# A NON-CLUSTERING PROPERTY OF STATIONARY SEQUENCES

by

Arif Zaman Purdue University

Technical Report #82-5

Statistics Department February 1982

## A Non-clustering Property of Stationary Sequences

by

#### Arif Zaman Purdue University

#### Summary

For a random sequence of events, with indicator variables  $X_i$ , the behavior of the expectation  $E\left(\frac{X_k+\ldots+X_{k+m-1}}{X_1+\ldots+X_n}\right)$  for  $1 \le k \le k+m-1 \le n$  can

be taken as a measure of clustering of the events. When the measure on the X's is i.i.d., or even exchangeable, a symmetry argument shows that the expectation can be no more than m/n. When the X's are constrained only to be a stationary sequence, the bound deteriorates, and depends on k and m. For k near n+1/2, the bound is like cm/(n-m) and k near 1 or n has a bound like  $(m/n)\log n$ . The proof given is partly constructive, and so these bounds are achieved.

### 1. Introduction

In considering portions of larger, but still finite strings of random variables, the following problem arose. If  $X_1, \dots, X_n$  is part of a stationary sequence of zeros and ones, one would not expect the ones within that portion to clump together, intuitively because each  $X_i$  is as likely as any other to have the value one. Based on that intuitive argu-

ment, one would expect that the expression  $\sup_{P \in \mathbb{S}} E_p \left\{ \frac{X_k + \dots + X_{k+m-1}}{X_1 + \dots + X_n} \right\}$ 

(note: 0/0 = 0) where  $1 \le k \le k + m - 1 \le n$ , and § is the set of stationary probability measures on binary sequences, should behave roughly like m/n. Indeed, if the probability P is restricted to be i.i.d. or even exchangeable, a simple symmetry argument yields a supremum of m/n, achieved when the  $X_i$  are identically 1. For the case of stationarity, the upper bounds on the supremum for m/n small are like 2m/n when k is near n/2, and like (m/n)log n for k closer to 1 or n (thm. 7). The key result is a constructive proof which finds the P which achieves the supremum for the two cases of m = 1, k = 1, and m = 1, k = (n+1)/2 (thm. 2).

I would like to thank Michael Steele for insisting that this could be done, and Larry Shepp for an improvement in the proof.

## 2. Results

We shall immediately narrow our concern to the simpler problem of finding bounds for

$$R_{k,n} = \sup_{P \in S} E_{p} \left\{ \frac{X_{k}}{X_{1} + \ldots + X_{n}} \right\}$$
 for  $1 \le k \le n$ .

Notice that the variables  $X_{n+1}, X_{n+2}, \ldots$  do not appear in the above expression, so only the marginal distribution of  $(X_1, \ldots, X_n)$  affects the values of  $R_{k,n}$ . A small amount of notation is needed for the next theorem, which makes use of this observation.

A circular string is a finite sequence  $a_1, \ldots, a_m$  of zeros and ones. Subscripts less than one, or greater than m will be taken circularly, so that  $a_0 = a_m$  and  $a_{m+1} = a_1$ . For a circular string a, the measure  $P_{a,n}$  gives mass 1/m to each of  $(a_1, \ldots, a_n), (a_2, \ldots, a_{n+1}), \ldots, (a_m, \ldots, a_{m+n-1})$ . Note that n may be larger than m.

#### Theorem 1

If a binary sequence X has a stationary distribution, then the marginal distribution of  $(X_1,\ldots,X_n)$  lies in a convex set of measures  $\mathbb{S}^n$ . The set of extreme points of  $\mathbb{S}^n$  is of the form  $\{P_{a,n}: a\in A_n\}$  for a finite set  $A_n$  of circular strings. Moreover,  $P_{a,n}\in\mathbb{S}^n$  for every circular string a.

More details, and a proof of this can be found in Zaman (1981) or Hobby and Ylvasaker (1964). By this theorem the maximization over all stationary sequences s, is the same as maximization over  $s^n$ , for computing  $R_{k,n}$ . Further, since expectation is a linear functional, and  $s^n$  a convex set, any supremum must be attained at an extreme point. Thus

$$R_{k,n} = \max_{a \in A_n} E_{p_a} \left\{ \frac{X_k}{X_1 + \dots + X_n} \right\}$$
 (1)

Doing an explicit maximization over these extreme points, the following key theorem is proved in the appendix.

