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Summary
For a random sequence of events, with indicator variables Xi’ the

L

X]+...+Xn

behavior of the expectation Ef( )for 1 <k <k+m-1 <n-can

be taken as a measure of clustering of the events. When the measure on
the X's is i.i.d., or even exchangeable, a symmetry argument shows that
the expectation can be no more than m/n. When the X's are constrained
only to be a stationary sequénce, the bound deteriorates, and depends on
k and m. For k near n+1/2, the bound is like cm/(n-m) and k near 1 or n
has a bound 1ike (m/n)logn . The proof given is partly constructive,

and so these bounds are achieved.



1. Introduction

In considering portions of larger, but still finite strings of ran-
dom variables, the following problem arose. If X]""’Xn is part of
a stationary sequence of zeros and ones, one would not expect the ones
within that portion to clump together, intuitively because each Xi is as

likely as any other to have the value one. Based on that intuitive argu-

{ L A }

X1+"'+Xn

ment, one would expect that the expression sup Ep
PeES

(note: 0/ = 0) where 1 <k <k +m=-1<n, and § is the set of station-
ary probability measures on binary sequences, should behave roughly like
m/n.  Indeed, if the probability P is restricted to be i.i.d. or even ex-
changeable, a simple symmetry argument yields a supremum of m/n, achieved
when the Xi are identically 1. For the case of stationarity, the upper
bounds on the supremum for m/n small are Tike 2m/n when k is near
n/2, and 1ike (m/n)log n for k closer to 1 or n (thm. 7). The key
result is a constructive proof which finds the P which achieves the
supremum for the two cases of m=1, k=1, andm=1, k = (n+1)/2
(thm. 2).

I would 1ike to thank Michael Steele for insisting that this could

be done, and Larry Shepp for an improvement in the proof.

2. Results

We shall immediately narrow our concern to the simplier problem of find-

ing bounds for

X
k
R = sup E {——————————} for 1 < k < n.
k,n pcg P X]+...+Xn
Notice that the variables X X .. do not appear in the above expres-

n+1°%n+2° "
sion, so only the marginal distribution of (X1""’Xn) affects the values

of R A small amount of notation is needed for the next theorem, which

k.n®
makes use of this observation.



A circular string is a finite sequence Ayseeesdp of zeros and ones.
Subscripts less than one, or greater than m will be taken circularly, so

that a, = and a1 < - For a circular string a, the measure Pa

a
m ,n

gives mass 1/m to each of (a],...,an),(az,...,an+1),...,(am,...,am+n_]).

Note that n may be larger than m.

Theorem 1

If a binary sequence X has a stationary distribution, then the mar-
ginal distribution of.(X],;..,Xn) lies in a convex set of measures §".
The set of extreme points of s" is of the form {Pa,n: a GAn} for a finite
set An of circular strings. Moreover, Pa’néisn for every circular string

a.

More details, and a proof of this can be. found Tn Zaman (1981) or
Hopby and Ylvasaker (1964). By this theorem the maximization over all

stationary sequences § , is the same as maximization over & n’ for com-

puting Rk,n' Further, since expectation is a linear functional, and $ n

a convex set, any supremum must be attained at an extreme point. Thus

R =max E T v (1)
k,n aEAn Py X1+"'+Xn

Doing an explicit maximization over these extreme points, the follow-

ing key theorem is proved in the appendix.

Theorem 2
(a) When k=1 or n, the maximum in eq. 1 is achieved for

n-1.8n-1

a=0 1 for some number 8 _4 (the notation o

refers to. a block
of n -1 zeros).

b) When k = (n+1)/2, the maximum in eq. 1 is achieved for
1

(
a = of 1,



Corollary 3

Define
-
a(n) = s:p T8 121 1/i (2)
Then,
a(n-1) if k=1o0rn (a)
feon = { 2/(n+1) if k = (n+1)/2 (b)

The corollary.is actually proved as a step in proving thm. 2, but
can also be proved from thm. 2 using the explicit form of eq. 1 given in
eq. 6 in the appendix.

Using these equalities for R],n and R(n+1)/2,n » a general bound for
Rk,n is easy to get. Theorems 4 and 5 do just that, and their results

are summarized in the graphs in fig. 1.

