URN MODELS FOR MARKOV EXCHANGEABILITY

by

Arif Zaman
Purdue University

Technical Report #82-4

Statistics Department
Purdue University

February 1982



URN MODELS FOR MARKOV EXCHANGEABILITY
by
Arif Zaman
Purdue University
Summary
Markov exchangeability, a generalization of exchangeability pro-
posed by de Finetti, requires that a probability on a string of letters
be constant on all strings which have the same initial letter and the
same transition counts. The set of Markov exchangeable measures forms
a convex set. A graph theoretic, and an urn interpretation of the

extreme points of this convex set is given.
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1. Introduction

A proability on finite strings of letters is said to be Markov ex-
changeable if it assigns the same probability to strings which have the
same initial letter and the same transition counts (e.g. abbaab, abaabb,
aabbab, or aababb). Diaconis and Freedman (1980) consider the problem
of expressing the extreme points of the set of Markov exchangeable prob-
ability measures. The general solution was posed as an unsolved prob-
lem, though they gave an urn model for a two letter alphabet. A direct
solution to the general alphabet problem in Zaman (1981) implicitly in-
volves some graph theoretic reasoning. Making an explicit identifica-
tion between strings of letters and paths on graphs, a Markov exchange-
able extreme point corresponds to an Eulerian walk on a graph. The
original solution can then be seen as a restatement of the BEST theorem
of graph theory, named after the initials of de Bruijn and Ehrenfest
(1951) and Smith and Tutte (1948). Similar uses of the BEST theorem to
get results for Markov chains abound in the literature, e.g. Dawson and
Good (1957), Goodman (1958), as well as the survey paper by Billingsley
(1961).

2. Exchangeability and Partial Exchangeabi]ity

For the assignment of subjective probabilities, exchangeability has
been proposed by de Finetti (1975) as a simplifying assumption reflect-
ing a symmetric type of ignorance. Given random variables X],...,Xn,
if a priori "each random variable is like every other one", then a prior
should reflect this ignorance by being unchanged under a reordering of the
X's. For example whatever probability is assigned to the event (X1 =1,

X2 =1, X3 = 2) must also be assigned to the two other rearrangements



with one X=2, and the other two X's=1. Some enthusiasts have found -
exchangeability , a complete replacement for the classical i.i.d. assump-
tion for the reasons that (1) it is an understandable assumption (2) it

is the correct Bayesian counterpart to the classical concept of repeated
independent identical trials (3) by using de Finetti's theorem in its
infinite or finite forms, it is possible to act as if a sequence is i.i.d.
with an unknown distribution, starting from the "weaker" assumption of
only exchangeability.

To cover more complicated types of symmetry, the definition of ex-
changeability can be generalized in a number of ways. The special case
of interest here is Markov exchangeability, where a sequence X]""’Xn
is thought of as a time series in which the outcome of a.trial may effect
the outcome of it's immediate successor. In the spirit of exchangeability,
if "every transition (xi,x1+1) is Tike every other transition (xj,xj+1)",
then two sequences with the same transition counts and the same initial
state should be assigned the same probability. For example the probabil-
ity assigned to the sequence 1,2,1,3,3,2,3,2 must also be given"to the
sequence 1,2,1,3,2,3,3,2 or 1,3,3,2,3,2,1,2. Any measure satisfying

this property is called Markov exchangeable.

3. Extreme Points

It is rather straightforward to verify that if two measures are
(Markov) exchangeable, then a mixture of the two with any mixing prob-
ability will also be (Markov) exchangeable. Thus the set of exchange-
ab]e measures and the set of Markov exchangeable measures are both con-
vex sets.

To find the extreme points of these sets, for any sequence

X = (X],---,Xn) let [x] denote the set of all sequences which are required

to



have the same probability as x (e.g. in the case of exchangeability [x]
is the set of all reorderings of the elements of x). Define P[x] to be
the measure which picks one element equiprobably from the (finite) set
[x]. That these measures are all the extreme points and their convex
hull forms a simplex follows from-a little intrespection, or from the
finite form of de Finetti's theorem in Diaconis (1980).