#### Theorem 2

- (a) When k=l or n, the maximum in eq. l is achieved for  $a=o^{n-1}l^{\beta}n^{-1} \text{ for some number } \beta_{n-1} \text{ (the notation } 0^{n-1} \text{ refers to a block of } n-1 \text{ zeros).}$
- (b) When k = (n+1)/2, the maximum in eq. 1 is achieved for  $a = 0^{k-1}1$ .

## Corollary 3

Define

$$\alpha(n) = \sup_{\beta} \frac{1}{n+\beta} \sum_{i=1}^{\beta} 1/i. \qquad (2)$$

Then,

$$R_{k,n} = \begin{cases} \alpha(n-1) & \text{if } k = 1 \text{ or } n \\ 2/(n+1) & \text{if } k = (n+1)/2 \end{cases}$$
 (b)

The corollary is actually proved as a step in proving thm. 2, but can also be proved from thm. 2 using the explicit form of eq. 1 given in eq. 6 in the appendix.

Using these equalities for  $R_{l,n}$  and  $R_{(n+1)/2,n}$ , a general bound for  $R_{k,n}$  is easy to get. Theorems 4 and 5 do just that, and their results are summarized in the graphs in fig. 1.

#### Theorem 4

Define

$$\alpha(k,n) = \sup_{n-k<\beta} \frac{1}{k+\beta} \left[ \frac{n-k}{\beta} + \sum_{i=n-k}^{\beta-1} 1/i \right].$$

Then

(a) 
$$\alpha(n-k,n) \leq R_{k,n} \leq \alpha(n-k)$$
 when  $2k-1 \leq n$ 

(b) 
$$\alpha(k-1,n) \leq R_{k,n} \leq \alpha(k-1)$$
 when  $2k-1 \geq n$ 

(c) 
$$1/(n+1-k) \le R_{k,n} \le 1/k$$
 when  $2k - 1 \le n$ 

(d) 
$$1/k \le R_{k,n} \le 1/(n+1-k)$$
 when  $2k - 1 \ge n$ 

Proof:

Parts (b) and (d) follow from (a) and (c) respectively, once the symmetry condition  $R_{k,n} = R_{n+k-1,n}$  is established. To prove this, note that



Figure 1a: Bounds on  $R_{k,n}$  for n = 9



Figure 1b: Bounds on  $R_{k,n}$  for n = 99

.\_ . . .

11-to de

11 "A of a game or a money deal server to the server

....

if  $P_{a,n}$  is the distribution of  $(X_1, \ldots, X_n)$  then the distribution of  $(X_n, \ldots, X_1)$  is given by  $P_{a',n}$  for  $a' = (a_m, \ldots, a_1)$ , so  $P_{a',n} \in \mathbb{S}^n$ . Now for any circular string a,

$$E_{P_{a,n}}\left\{\frac{X_k}{X_1+\cdots+X_n}\right\} = E_{P_{a',n}}\left\{\frac{X_{n+1-k}}{X_1+\cdots+X_n}\right\}$$

from which the symmetry condition follows directly.

The upper bound in (a) follows from Cor. 3a by

$$R_{k,n} \leq \sup_{P \in S} E_P \left\{ \frac{X_k}{X_k + \ldots + X_n} \right\} = R_{1,n+1-k} = \alpha(n-k)$$

Similarly, for part (c), the result of Cor. 3b shows that for  $2k + 1 \le n$ 

$$R_{k,n} \leq \sup_{P \in S} E_P \left\{ \frac{X_k}{X_1 + \ldots + X_{2k+1}} \right\} = R_{k,2k+1} = \frac{1}{k}$$
.