Theorem 4
Define
-1
: 1 n-k 8 .
alk,n) = sup [-——— + ¥ 1/1] .
n-keg KBLB iEnk
Then
(a) a(n-k,n) <R < a(n-k) * when - 2k -1 <n
(b) alk-1,n) <R, <alk-1) = when 2k -1>n
(c) 1/(n+1-k) E.Rk n < 1/k when 2Kk - 1 <n
(d) Vk <R o < 1/(n+1-k). when 2k - 1 >n
Proof:

Parts (b) and (d) follow from (a) and (c) respectively, once the sym-

metry condition Rk = R is established. To prove this, note that

oN nt+k-1 1
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if Pa 0 is the distribution of (X1""’Xn) then the distribution of
(Xn,...,X]) is given by P_, " Now

1 —
a'.n for a (am,...,a]), S0 Pa' n€8

5

for any circular string a,
A

X1 -k
P X+ L X
a,n 1 n

P, 3 Xi+. . +X
a',n 1 n

E = E

from which the symmetry condition follows directly.
The upper bound in (a) follows from Cor. 3a by
A
Ron <SP Epzmg = Ry 1ok = o(n=k)

Similarly, for part (c), the result of Cor. 3b shows that for 2k + 1 <n

X
k 1
R < sup E g ; = R =

ksn =pca P Kite oot hop 4 k.2k+l  k

The lower bounds have been included in the theorem to get some idea
on the room for improvement of these bounds. It is conjectured that the
actual values of Rk,n are much closer to the lower bounds than to the
upper bounds. The lower bound (a) is obtained by using eq. 6 from the

appendix to get for k < (n+1)/2
X

B
k 1 .
R, > sup E 3—————————— = Sup  —— [ ) 1/1+(k-1)/6]
k,n n-k.g Py X]+...+Xn k<g<n ntg-k | .%
a=0" 1 — =
k<g<n

n-k

The Tower bound in (c) is achieved by letting a = 0" "1. For that value

of a, if 2k + 1 < n then by eq. 6

'E ; k 2 o]
Pa X]+--.+Xn n+]-k
It is not difficult to find sequences which give even higher lower

bounds, but that doesn't seem to be the more fruitful direction of moving

the bounds. |



Theorem 5

1+1og(n-1)
Rk,n < n=Tog(n=T) forn > 7.
For a proof of this theorem, we first need a logarithmic approximation

to the function o, given by the following lemma.

Lemma 6

-1 n-1
Tog(">)-Tog Tog(%5H)
2 2 < afn) < _logn forn > 7

n-1og n

n—1+log(n%l)-]og 1og(ﬂ%l)

Proof:

Let B, be a value of 8 which achieves the maximum in eq. 2, so that

-—

n
a(n) = Z 1/14

n+
Bn

This means

n . n+8n 1
a(n) > ﬁ:g;jT' 12 1/i = <H;E;:T> a(n) - ﬁiéng'(]/Bn)

so a(n) <1/, -

Similarly

a\n} > —/—= > i a7 jaln) +
n+s +1 51 n+g +] n+g +] R +1

so a(n) > AT -
n

Combining these two results

n
1 .

< a(n) = VAR
8n+] n+8n i=



SO
B
n-1 n n
<\ ) ]/1> -1 < = (3)
Bnﬂ <1‘=1 Bn
Using a Togarithmic approximation for the center term,
Bn :
log(s,/2) + 1/8, < 121 171 ] -1 < Tog(g +1) - 5 (4)

We shall use these equations coupled with the simple result that if

xlogx =y, and e <y,

Yy N - N
Tog y <%= ]09[1 Y3 Tog y-Tog Tog y * (5)
og y

Let 8~ be the smallest value of g8 which satisfies both eq. 3 and 4. By
the Teft part of eq. 3, and the right part of eq. 4,

n-1 lTog(g™+1) - 1

g +1 B +1

which by eq. 5 means that if n > e

103 n <8 +1.
Similarly, using the right part of eq. 3 with the left of eq. 4, the larg-

est possible value B+'must satisfy

Tog(g"/2) + 178" = n/g"

Rewriting this as

+ +
(8 /2)10g(g /2) = (n-1)/2
allows the use of eq. 5, when (n-1)/2 > e. Combining the results on 8
+
and g ,

n-1
Tog("5H)-Tog Tog("5H)

n
log n

<
n__.



