tq”’ where

:Hq_-l (\I_\I,Tq) = m‘in{iq(v_\’g(t]s---’tq_] 3tq9tq+]))|tq n q+'|=¢ >

. oa _ R N k
Uty = tgeltoyq =Ryl wex ™,

and where éiq is defined by (20). The crucial point is that the com-

ponent of y* for Stage q remains optimal even if the component of v

at Stage q were allowed to make use of yq, the complete vector of all samples.

As mentioned in the proof of Theorem 1, £ _ has Property ® (g,% )

q
by Lemma 3. From Lemma 4 and the subsequent Remark 4 it follows that liq_1

has Property ® (g-1,% ). Lemma 2 states that the conditional distribution

of W_, given wq_1, is DT . Therefore, another application of Lemma 3

q
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implies that ﬁ-q_] has Property #® (g-1,% ).

Let us assume now that the components of the Bayes rule have been de-
termined for  stages m+1,...,q for a fixed me{l,...,q-1}, and
that they have been inserted, together with the associated components of

Y,¢ and ¢ » into (17). Let Sy = (Syse-vssp) with [sq] = Ryseennls | = R

m m

and S1 2-.. 25, be fixed. Similarly as before, let now Tm = Jh_](Sm) =

(t],...,tm) and assume that the m-th line of (17) has been reduced to, say,

I\_Im..'l ~ ~
(23) E [ ) Yoo . (V )el (W o(tyseeest 155 \s 25 2))],
s & sm+1’Rm+1’Sm -m’ “mtem>‘"1 m-1°"m " m+1°"m+1
m+1= "m
| Smer | =Rt
where ﬁm has Property & (m,%x ).

Under these conditions,app&rently, @f.R S is optimum. Moreover,
*“m+1°"m

it can be concluded exactly in the same way as it was done for Stage q,
that for the optimum decision function, (23) is a function ﬁ.m_](wm_1,Tm),

say, where ¥ has Property $(m-1,% ). Therefore, the proof of Theorem

m-1
2 can be completed by induction.

Remark 5. A1l results derived so far
hold true - ~ if at some of the stages the corresponding sample sizes are

taken to be zero. In the pretent setting, if one takes n, =

= nq = 0, then the problem reduces to that one which was studied by Eaton

(1967), and Theorem 2 reduces to the main result of Eaton (1967) (cf. Remark

3). Clearly, in this case the assumption of strong unimodality is not needed in the

proof of Theorem 2.

Example 2. Let TyseesTy be normal populations with unknown means 8150450

and a common variance. Then at the end of every Stage m the optimum
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procedure selects from the populations which have survived so far (i.e., from
Tis ie sm) the Rm+1 populations which are associated with the largest overall
means.

Somerville (1974) has proposed a 2-stage procedure in this setting with
R3 = 1, which differs from the optimum procedure in the second stage. Instead
of the oveka]] means, the means of the corresponding observations froﬁ Stage
2 only are used. Somerville (1974) states that "intuitively the procedure...
is inferior since it ignores information obtained in the first stage." Theo-
rem 2 now confirms this statement and, moreover, it determines the optimum
procedure explicitly. This does not diminish the value of Somerville's
(1974) results, since they can be used now as approximations for the optimum
procedure. The principle here thus is the same as has been used in
Example 1: the risk of a procedure using optimé] components domi-
nates, uniformly in gEszk, the risk of procedures which are modified
with respect to these components. On the other hand, lower bounds for, say,
the probability of a correct final selection, are usually much easier to
compute for such non-optimal procedures, as was mentioned by Somerville

(1974). Results in this respect can also be found in Gupta and Miescke

(1982b ).

Application 3: g-Stage Procedures with Fixed Subset-Size at Stage q.

Assume that the number of stages, q, say, is predetermined and that the size
of the subset sq+], to be selected finally at Stage q, is fixed in advance.
The proof of the next result is the same

as the first part of the proof for Theorem 2 and therefore omitted.
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Corollary 2. Let p= (¥,%, ¢ ,9,9) be permutation invariant, where Y and

¢ satisfy the conditions stated above. Llet p' = (Y,9, 9 ,y*,¢'), where

¥' is the same as ¥ except for Stage g-1: here %' has the same component as

y*. Then under the same assumptions concerning the loss and & as in Theorem 2,

R(e,P ') < R(6,p ), for all QEQ‘Q

Example 3. Gupta and Miescke (1983) have studied 2-stage procedures for the
problem of selecting a best population (if it is sufficiently "good"). Under

the same assumptions concerning the Toss and the distributions, they have

shown that permutation invariant procedures for which the selected subsets

at Stage 1 as well as the finally selected population are associated with the larg-
est corresponding sufficient statistics, form an essentially complete class

within all permuation invariant procedures. This result can now be seen to

be a conséquence of Corollary 2. The techniques, on the other hand, which

have been used by Gupta and Miescke (1983), are more similar to Eaton's

(1967) methods of proofs.

Application 4: Bayes Truncated Procedures under i.i.d. Priors.

Assume that the number of stages is admitted to be at most g, say. Thus

Ys =1 for all sq.' Let t be an i.i.d. prior, i.e. lete,...,0, be
q

independently identically distributed apriori according to a distribution p on
B (@), where T = px ... xp. Let the basic underlying exponential family &
be strongly unimodal, and assume that the loss satisfies assumption (L1) as

well as the following.

Assumption (L2).

For every me {1,...,q} and every Sm+]’ Tet Lm(9’5m+1) be a function of only

v s k
those 6, with i€ $m+1’ pEQ .
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Theorem 3. If, under the assumptions stated above, there exists a Bayes

procedure, then there exists also a permutation invariant Bayes procedure

of the form PB = (YBs(PB ’CEB HP*SJ]*).