The lower bounds have been included in the theorem to get some idea on the room for improvement of these bounds. It is conjectured that the actual values of  $R_{k,n}$  are much closer to the lower bounds than to the upper bounds. The lower bound (a) is obtained by using eq. 6 from the appendix to get for  $k \le (n+1)/2$ 

$$R_{k,n} \ge \sup_{\substack{a=0\\k\leq\beta\leq n}} E_{p_a} \left\{ \frac{\chi_k}{\chi_1 + \ldots + \chi_n} \right\} = \sup_{\substack{k\leq\beta\leq n\\k\leq\beta\leq n}} \frac{1}{n+\beta-k} \left[ \sum_{i=k}^{\beta} \frac{1}{i+(k-1)/\beta} \right]$$

The lower bound in (c) is achieved by letting  $a = 0^{n-k}l$ . For that value of a, if  $2k + 1 \le n$  then by eq. 6

$$E_{P_a}\left\{\frac{X_k}{X_1+\ldots+X_n}\right\} = \frac{1}{n+1-k}$$

It is not difficult to find sequences which give even higher lower bounds, but that doesn't seem to be the more fruitful direction of moving the bounds.

#### Theorem 5

$$R_{k,n} \leq \frac{1+\log(n-1)}{n-\log(n-1)}$$
 for  $n \geq 7$ .

For a proof of this theorem, we first need a logarithmic approximation to the function  $\alpha,\,$  given by the following lemma.

## Lemma 6

$$\frac{\log(\frac{n-1}{2})-\log\log(\frac{n-1}{2})}{n-1+\log(\frac{n-1}{2})-\log\log(\frac{n-1}{2})} \leq \alpha(n) \leq \frac{\log n}{n-\log n} \quad \text{for } n \geq 7$$

Proof:

Let  $\boldsymbol{\beta}_n$  be a value of  $\boldsymbol{\beta}$  which achieves the maximum in eq. 2, so that

$$\alpha(n) = \frac{1}{n+\beta_n} \sum_{i=1}^{\beta_n} 1/i .$$

This means

$$\alpha(n) \geq \frac{1}{n+\beta_n-1} \sum_{i=1}^{\beta_n-1} 1/i = \left(\frac{n+\beta_n}{n+\beta_n-1}\right) \alpha(n) - \frac{1}{n+\beta_n-1} (1/\beta_n)$$

so  $\alpha(n) \leq 1/\beta_n$ .

Similarly

$$\alpha(n) \geq \frac{1}{n+\beta_n+1} \sum_{i=1}^{\beta_n+1} 1/i = \left(\frac{n+\beta_n}{n+\beta_n+1}\right) \alpha(n) + \frac{1}{n+\beta_n+1} \left(\frac{1}{\beta_n+1}\right)$$

so 
$$\alpha(n) \geq \frac{1}{\beta_n + 1}$$
.

Combining these two results

$$\frac{1}{\beta_n+1} \leq \alpha(n) = \frac{1}{n+\beta_n} \sum_{i=1}^{\beta_n} \frac{1}{i} \leq \frac{1}{\beta_n}$$

S0

$$\frac{n-1}{\beta_n+1} \leq \begin{pmatrix} \beta_n \\ \sum_{i=1}^{\beta_n} 1/i \end{pmatrix} - 1 \leq \frac{n}{\beta_n}$$
 (3)

Using a logarithmic approximation for the center term,

$$\log(\beta_n/2) + 1/\beta_n \le \begin{pmatrix} \beta_n \\ \sum_{i=1}^n 1/i \end{pmatrix} - 1 \le \log(\beta_n+1) - \frac{1}{\beta_n+1}$$
 (4)

We shall use these equations coupled with the simple result that if  $x \log x = y$ , and e < y,

$$\frac{y}{\log y} \le x \le \frac{y}{\log \left[\frac{y}{\log y}\right]} = \frac{y}{\log y - \log \log y} . \tag{5}$$

Let  $\beta$  be the smallest value of  $\beta$  which satisfies both eq. 3 and 4. By the left part of eq. 3, and the right part of eq. 4,

$$\frac{n-1}{\beta-1} = \log(\beta-1) - \frac{1}{\beta-1}$$

which by eq. 5 means that if  $n \ge e$ 

$$\frac{n}{\log n} \leq \beta^- + 1.$$

Similarly, using the right part of eq. 3 with the left of eq. 4, the largest possible value  $\beta^+$  must satisfy

$$\log(\beta^{+}/2) + 1/\beta^{+} = n/\beta^{+}$$
.