Reexpressing this in terms of q,

—_—

n-

Tog("51)-Tog Tog("zh) 1 )
< < ain
n-1+1og(ﬂ%l)-1og 109(—%10 = Bptl =

SN

1 log n
a(n) < ;- 2 H-Tog n

which proves the claimed result. O

The proof of theorem 5 then amounts to the following. By the symmetry
mentioned in the proof of theorem 4,

max Rk,n = .max R

k ke(ntl)/2 Kol
(by thm. 4 a,c) < max 3 %— A a(n-k)z
k<(n+1)/2
1 log(n-k) |
= (e(n1)/2 3 k" m-k-Tog(n-%7 §

Consider maximizing this expression over all real values 1 < k < (n+1)/2.
SInce 1/k 1is decreasing, and the second function monotone increasing,
there must be a unique crossover point kn which attains this maximum, so

that

1og(n-kn)

’ 1
max R < 7— = — =
K Ken kn n—kn Tog(n kn)

1+1og(n-kn)
n-]ogin—kni

where the Tast expression follows by some a]gebra.' Since kn > 1, one can

replace kn by T to get the claimed result of the theorem. O

Returning to the original problem, as stated in the introduction, one

can state the following theorem based only on the definition of Rk n’



Theorem 7

{ kEm-] E } k%m-]
sup E X, X; 0 < R;
IS W E Y A E TS B =R R

For example this proves that for any stationary measure P,

)]

E { Kt X ama } m[1+1og(n
p =

-1
X1+"'+Xn n-log(n-T1)

and for b]ocks near the middle

X *. . X
ety 1 n 2k+]
Ep {x_n+...+xn } < mr P2l <

by using the values of Rk n given in theorems 4 and 5.

10
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APPENDIX

Proof of Theorem 2b

The basic idea of the proof is to write out the expectation in egn. 1

explicitly as

:
R, = max (6)
k,n ac An m(a)

where m(a) is the length of the cicular string a. For example, when n=4,

k=2, m(a) = 6, and

i=0 1 2 3 4 5 6 7 8 9
a0 11 0 10 0Ga) 1
jZ] 845 = 3 2 1 2 2 3
ot Lk 0 b0 ol

First consider the case (b) where n is odd, and k = (n+1)/2. Let a

be any circular string of length m. Then

k LI k a1.+k _ n+1 n+1 _
) ——— < ) =y = ] a Yoooas =
. L n — &0 ntl & i Na i
i=1 z a. . i=1 Z a. i=k+1 J=k+1

j=1 ™ j=k+1

Since the above claim is true for any a, it will also hold for the cicular

strings (ahk+1’ahk+2""’ahk+n) for any integer h. Thus

(h+1)k a.
p o —k .1 for h=0,1,2,...

i=hk+] .

1

e~13

J

Adding up these sums for h ranging from 0 to m-1,
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m-1 (h+1)k a

m> Jo ] Y
h%0 ishksl  § =15,
g1 g1 M
_ K (§+1)m 54k -k ? itk
h=0 | i=hm1 ¥ =1y,
sby i sEy %

The reason for the last equality is that the parenthesized expression is

indendent of h, because a is circular. Rewriting the above result gives

Pa\XyFe ot mos2q E . - k n+]
=1
for any circular sequence a. On the other hand, it is straightforward
k-1

to verify that the string a = 0" '1 achieves this upper bound, thus prov-

ing both thm. 2b, and cor. 3b simultaneously. O

Proof of thm 2b

By the symmetry condition shown in the proof of thm. 4, R] n - Rn .

The computations here will be carried out for Rn n because they are nota-

b

tionally simpler. As further notation, let

s )
s = d.
R B
so that for any circular string a = PR W
X m
1
Ep | v = = 7 a./s; .
Pa( X1+"'+Xn > m o2y 17
Consider the case whére the string a = on_]1B for some integer g < n.

In this case

1§ 1t < alnen)
— T < a{n-
n-1+8 .2 -

m
av
o))
TN
><
—
+'
. ><
. |5
+
><
=
~
It
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with equality holding for some value of B8 which we shall call B-1 in

accordance with the notation used in the proof of lemma 6. The proof

-1.Bn-1
that the string o" ]1 n-1 maximizes the above expectation of all sequences
will be done by contradiction. Assume that there is some aO = a?,...,ag

and € > 0, for which
> a(n-1) + ¢.

