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Abstract
One of the often stated goals of principal component analysis is

to reduce into a low dimensional space, most of the essential informa-
tion contained in a high dimensional space. According to several rea-
sonable criteria, principal components do this optimally. From a practi-
cal point of view, principal components suffer from the disadvantage that
each component is a Tinear combination of all of the original variables.
An alternative approach is to select a subset of variables which contain,
in some sense, as much information as possible. Methods for performing

such an analysis are presented and illustrated with examples.
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1. INTRODUCTION

Principal components analysis is a mathematically appealing statis-
tical tool for examining variables in high dimensiéna] spaces. Unlike
its poor relative, factor analysis, it enjoys a solid theoretical founda-
tion and possesses many optimal properties.

Unfortunately, however, principal components are often difficult to
interpret in practical situations. Although they solve a well-defined
mathematical problem, they frequently fail to provide the statistical
consumer with concrete useful results. This difficulty explains the
popularity of various procedures which are used in an attempt to span
the selected subspace with a meaningful coordinate system.

In addition, principal components suffer from another major defici-
ency. In general, each component is a linear combination of all of the
original variables. Thus, although the dimensionality of the space may
be reduced by selecting components, ome:must still interpret
results about a large number of variables. In many applications, it is
desirable not only to reduce the dimension of the space, but also to
reduce the number of variables which are to be considered or measured in
the future.

This deficiency has not gone unnoticed by those who have studied
principal components. Srivastava and Khatri (1979) state: "The selec-
tion of principal components with the largest variances, however, may
have the disadvantage that all of the original variables (or almost all
of them) may enter into some of the selected principal components with
nonzero weights." Some attempts to remedy this deficiency are given by

Beale, Kendall and Mann (1967) and Jol1iffee (1972, 1973).



In view of these difficulties, it is natural to ask whether or not
the desirable characteristics of principal components can be obtainé&
while simultaneously reducing the number of variables to be considered.
This paper is an attempt to address this question.

I have been motivated to consider this problem by numerous consult-
ing encounters in which I have attempted to convince users of statistics
to try principal components on their data. After an explanation of the
procedure and its properties, many have been sufficiently unimpressed to
politely reply "no thank you". Other more adventurous types have run
the appropriate computer programs and returned with the output seeking
further guidance. I have explained that these linear combinations are
the solution. To their obvious next question, "What do they mean?" I
reply that such questions are not statistical and that they must inter-
pret the results. At this point, the discussion of principal components
usually terminates with a feeling of time wasted by both consultant and
client.

An encounter with a forester helped me to see clearly the inadequacy
of principal components with his data. There are many measured variables
which can be used to characterize the size of a tree. Among these are
total shaded area, Tength of leaves, number of leaves, height, girth at
various heights, volume of roots, etc. Some of these variables are easy
to measure, for example, height at three feet; some are more difficult,
perhaps requiring a team of graduate students, such as height at 20 feet;
some are destructive to the tree and extremely difficult to obtain, such
as total root area. Experienced foresters generally measure a half-dozen
or Tess variables which, in their judgement, contain the basic informa-

tion about tree sizes. Of course, with any such selection, essential



information can be Tost. However, such is also the case with the dis-

carded principal components.

2. PERSPECTIVES ON THE PROBLEM
There are several different views of principal components which
Tead to different types of optimality properties. These views are basical-
ly intuitive ideas which have been translated into precise mathematical
forms. To fully appreciate principal components and the alternatives pre-
sented in this paper, it is important to keep in mind the distinction be-
tween the intuitive idea and its mathematical translation, which although
precise internally, may be only an approximation to the more fundamental
intuitive idea.

Karl Pearson (1901) gives us one idea: "...it is deéirab]e to.
represent a system of points in plane, three, or higher dimensional space
by the 'best-fitting' straight Tine or plane." He addresses the dilemma
which arises upon consideration of the fact that the regressions of Y on
X and X on Y give different 1ines. Principal components give the perpen-
dicular distance solution. Thus, Pearson's view is that of fitting points
in a space.

Harold Hotelling (1933) offers a different view. He writes of
"a fundamental set of independent variables...which determine which values
the x's will take." Thus, for Hotelling, prediction of the original set
of variables is a fundamental concept.

C. R. Rao (1964) presents a third view: "When a large number of
measurements are available, it is natural to inquire whether they could
be replaced by a fewer number of the measurements or of their functions,
without loss of much information..." Note that the possibility of vari-

able selection is mentioned, in addition to the linear combination idea.