Rewriting this as

$$(\beta^{+}/2)\log(\beta^{+}/2) = (n-1)/2$$

allows the use of eq. 5, when (n-1)/2 > e. Combining the results on  $\beta^-$  and  $\beta^+$  ,

$$\frac{n}{\log n} - 1 \le \beta_n \le \frac{n-1}{\log(\frac{n-1}{2}) - \log \log(\frac{n-1}{2})}$$

Reexpressing this in terms of  $\alpha$ ,

$$\frac{\log(\frac{n-1}{2}) - \log \log(\frac{n-1}{2})}{n-1 + \log(\frac{n-1}{2}) - \log \log(\frac{n-1}{2})} \leq \frac{1}{\beta_n + 1} \leq \alpha(n)$$

$$\alpha(n) \leq \frac{1}{\beta_n} \leq \frac{\log n}{n - \log n}$$

which proves the claimed result.  $\Box$ 

The proof of theorem 5 then amounts to the following. By the symmetry mentioned in the proof of theorem 4,

$$\max_{\mathbf{k}} R_{\mathbf{k},\mathbf{n}} = \max_{\mathbf{k} \leq (\mathbf{n}+1)/2} R_{\mathbf{k},\mathbf{n}}$$
(by thm. 4 a,c) 
$$\leq \max_{\mathbf{k} \leq (\mathbf{n}+1)/2} \left\{ \frac{1}{k} \wedge \alpha(\mathbf{n}-\mathbf{k}) \right\}$$

$$\leq \max_{\mathbf{k} < (\mathbf{n}+1)/2} \left\{ \frac{1}{k} \wedge \frac{\log(\mathbf{n}-\mathbf{k})}{\mathbf{n}-\mathbf{k}-\log(\mathbf{n}-\mathbf{k})} \right\}$$

Consider maximizing this expression over all real values  $1 \le k \le (n+1)/2$ . Since 1/k is decreasing, and the second function monotone increasing, there must be a unique crossover point  $k_n$  which attains this maximum, so that

$$\max_{k} R_{k,n} \leq \frac{1}{k_n} = \frac{\log(n-k_n)}{n-k_n-\log(n-k_n)}$$
$$= \frac{1+\log(n-k_n)}{n-\log(n-k_n)}$$

where the last expression follows by some algebra. Since  $\mathbf{k}_n \geq 1,$  one can replace  $\mathbf{k}_n$  by 1 to get the claimed result of the theorem.  $\hfill\Box$ 

Returning to the original problem, as stated in the introduction, one can state the following theorem based only on the definition of  $R_{k,n}$ .

## Theorem 7

$$\sup_{P \in \mathbb{S}} E_{p} \left\{ \sum_{j=k}^{k+m-1} X_{j} \middle/ \sum_{j=1}^{n} X_{j} \right\} \leq \sum_{j=k}^{k+m-1} R_{j,n}$$

For example this proves that for any stationary measure P,

$$E_{p}\left\{\frac{X_{k}^{+}\cdots+X_{k+m-1}}{X_{1}^{+}\cdots+X_{n}}\right\} \leq \frac{m[1+\log(n-1)]}{n-\log(n-1)}$$

and for blocks near the middle

$$E_{p}\left\{\frac{X_{-k}+\ldots+X_{k}}{X_{-n}+\ldots+X_{n}}\right\} \leq \frac{1}{n+1} + 2 \log(\frac{n}{n-k}) \leq \frac{2k+1}{n-k}$$

by using the values of  $R_{k,n}$  given in theorems 4 and 5.

#### APPENDIX

### Proof of Theorem 2b

The basic idea of the proof is to write out the expectation in eqn. 1 explicitly as

$$R_{k,n} = \max_{a \in A_n} \frac{1}{m(a)} \sum_{i=1}^{m(a)} \frac{a_{i+k}}{n}$$

$$\sum_{j=1}^{n} a_{i+j}$$
(6)

where m(a) is the length of the cicular string a. For example, when n=4, k=2, m(a)=6, and

First consider the case (b) where n is odd, and k = (n+1)/2. Let a be any circular string of length m. Then

$$\sum_{i=1}^{k} \frac{a_{i+k}}{\sum_{j=1}^{n} a_{j+j}} \leq \sum_{i=1}^{k} \frac{a_{i+k}}{\sum_{j=k+1}^{n+1} a_{j}} = \sum_{i=k+1}^{n+1} a_{i} / \sum_{j=k+1}^{n+1} a_{i} = 1$$