The method of proof involves a stepwise modification of ao. At each step
the previous sequence will be denoted by a, and the modified one by a'.
The variables m', for the length of a', and Sj for the partial sums of a'

will also be used. After each step, it will be shown that for the modified

sequence,
1
o ) a%/S% > a(n-1). (7)
i=1
Yet, after a finite number of steps, the sequence a' will essentially look
like On-115’ providing the contradiction. A global view of this procedure

is provided by the flowchart in Figure 2.

Step 1

Let m' be a multiple of m, large enough so that n/m' < e and m' > 5n
(this Tast restriction is not necessary, but allows the treatment of a loop
as a long open string). Let

0 if  i=1,...,n-1

a. if  d=n,....m

To prove eq. 7 note that a% < a; so S% <S.. So for i=n,...,m" we

i i

have ai/Si < a;/Ss, and for i=l,....n-1, ai/Si <1 so

m
Z a;/S; < (n-1) + izn ai/s; .
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Since m' is a multiple of m, the length of a,

(n-1) I )
a{n-1) + ¢ < — a./S. = — a./S.
sz 10T mtoo2q P
ml
< gt .Z a%/S%
i=1
which shows eq. 7.
Step 2
] n-1 2n-1 _
Now a Tooks like O ,an,an+],...,am. Let b = izn ;s and define
a' by
1 for i=n,...,n+b-1
a% = (0 for i=n+b,....2n-1
a. otherwise

i

Note that a' is simply the string a, with the zeros and ones in the

block Apse e

the zeros.

»85,_1 rearranged so that all the b ones are to the left of

Since a similar rearrangement of ones and zeros is done in

step 4, it will be useful to establish the following general Temma about

reorderings.

Lemma 8

Let a and a' be two strings of the same

except that

n+j

an+j+] -

If a = 0 then

J+

ne-13

.i

length m, which are identical

=0 an+j =1

=1 a6+j+] =0 .
m

/55 < L a3/S
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The following corollary amounts to repeated applications of the Temma.

Corollary 9

If a has a block of zeros aj+1 = ... = aj+b = 0 then construct a' by

rearranging the block a so that the ones are to the left of

n+j,no-,an+j+b
zeros, but otherwise, a and a' are identical. Then the conclusion of the

Temma still is valid.

Proof (of Temma)

S and S' differ only in the following two cases

S -1=25;

2n+j 2n+j+1

- 1

Hence the only differences in ai/Si and a%/S% are

/S /S]

a2n+j 2n+j =a 2n+J 2n+j

iS5 = 07 3541/ Spas4

an+j+'|/sn+j+'| n+\]/S

Thus proving the claim of the lemma. O
Returning to step 2 in the construction, we have
1 m 1 m'
Ot.(n-]) < -I'H Z a/Si ITI_I Z a_'l/S1'

where the first inequality was established in step 1, and the second follows

directly form cor. 9.

Step 3
n-1.b_.n-b

Bl n-
Now a =0 '1°0 Let a' = On']l n ]On ba

ndon+1 20 2% 2nd2n+1°

..»a so that m' =m+ g 4 - b. From now on g without a subscript will
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refer to g By the defining property of g8 ., we get the inequality

n-1° n-1
1 n+b-1 1 b .
P T 121 a;/S; = 75 121 1/1
I R Ll
< W iZ] 1/i = 12} ai/Si .

Also, for 1 =n + b,...,m we have a./s; = a1+s-b/si+s-b SO

m m'

— a;/S T /S: .
m-n-b+1 .2 4p iTneg 1]

71 7 m'-n-g-1

The following equation then is simply a convex combination of the previous

two,

Thus proving eq. 7.

If B8 < b, return to step 2, otherwise go on to

Step 4.
Now a = on']180n_6a2n,...,am. Define ¢ = ?E—] a; and Tet
i=2n+g-1
1 for i=2n+g-1,...,2n+g+c-2
a% =(0 for  i=2n+g+c-1,...,3n-1

a; otherwise .

Again this is a rearrangement of zeros and ones, and so eq. 7 follows

from a use of cor. 8.