Proof: (Backward Induction). Let the assumptions of the theorem hold, and

Tet = (v,9, ¢ ,p,0) be any procedure with r(z,p ) < ». In view of Theorem
1, we can assume that v = y* holds. We will improve
P backwards stage by stage with the help of (17), thereby constructing
a Bayes rule of the form Pg - Firsi, some auxiliary considerations with
respect to ¢ and y* will be made.

Let me {1,...,q} and S = (s],...,sm) with s; 2 ... 2 s_be fixed.
It is easy to see that under the i.i.d. prior t, the conditional distribution
of 9, given W, = W, is equal to the product of the conditional distributions
of 955 given wim = Wss i=1,....k, wez:k. Therefore, under the assumption
(L2) and in view OTV(]9), it follows that for every Sm+] = (51""’Sm+1)
with Spt1 S Sy E -m[Lm(Q,Sm+1)] depends only on those wjm with je S

This implies that not only the component of y* for Stage m but also that one

for ¢ B depends only on those wjm with je S,- The latter has the obvious
minimizing property and can be chosen to be permutation invariant. Insert-

ing both optimum components into (17), the factor of g (ym) ifm<gqg-1,

V. "
or the integrand of E =q-1 if m=q, respectively, is seen to be of the form

v,
(24) 1 MW ) = mindE 7000 (0,8 )]s s cs b
where Tm = -1

Wzm~1(wm’Tm) depends only on those wjm with je S = tm. By using the func-

(Sm) according to Remark 2. By the reasons given above,

tion ;Zm, which is defined by (20), it follows that
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(25) m__ (4T )

m-1

= min{Z (oo (tys.. ot tut ) Nt =gt ut =t 1,

where in the proof of Theorem 1, it has been shown that éﬁm has Property
8 (my2z ). Therefore, from Lemma 4 it follows that Wzm_] has Property
39 (m_-l ’x )o

Now consider Stage q.

Assume that y* as well as ¢, have been inserted into (17). By the auxiliary

B
results derived before, the last factor in (17), which is associated with Stage

q, for every Sq = (s],...,sq) and Tq = jﬁ_](Sq) is of the form

; W

-1‘=qg-1° = ) (A T\ )
g1l 1 Ty) = E q1[77.q](qu)]

(26) 7

which depends only on those wj q-1 with j€ §q. This follows from the analogous

property of qu_1 and from the fact. that under the i.i.d. prior the condi-

tional distribution of wq, given wq_] = w, is equal to the product of the

conditional distributions of wiq, given W, g-1 = i i=1,...,k, W€ ka.

Since qu_] has Property 8 (9-1,% ), 7 1 has the same property by Lemma

q..
2 and Lemma 3.

Assume now that the Bayes procedure has been determined for
the Stages m+l,m+2,...,q for a fixed me{1,...,9-1}, and that it has been
inserted into (17). Let S = (51""’Sm) be fixed. Assume further that

for every Sm+1 = (51,...,sm,sm+1) with S4] S S and Tm+1 = Jh(Sm+1), the

m

(V) in (17) is, say M (W T

W T 4q)» which

resulting factor of &s

m+1;rm+1’sm
depends only on those wjm with j¢ St Finally, assume that Wzm has
Property & (m,x ).

Under these assumptions, the component of i* for Stage m clearly is

optimal (Bayes). Moreover, exactly the same arguments as have been used
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with respect to ?p and y*, hold true now with respect to <5B and y* at
the same stage. For the optimum components, the resulting factor of

(175 (¥)) in (17), denoted henceforth by it g (. Ty) with Ty= 7 1(Sp),

has the same properties as Wzm_](wm,Tm), defined by (24), was proved to
have.

Finally, the optimum (Bayes) stopping rule Tp at Stage m decides in
terms of the smaller of the two functions 7 -1 and ﬁfm_1, and can be chosen
to be permutation invariant. Inserting it into (17), the m-th Tine of (17)
turns out to be of the following form.

|W

e LT )]

(27) Wzm-l(wm-l’Tm) = E

where 7o = min(m __>m ).

From W?m_] and izm_], Wz&_] inherits Property ® (m-1,% ) as well as the
property that Wzm_](wm,Tm) depends only on those wjm with jes . Therefore,
by Lemma 2 and Lemma 3, iﬁm_] has Property & (m-1,% ). By analogous reasons

as have been used with respect 25q-1’ T (W

—m-]’Tm) depends only on those

wj’m_] with je€ Se
Since, apparently, we have arrived now at Stage m-1 at exactly the same

situation which was assumed at Stage m, the result follows by induction.
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Summary

Sequential Selection Procedures - A Decision Theoretic Approach

Let TyseeesTy be given populations which are associated with unknown
real parameters 81300020 from a common underlying exponential family &.
Permutation invariant seﬁﬁential selection procedures are considered to
find good populations (i.e. those which have large parameters), where
inferior populations are intended to be screened out at the earlier
stages. The natural terminal decisions, i.e. decisions which are made
in térms of largest suffiéient statistics, are shown to be optimum in
terms of the risk, uniformly in (61”"’9k)’ under fairly general loss
'aééumptiéhé. Similar results with respect to subset selections within
stages are established under the additional assumption that & is strongly
unimodal (i.e. log-concave). The results are derived in the Bayes
épproach under symmetric priors. Backward induction as well as the concept
of decrease in transposition (DT) by Hollander, Proschan and Sethuraman

(1977) are the main toois which are used in the proofs.