Since the above claim is true for any a, it will also hold for the cicular strings  $(a_{hk+1}, a_{hk+2}, \dots, a_{hk+n})$  for any integer h. Thus

$$\sum_{i=hk+1}^{(h+1)k} \frac{a_{i+k}}{n} \leq 1 \quad \text{for } h=0,1,2,...$$
 $\sum_{j=1}^{a_{i+j}} a_{j+j}$ 

Adding up these sums for h ranging from 0 to m-1,

$$m \geq \sum_{h=0}^{m-1} \sum_{\substack{i=hk+1 \\ j=1}}^{(h+1)k} \frac{a_{i+k}}{n} = \sum_{\substack{i=1 \\ j=1}}^{mk} \frac{a_{i+k}}{n}$$

$$= \sum_{h=0}^{k-1} \left( \sum_{\substack{i=hm+1 \\ j=1}}^{(h+1)m} \frac{a_{i+k}}{n} \right) = k \sum_{\substack{i=1 \\ j=1}}^{m} \frac{a_{i+k}}{n}$$

$$= k \sum_{\substack{i=1 \\ j=1}}^{m} \frac{a_{i+k}}{n}$$

The reason for the last equality is that the parenthesized expression is indendent of h, because a is circular. Rewriting the above result gives

$$E_{P_a}\left(\frac{X_k}{X_1+...+X_n}\right) = \frac{1}{m} \sum_{i=1}^{m} \frac{a_{i+k}}{\sum_{j=1}^{n} a_{i+j}} \le \frac{1}{k} = \frac{2}{n+1}$$

for any circular sequence a. On the other hand, it is straightforward to verify that the string  $a = o^{k-1}1$  achieves this upper bound, thus proving both thm. 2b, and cor. 3b simultaneously.

#### Proof of thm 2b

By the symmetry condition shown in the proof of thm. 4,  $R_{1,n} = R_{n,n}$ . The computations here will be carried out for  $R_{n,n}$  because they are notationally simpler. As further notation, let

$$S_{j} = \sum_{i=i-n+1}^{j} a_{i}$$

so that for any circular string  $a = a_1, \dots, a_m$ 

$$E_{P_a}\left(\frac{X_n}{X_1+\ldots+X_n}\right) = \frac{1}{m} \sum_{i=1}^m a_i/S_i.$$

Consider the case where the string  $a=o^{n-1}1^{\beta}$  for some integer  $\beta \leq n.$  In this case

$$E_{P_a}\left(\frac{\chi_n}{\chi_1^{+}...+\chi_n}\right) = \frac{1}{n-1+\beta} \sum_{i=1}^{\beta} 1/i \le \alpha(n-1)$$

with equality holding for some value of  $\beta$  which we shall call  $\beta_{n-1}$  in accordance with the notation used in the proof of lemma 6. The proof that the string  $o^{n-1}1^{\beta_{n-1}}$  maximizes the above expectation of all sequences will be done by contradiction. Assume that there is some  $a^0=a_1^0,\ldots,a_m^0$  and  $\epsilon>0$ , for which

$$\frac{1}{m} \sum_{i=1}^{m} a_i^0 / S_i > \alpha(n-1) + \varepsilon.$$

The method of proof involves a stepwise modification of  $a^0$ . At each step the previous sequence will be denoted by a, and the modified one by a'. The variables m', for the length of a', and  $S_j^t$  for the partial sums of a' will also be used. After each step, it will be shown that for the modified sequence,

$$\frac{1}{m'} \sum_{i=1}^{m'} a_{i}'/S_{i}' > \alpha(n-1).$$
 (7)

Yet, after a finite number of steps, the sequence a' will essentially look like  $0^{n-1}1^{\beta}$ , providing the contradiction. A global view of this procedure is provided by the flowchart in Figure 2.