As an example, in the case of exchangeability, let x = (1,1,2).
Then P[x] picks one of (1,1,2) (1,2,1) or (2,1,1) with probability 1/3.
In general P[x] can be seen to be the measure generated by drawing a ran-
dom sequence without replacement from an urn containing the n items X],

"’Xn'

For Markov exchangeability [x] is the set of all sequences with
the same initial value X], and the same number transitions of each type.
Letting tab(x) represent the number of (a,b) transitions in the sequence X,
the set [x]= :y=Xp¥ ab tab(x)=tab(y)}. Though this does completely
characterize the extreme points, it has very little intuitive content.
The next section considers sequences generated as walks in graphs. These
will be used to provide another more intuitive characterization for [x]

and the extremal measures P[x]'

4. The BEST Theorem

The word graph here will refer to what is sometimes called a multiply
connected finite di-graph. Specifically, a graph is a finite set of ver-
tices, here taken to be {1,...,m} without loss of generality, and an ad-
jacency matrix A, with entries Aij counting the number of edges directed
from the vertex i to the vertex j. Any other graph with the same vertex

set, and an adjacency matrix B is called a subgraph if Bij 5-A1j for all



i and j. The indegree of a vertex i, denoted by D (i) = ) Aji is the
J

number of edges directed into i. Similarly the outdegree D+(i) =) Aij'
J

A sequence of vertices x = XpaXoseuesXy is called a walk if each
(Xk’xk+]) is an edge. The walk is closed if x; = x.. A graph is called
a tree if it has no closed walks. A tree is said to be towards a vertex
iif D+(1) = 0 and D+(j) = 1 for every other j. Graphically, this is the
situation when, from every point other than i, there is exactly one edge
out, eventually leading to i. A walk is Eulerian if it uses each edge

of the graph exactly once. Using the language of transition counts a
"walk x is Eulerian if and only if tij(x) = Aij' |

The set [x] thus corresponds to all Eulerian walks on the graph with
.(x). A constructive method to generate all the

J
Eulerian walks on such a graph is given below. It will be helpful to

adjacency matrix ti

look at the graphic example in Figure 1.
Given a sequence x = XpseeosXp consider the graph with Aij = tij(x)'

1. Let G be a subtree towards Xn (one always exists). The edges in (
are called emergency exits (not to be used except as a last resort).
By definition, there is exactly one emergency exit from each vertex
except for Xpo which has none.

2. At each vertex pick some ordering for all the exit edges from there
with the condition that the emergency exits be the last in order.

3. Construct a walk by starting at x, and taking the unused edges that

are earliest in order at each point along the walk, until the walk

can not continue on an unused edge.



Figure 1: For x = 13233212. The solid lines are the graph with
Aij = tij(x)' The addition of the dashed line makes the
graph A referred to in the proof. The bold lines form
the emergency exit tree. The Eulerian path 12321332 gen-
erated by the chosen ordering is shown by the dotted con-

nections.



Theorem (BEST)

Every Eulerian walk starting with Xy can be generated by an appro-
priate choice of the tree G in:step 2, and the ordering in step 3.
Conversely, every different choice of a tree and an ordering will gener-

ate a different Eulerian walk.

Actually the BEST theorem goes further than this, to get a method
for counting all the possible trees to Xp 2 and from there to a formula
for the total number of Eulerian paths. The above theorem is actually
just a part of the proof of the BEST theorem, but it will suffice. The
proof here is adapted from Kastelyn (1967), and does not do justice to
that thoroughly readable and detailed proof of the entire BEST theorem.

If a further edge (xn,x]) is added to the original graph, then

~

X = XpsXyseoesXp is a closed Eulerian walk on the new graph. For this

closed walk, every enterance to a vertex x., namely every (Xi—l’xi) is

i
associated with an exit (xi,x1+]) from that point. This is true even

for (Xn—l’xn) , if the exit is identified to be (xn,x]). This implies
that any other walk Yooy oYy using distinct edges which starts with

Yo= %, and ends with some yk# X, can always be continued, because for the

last entry into Yo there must be a corresponding unused exit from Y e

shall now restrict our attention to this augmented graph, and consider
the problem of finding all closed Eulerian walks y = YooYy with
Yo = %, and Y1 = Xg» which is equivalent to the original problem.

For the first part of the theorem, given the Eulerian walk y,
order the edges at each vertex in the order that they are used. We

need to show that the last edges used from each vertex other than Xp



form a tree to X+ If any two adjacent edges (i,j) and (j,k) are the
last edges used from i and j respectively, then the (j,k) step being
the Tast exit from j msut occur after (perhaps not immediately) the
(i,j) step which enters j. So the set of last edges (emergency exits)
from vertices other than Xy does not contain a closed loop, because
that would represent an ordered sequence of steps in the walk y, the
last of which occured before the first. The remaining conditions of

being a tree to x_  are easily met by the emergency exits.

n
To prove the converse, we need show that any walk y = Yos¥yoees¥y
taken according to the prescription traverses all the edges. It has
already been shown that Y = Xy Assume some edge from some vertex ag
was not used in y. Then the emergency exit, say (ao,a]), must also be
unused, as that was to be taken only after all other exits from a, were
exhausted. If (ao,a1), an entry to ay is unused, so must an exit from
ay. This implies that the emergency exit from ay, say (a],az) was also
unused. Since the emergency exits form a finite tree (without cycles)
to X this sequence LRI FLPPRRY must eventually Tead to Xpe So there
is an incoming edge to Xn which is unused. This implies that an exit

from X remains, contradicting the assumption that the walk y cannot

continue.