Step 5
Now a = On—]1Bon_Ba2n,...,a2n+8_2,1c,0n-B'C+1,a3n,...,am . Before
prescribing a', the claim
2nt+g-1

i=2n
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will be shown. For this, let jT’jZ""’jd be the subscripts of the 1's in

the block a 1° so that aj is the first 1, and aj is the last

1 d
occurance of a 1 in that block. Then jd <2n +g-1, jd_].f_Zn +B8~ 2 and

2n°" " *%on+g-

in general
jk_<_2n+6+k-d-1.
Now
gk 23-1
S. = a, + a.
Ik q=2n T i=j, =n+1 1
n+g-1
ke
1=Jk-n+1
= k + [(2n+g-j, -1} v Q]
>k + [(d-k}v o] >d
Thus
2n+g-1 d d
D) a /Si = .Z aj./Si 5_.2 1/d = 1
i=2n i=1 i i=1

proving the claim.

Case 1

Using this result, consider the case of ¢ > 0. Let
= oM T1Bn-1cn-B-c+l

g N TP e Then
2§+3-1 a%/S% N g@ﬂiﬁ:l- - Z_ZE+B-] a.i/S-i .
i=2n+1 2n+g-1 i=2n+1

Also a%_g a; for all i, so Si < S;. This means that for all i not in the

range 2n + 1,...,2n + g - T, a:/S; z_ai/Si, S0

3

1 i

nNr~13

ai/Si <

Il o~

CHAY

i 1

thus proving eq. 7.
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Case 2
c=0andn>16. Leta'-= On']]BOn_]a3n,...,am. Then
2n-1  2n+g-1  3n-1 m
ma(n-1) < yo+ ) + ) + ) a,/S,
i=1 i=2n i=2n+g  i=3n

2n-1
)

m
: ai/Si +1+0+ 1Z3n ai/Si

| A

1

m

L

Joal/st4

i=]

Sincem' =m+g-n -1, this can be rewritten as
T

o Loai/sy > m

(m'+n+1-8)a(n-1)-1

= o(n-1) + (n+1-8);$n-1)-] .

So to prove eq. 7 all that is needed is to show that the second term is
positive, i.e. we need to prove

(n+1-g _1)a(n-1) > 1 . (8)

Using a Tower bound for o and an upper bound for g, from Lemma 6, it is

sufficient to show that

1= B2 1 iy 2]

where ¢ = 1og(ﬂ%g) - log 109(9520. By algebra, the sufficient condition

reduces to

2(n-2)
n -

Loz

which is true for n > 44. For n = 16,...,44, an actual computation of the

exact values of o and B can show eq. 8 directly.
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Case 3

c =0, n <15 This is an annoying case. It can be verified that

letting a' = on'llson']a a cesd where a, is the first 1 in a2

r’rHl” r+1°
>3 does satisfy eq. 7. This was verified on the computer by consider-
ing all possible values for Qo5 +38p1 10 93 and CENPLESRE For the purists,

it has also been verified by another hand calculation which involves con-

sidering 8 different cases.

Step 6
The worst is over. We now have

a= on'1160n_1 ,a

a2n+8_-l’-¢- m

(- n-1 n-1,8
Let a o) a2n+B-1""’am’O 1

hence doesn't affect any values. Now return to Step 2 unless

a = oV 118198 . o"1q8,

, Which is just a rotation of a, and

The entire procedure is summarized by the flowchart in figure 2. For
any return to step 2 (either from step 3 or 6) some elements of the original
sequence are either deleted or reordered into blocks of On-116. Since no
new disordered elements are created at any step, in some finite number of

steps the procedure must stop. So eventually

a= o lBn-118 o148
and eq. 7 holds, so
7
- Y ai/S. > a{n-1).
i=1
But for this a,
Y 1 E .
m 121 3;/5; = poTve 121 1/1 = aln-1)

providing the contradiction which proves the theorem.



Step 1 Add block of zeros A,

and Tengthen sequence

i]f

Step 2 Reorder block BC

ones to the left of zeros

no

20

b=#1"'s in BC < B

Step 3 Inserf g - b 1's in B.

|}

Step 4 Reorder E, ones to the

left of zeros

Step 5 Zero or delete portions

of D

Yes

Step 3 Delete b - g 1's

“Is.a in final form?

Step 6 Rotate AB to the right

Figure 2 Flowchart: For the purposes of

A= al,...,a

lwe)
1}
Q0
-
-
fo}]

from BC
-~
—( sToP j

description, the blocks

D=

aznga--,a

= a2n+B_],...
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