## Step 1

Let m' be a multiple of m, large enough so that  $n/m' < \epsilon$  and m' > 5n (this last restriction is not necessary, but allows the treatment of a loop as a long open string). Let

$$a_{i}^{!} = \begin{cases} 0 & \text{if } i=1,\ldots,n-1 \\ a_{i} & \text{if } i=n,\ldots,m' \end{cases}$$

To prove eq. 7 note that  $a_i' \le a_i$  so  $S_i' \le S_i$ . So for  $i=n,\ldots,m'$  we have  $a_i/S_i \le a_i'/S_i'$ , and for  $i=1,\ldots,n-1$ ,  $a_i/S_i \le 1$  so

$$\sum_{i=1}^{m'} a_i / S_i \le (n-1) + \sum_{i=n}^{m'} a_i' / S_i'.$$

Since m' is a multiple of m, the length of a,

$$\alpha(n-1) + \epsilon < \frac{1}{m} \sum_{i=1}^{m} a_{i}/S_{i} = \frac{1}{m!} \sum_{i=1}^{m'} a_{i}/S_{i}$$

$$\leq \epsilon + \sum_{i=1}^{m'} a_{i}'/S_{i}'$$

which shows eq. 7.

### Step 2

Now a looks like  $0^{n-1}$ ,  $a_n$ ,  $a_{n+1}$ ,...,  $a_m$ . Let  $b = \sum_{i=n}^{2n-1} a_i$ , and define a' by

$$a_{i}' = \begin{cases} 1 & \text{for } i=n,\dots,n+b-1 \\ 0 & \text{for } i=n+b,\dots,2n-1 \\ a_{i} & \text{otherwise} \end{cases}$$

Note that a' is simply the string a, with the zeros and ones in the block  $a_n, \ldots, a_{2n-1}$  rearranged so that all the b ones are to the left of the zeros. Since a similar rearrangement of ones and zeros is done in step 4, it will be useful to establish the following general lemma about reorderings.

#### Lemma 8

Let a and a' be two strings of the same length m, which are identical except that

$$a_{n+j} = 0$$
  $a'_{n+j} = 1$   $a'_{n+j+1} = 0$ .

If  $a_{j+1} = 0$  then

$$\sum_{i=1}^{m} a_i/S_i \leq \sum_{i=1}^{m} a_i'/S_i'.$$

The following corollary amounts to repeated applications of the lemma.

## Corollary 9

If a has a block of zeros  $a_{j+1}=\ldots=a_{j+b}=0$  then construct a' by rearranging the block  $a_{n+j},\ldots,a_{n+j+b}$  so that the ones are to the left of zeros, but otherwise, a and a' are identical. Then the conclusion of the lemma still is valid.

## Proof (of lemma)

S and S' differ only in the following two cases

$$S_{2n+j} - 1 = S'_{2n+j+1}$$
  
 $S_{n+j} + 1 = S'_{n+j}$ .

Hence the only differences in  $a_i/S_i$  and  $a_i'/S_i'$  are

$$a_{2n+j}/S_{2n+j} \le a_{2n+j}/S_{2n+j}$$
 $a_{n+j}/S_{n+j} = 0 = a_{n+j+1}/S_{n+j+1}$ 
 $a_{n+j+1}/S_{n+j+1} = a_{n+j}/S_{n+j}$ .

Thus proving the claim of the lemma.

Returning to step 2 in the construction, we have

$$\alpha(n-1) < \frac{1}{m} \sum_{i=1}^{m} a_i / S_i \le \frac{1}{m'} \sum_{i=1}^{m'} a_i' / S_i'$$

where the first inequality was established in step 1, and the second follows directly form cor. 9.

## Step 3

Now  $a = o^{n-1}1^bo^{n-b}a_{2n}a_{2n+1}, \dots, a_m$ . Let  $a' = o^{n-1}1^{\beta}n-1o^{n-b}a_{2n}a_{2n+1}, \dots, a_m$  so that  $m' = m + \beta_{n-1} - b$ . From now on  $\beta$  without a subscript will

refer to  $\beta_{n-1}$ . By the defining property of  $\beta_{n-1}$ , we get the inequality

$$\frac{1}{n-1+b} \sum_{i=1}^{n+b-1} a_i/S_i = \frac{1}{n-1+b} \sum_{i=1}^{b} 1/i$$

$$\leq \frac{1}{n-1+\beta} \sum_{i=1}^{\beta} 1/i = \sum_{i=1}^{n+\beta-1} a_i'/S_i'.$$

Also, for i = n + b,..., m we have  $a_i/S_i = a'_{i+\beta-b}/S'_{i+\beta-b}$  so

$$\frac{1}{m-n-b+1} \sum_{i=n+b}^{m} a_i/S_i = \frac{1}{m'-n-\beta-1} \sum_{i=n+\beta}^{m'} a_i'/S_i'.$$

The following equation then is simply a convex combination of the previous two,

$$\frac{1}{m} \sum_{i=1}^{m} a_i/S_i \leq \frac{1}{m'} \sum_{i=1}^{m'} a_i'/S_i',$$

Thus proving eq. 7.