The variable selection theme, however, is not further pursued. For
Rao, the idea of minimizing information loss is fundamental.

In summary, the literature cited above gives three views: (1) fit-
ging points in space; (2) predicting the original variables; and (3) mini-
mizing information Toss. These ideas have various mathematical translations

which Tead to a principal components analysis-as-the optimal solution.

3. NOTATION AND ASSUMPTIONS
Let X be a p-dimensional normal random vector with mean zero and
positive definite covariance matrix f. In most applications, I will be
in correlation form although this assumption is not necessary in what
follows.
We wish to consider dimension-reducing linear transformations of
X to a random variable Y. Therefore, we let

Y = AKX, (3.1)

where Ak is a kx p matrix with k<p. Thus, Y is a k-dimensional random
variable. We can, without loss of generality, neglect a translation term
in the transformation and furthermore, assume that

AII<Ak = Ik,

(3.2)
where Ik is the kx k identity matrix. Note that the random variable Y is

normal with mean zero and covariance matrix
by = ALIA, . (3.3)
Suppose that we observe the random variable Y and want to pre-
dict the random variable X. We denote the predicted random variable by Z.

Since we have assumed a multivariate normal distribution for X, the best

predictor is simply the conditional expectation of X given Y:



Z = ($A)(ALEA )Y (3.4)

Clearly Z is a normal random variable with mean zero and covariance

matrix,
b, = $A (A ) TR (3.5)

Note that *Z is a px p singular matrix, since k< p.

Some insight can be obtained by considering the following schematic:

A
X > Y
px 1 kx1
C B
Z
pxl

The path A is determined by our choice of the matrix A The path B is

c
routine, following from the standard multivariate normal theory. Path C
is one key .to evaluating how well we traveliled path A. The extent to
which Z approximates X is a measure which can be used to select among the

various choices for path A.
A basic tool for studying principal component properties is the spec-

tral decomposition of a positive definite matrix. Thus, the matrix i can

be decomposed as follows:

3= A]g]gi + Azgzgé + ...+ xpgpgé . (3.6)

where M2y 2 ... 3_Ap > 0 are the ordered eigenvalues of I and Gyoeees

g are the associated eigenvectors.

p



Let A = diag(A],...,Ap and G = (g],...,gp). Then, G'G = I,
p _.p ' .
=1 X4 and tr(i) = z._, r;. For convenience

6AG' = §, G'$6 = A, |§] = 1 AREY

in what follows, let

Gk = (g],...,gk). (3.7)

4. OPTIMAL PROPERTIES OF PRINCIPAL COMPONENTS

In most multivariate texts, principal components are introduced as
orthogonal linear combinations having maximum variance subject to con-
straints. The derivation follows from a routine application of Lagrange
multipliers. See, for example, Anderson (1958), Harris (1975), Morrison
(1976) and Timm (1975).

There are many other optimal properties of principal components. A
collection of these is discussed below. Proofs of most of these properties
can be found in Kshirsager (1972) or Okamoto (1969). The rest follow
directly from their results.

The ten properties below each involve a maximization or minimization.
In all cases, this max or min is taken over matrices Ak to be used as in
(3.1) and subject to the constraint (3.2) for fixed values of k. A solu-
tion to each of these problems is Ak = Gk, i.e. principal components.

Other solutions may be obtained by premultiplying Gk by a kx k orthogonal
matrix. To better understand the relationships among the criteria, the
maximizing or minimizing values are also given. Also, the properties are

grouped into broad intuitive categories.

4.1 Retention of Variation

k
max tr($Y) = Iiq Age



This first criterion is the traditional view of principal components.
It expresses the concept that the sum of the variances of the Y's should

be large.

k
max|$y| = Tioq Age

(4.2)

Since the determinant of a covariance matrix is the generalized vari-
ance, this criterion is similar to the first but here, variance is express-
ed in a multivariate sense.

For the following, we assume that X] and X2 are iid with the same dis-

tribution as X and that Yj = Aka for j=1,2.

k
. kK
max|E(Y1—Y2)(Y]-Y2) | = 20, g Mg (4.4)

These two criteria are related to the .idea that points in the trans-
formed space should be kept as far apart as possible, thereby retaining
the variation in the original space. This idea can be formalized as
separation for each component as in (4.3), or in the more general multi-
variate sense as in (4.4).

The four criteria above are all concerned with path A in the schematic

of Section 3.

4.2 Retention of Correlational Structure
Let the norm of a matrix be defined as the sum of squares of its

elements. Thus, if M = (m;;) then ||M||2 = 22m§j.