5. The Extremal Measures

The description of [x] given by the BEST theorem can be used to
construct the measure P[x]’ thought of as the measure picking an Eulerian
walk equiprobably from the set of all Eulerian walks. First consider
the simple case where there exists only one subtree to X This is

always the case when the vertex set is {1,2}. In this case, the measure



P[x] is generated when all possible orderings of the non-emergency exits
are equally likely, at each vertex. This will be true if the ordering

at each vertex is done independently by draws from urns. With the identi-
fication of balls.. in urns representing the edges of a graph, the con-

struction of a random Eulerian sequence can be rephrased as -follows (Fig.2)

The glued balls scheme

Let x = SEXERET be a sequence taking values in {1,...,m}. Let G
be a tree to Xy with edges (1’91) for i # Xq* Construct m urns, with

urn % ; containing ti.(x) balls labelled j. From each urn o ;, 1 # X

J
take one ball labelled 9; (one will always exist if G is a subtree of a
graph with adjacency matrix tij(x))’ and glue it to the bottom of 2.
The draws from urns are considered random for the unglued balls, with
the glued ball drawn with certainty as the last ball after all the un-

glued balls have been drawn. Now let Y] = Xy Draw Y2 from UY . Con-
' 1

tinue drawing Yi from UY without replacement, until a draw is forced
i-1

from an empty urn.

Theorem
If ¢ is the unique subtree to X2 then the random sequence Y drawn

by the above method has distribution P[x]'

Notice the enormous similarity between the method described above,
and Markov Chains. If the draws are made with replacement, the resulting
measure on sequences would clearly be a Markov measure. Furthermore,
this solution can be seen to be the same as the one given for two state

Markov chains in Diaconis and Freedman (1980).
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Figure 2:

(a) (b)

Glued ball models for n = 13233212. The glued balls are

shown at the bottom of the urns. In 2a, the sequence 12321332
is generated by the particular sequence of draws depicted by
the arrows. Figure 2b shows a different choice of the glued
balls tree, and the arrows there correspond to the original

sequence n.
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Consider now the case where no unique tree exists. This will be
the case in most three or more state sequences, unless some transitions
do not occur. In this case, for any specific tree ¢ , the previous method
generates a uniform distribution P[x,q] » where [x,G] is the set of all
the sequences which can be generated as Eulerian walks with ¢ as the
emergency exits. By the BEST theorem [x] = U[x,G], so P[x]= Zqu[x,G]
where the constants o = #[x,91/#[x] and # denotes the cardinality of
a set. Using the combinatorial formulas to compute the numbers Gps the
general urn method for any extremal Markov Exchangeable measure is given

by the following theorem.

Theorem
For a given sequence x, choose a tree ¢ from among all possible
trees to X with probability proportional to I ti 9. For this
i#x *21
n
random choice of the glued balls, a random sequence Y drawn by the glued

balls scheme will have distribution P[x]'

Notice that the probability distribution on the set of trees is as
if a ball 95 is picked independently from urn Ui for each i # X, s con-

ditional on the event that these 9; form a tree to X

6. Conclusion

The final urn model for Markov exchangeability seems 1ike a rather
contorted construction. Intuitively, the m different urns correspond to
the m different probability distributions corresponding to each state.
The glued balls represent only a minor modification to ensure a full

length sequence. Viewed this way, the model seems a bit more natural.
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In the case of exchangeability, the claim was that exchangeability
was the basic intuitive concept, and the i.i.d. condition was a mathemat-
ical luxury, which is not needed. On the other hand, in this case it
seems like the intuition derives from Markov chains, and is used to
justify the Markov exchangeability model. Furthermore, Diaconis and
Freedman (1980a) show that even an infinite Markov exchangeable sequence
is not necessarily a mixture of Markov chains, and further conditions
are needed before a result 1ike de Finetti's theorem can be established
in this case.

It appears that Markov chains and Markov exchangeability are both
fundamental concepts, different and yet similar to each other. There
may be times when one might believe a symmetry condition, and times
when actual full independence of each Markov transition seems to be more
natural. Carrying this analogy further, it appears that the classical
i.i.d. condition should not be replaced by exchangeability, even though
it probably is overused in cases where exchangeability is a more natural

condition.
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