If  $\beta$  < b, return to step 2, otherwise go on to

# Step 4.

Now 
$$a = o^{n-1}1^{\beta}o^{n-\beta}a_{2n},...,a_{m}$$
. Define  $c = \sum_{i=2n+\beta-1}^{3n-1} a_{i}$  and let  $a_{i}^{\prime} = \begin{cases} 1 & \text{for } i=2n+\beta-1,...,2n+\beta+c-2 \\ 0 & \text{for } i=2n+\beta+c-1,...,3n-1 \\ a_{i}^{\prime} & \text{otherwise} \end{cases}$ .

Again this is a rearrangement of zeros and ones, and so eq. 7 follows from a use of cor. 8.

## Step 5

Now a =  $0^{n-1}1^{\beta}0^{n-\beta}a_{2n},\ldots,a_{2n+\beta-2},1^{c},0^{n-\beta-c+1},a_{3n},\ldots,a_{m}$ . Before prescribing a', the claim

$$2n+\beta-1$$

$$\sum_{i=2n} a_i/S_i \leq 1$$

will be shown. For this, let  $j_1, j_2, \ldots, j_d$  be the subscripts of the 1's in the block  $a_{2n}, \ldots, a_{2n+\beta-1}$ , so that  $a_j$  is the first 1, and  $a_j$  is the last occurance of a 1 in that block. Then  $j_d \leq 2n + \beta - 1$ ,  $j_{d-1} \leq 2n + \beta - 2$  and in general

$$j_k \le 2n + \beta + k - d - 1$$
.

Now

$$S_{jk} = \sum_{i=2n}^{j} a_i + \sum_{i=j_k-n+1}^{2n-1} a_i$$

$$= k + \sum_{i=j_k-n+1}^{n+\beta-1} 1$$

$$= k + [(2n+\beta-j_k-1) \vee 0]$$

$$\geq k + [(d-k) \vee 0] \geq d.$$

Thus

$$\sum_{i=2n}^{2n+\beta-1} a_i/S_i = \sum_{i=1}^{d} a_j/S_i \le \sum_{i=1}^{d} 1/d = 1$$

proving the claim.

#### Case 1

Using this result, consider the case of c > 0. Let  $a' = o^{n-1}1^{\beta}o^{n-1}1^{c}o^{n-\beta-c+1}, a_{3n}, \ldots, a_{m}.$  Then

$$\frac{2n+\beta-1}{\sum_{i=2n+1}^{n} a_{i}^{i}/S_{i}^{i}} \geq \frac{a_{2n+\beta-1}^{i}}{S_{2n+\beta-1}^{i}} = 1 \geq \sum_{i=2n+1}^{2n+\beta-1} a_{i}^{i}/S_{i}.$$

Also  $a_i' \le a_i$  for all i, so  $S_i' \le S_i$ . This means that for all i not in the range  $2n+1,\ldots,2n+\beta-1$ ,  $a_i'/S_i' \ge a_i/S_i$ , so

$$\sum_{i=1}^{m} a_i/S_i \leq \sum_{i=1}^{m'} a_i'/S_i'$$

thus proving eq. 7.

Case 2

$$c = 0 \text{ and } n \ge 16. \quad \text{Let } a' = o^{n-1} 1^{\beta} o^{n-1} a_{3n}, \dots, a_{m}. \quad \text{Then}$$
 
$$m_{\alpha}(n-1) < \begin{bmatrix} 2n-1 & 2n+\beta-1 & 3n-1 & m \\ \sum_{i=1}^{m} + \sum_{i=2n}^{m} + \sum_{i=2n+\beta}^{m} + \sum_{i=3n}^{m} \end{bmatrix} a_{i}/S_{i}$$
 
$$\le \frac{2n-1}{i=1} a_{i}/S_{i} + 1 + 0 + \sum_{i=3n}^{m} a_{i}/S_{i}$$
 
$$= \sum_{i=1}^{m'} a_{i}'/S_{i}' + 1 \quad .$$

Since  $m' = m + \beta - n - 1$ , this can be rewritten as

$$\frac{1}{m'} \sum_{i=1}^{m'} a_i' / S_i' > \frac{(m'+n+1-\beta)\alpha(n-1)-1}{m'}$$

$$= \alpha(n-1) + \frac{(n+1-\beta)\alpha(n-1)-1}{m'}.$$

So to prove eq. 7 all that is needed is to show that the second term is positive, i.e. we need to prove

$$(n+1-\beta_{n-1})\alpha(n-1) \ge 1$$
 (8)

Using a lower bound for  $\alpha$  and an upper bound for  $\beta,$  from Lemma 6, it is sufficient to show that

$$[n+1-\frac{n-2}{\ell}]\frac{\ell}{n-2+\ell} \geq 1$$

where  $\ell = \log(\frac{n-2}{2})$  -  $\log\log(\frac{n-2}{2})$ . By algebra, the sufficient condition reduces to

$$\ell \geq \frac{2(n-2)}{n} ,$$

which is true for  $n \ge 44$ . For  $n = 16, \ldots, 44$ , an actual computation of the exact values of  $\alpha$  and  $\beta$  can show eq. 8 directly.

### Case 3

c = 0, n  $\leq$  15. This is an annoying case. It can be verified that letting a' =  $0^{n-1}1^{\beta}0^{n-1}a_r, a_{r+1}, \ldots, a_m$  where  $a_r$  is the first 1 in  $a_r, a_{r+1}, \ldots, a_m$ , does satisfy eq. 7. This was verified on the computer by considering all possible values for  $a_{2n}, \ldots, a_{2n+\beta-2}, a_{n-1}, a_{3n}, a_{3n+1}$ . For the purists, it has also been verified by another hand calculation which involves considering 8 different cases.

## Step 6

The worst is over. We now have

$$a = o^{n-1} 1^{\beta} o^{n-1} a_{2n+\beta-1}, \dots, a_{m}$$

Let  $a' = o^{n-1}a_{2n+\beta-1}, \ldots, a_m, o^{n-1}1^{\beta}$ , which is just a rotation of a, and hence doesn't affect any values. Now return to Step 2 unless  $a = o^{n-1}1^{\beta}o^{n-1}1^{\beta}, \ldots, o^{n-1}1^{\beta}.$ 

The entire procedure is summarized by the flowchart in figure 2. For any return to step 2 (either from step 3 or 6) some elements of the original sequence are either deleted or reordered into blocks of  $0^{n-1}1^{\beta}$ . Since no new disordered elements are created at any step, in some finite number of steps the procedure must stop. So eventually

$$a = 0^{n-1}1^{\beta}0^{n-1}1^{\beta}....0^{n-1}1^{\beta}$$

and eq. 7 holds, so

$$\frac{1}{m} \quad \sum_{i=1}^{m} a_i / S_i > \alpha(n-1).$$

But for this a,

$$\frac{1}{m} \sum_{i=1}^{m} a_i / S_i = \frac{1}{n-1+\beta} \sum_{i=1}^{\beta} 1/i = \alpha(n-1)$$

providing the contradiction which proves the theorem.



Figure 2 Flowchart: For the purposes of description, the blocks

A = 
$$a_1, \dots, a_{n-1}$$
  
B =  $a_n, \dots, a_{n+\beta-1}$   
C =  $a_{n+\beta}, \dots, a_{2n-1}$   
D =  $a_{2n}, \dots, a_{2n+\beta}$   
E =  $a_{2n+\beta-1}, \dots, a_{3n-1}$ 

## Bibliography

- Hobby, C. and Ylvasaker, D. (1964) "Some structure theorems for stationary probability measures on finite state sequences", Ann. Math. Stat., Vol. 35, pp. 550-556.
- Zaman, A. (1981) "Stationarity on finite strings and shift register sequences", Technical report #81-33, Purdue University.