P 2

. 2
m1n|lix'$zll = Liopel Mgv (4.5)

This Criterion is focused on path-C in the schematic of Settion

3. When we transform to Y and then attempt to return through Z, we would



like to reproduce as much of the original correlational structure as
possible. This criterion suggests minimizing the loss as defined by the

above norm.

4.3 Loss of Variation

p

min tr(ixIY) = Tiipa] A (4.6)
. 2 p 2
m1nll$xIY|[ = Ii_pa M- (4.7)

By considering the conditional covariance matrix of X given Y, these
two criteria address the variation not extracted by the transformation.
This can be done by summing over the original variables as in (4.6) or in

the norm sense as in (4.7). Note that the matrix inY is singular.

4.4 Predictive Capacity

max z%_. o. RZ(

J=1 "33 (4.8)

_ .k
Xj,Y) - Z.i:'.l )\_i.

In this criterion, which is due to Okamoto(1969), o.. is the (j,j)-th

JJ
element of i and RZ(XJ,Y) is the squared multiple correlation of X; with
the k-dimensional vector Y. The idea here is that it is desirable to be

able to predict the original variables from the retained components.

min E(Z-X)'(Z-X) = 2£_ .1 A (4.9)
min| JE(Z-X)(z-X)"| 7= 5°_, . A2, (4.10)

i=k+1 i
These criteria focus on path C of the schematic. A good transforma-
tion should be able to reproduce the original random variable well. The
extent to which this is not done is expressed by 7Z - X. Thus, these
criteria attempt to make this quantity small in a component by component

sense (4.9) and in the norm sense (4.10).



4.4 Eigenvalues and Eigenvectors

A11 of the above criteria give extrema which are simple functions of
the eigenvalues of §. Since these can be ordered, it is quite natural
that principal components, with the corresponding eigenvectors as ‘coefficient
vectors, are optimal. The results are mathematically attractive, in-
tuitively reasonable, and relatively easy to compute.

In the next section, an attempt is made to apply these criteria to
the variable selection problem. Unfortunately, the results are neither
mathematically attractive nor easy to compute...However, they are, hope-

fully, more applicable.

5. PRINCIPAL VARIABLES

Principal variables are .defined as a subset of variables which possess
some optimality property. To select variables, we start withvthe framework
of (3.1) and (3.2) and add the condition that Ak is of the form,

A = (1,,0),

or a matrix obtained by permuting the columns of this matrix. In the
above, O is a kx(p-k) matrix of zeros.

Instead of permuting the columns of Ak, however, it is more conven-
ient to consider permuting the elements of X. Therefore, we consider all
possible partitions of X into (Xi,Xé)' where X] is a k-vector of variables

retained and X2 is a (p-k)-vector of variables discarded. Let i be par-

titioned in the obvious way,

i]] 2{:12

-
U}

21:21 122

where $]] is the kx k covariance matrix of X,. Selection of a set of k

1"
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variables is thus equivalent to selection of a kx k matrix 11] from the
(E) possible choices. Note that there are 2P - 1 choices for all k=1,...,p.

We now consider the optimality criteria of the previous section. Each
of these will lead to an optimal choice of i]]. In addition, two other

criteria will be considered.

5.1 Retention of Variation

max tr(iy) = maxtri]]. (5.1)

Since iy = i]]’ it follows that

ok
trdy = B o

1
the variables with the k largest variances. Although this first criteria

where 011 2 Opp 2 --e z-cpp be-the ordered variances. Thus, X, consists of

is the usual starting point for principal components, its application in
the present context yi€lds a rather uninteresting result. Moreover, if 3}
is in correlation form then 054 = 1 for all i and all sets of k variables
(fixed k) are equivalent.

max[iYI = max|iqq]. (5.2)

Here, the idea is to select variables which maximize the generalized
variance. Let
- -1
¢22-1 h $22 ) j;2111]3512’
be the conditional covariance of X2 given X]. Then,
1= Tqq - Egg.q] -
Hence maximizing |{,,] is equivalent to minimizing lizz_]l.

max E(Y]-YZ)'(Y1-Y2) = 2max tr $]1. (5.3)
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max|E(Y]-Y2)'(Y2-Y])| = 2 max|$]]{. (5.4)

Since the covariance matrix of X] - X2 is simply Zi]], these results are

equivalent to (5.1) and (5.2), respectively.

5.2 Retention of Correlational Structure

: 2 . p-k .2
m1n|]$x—$2|| = min Z?=] o (5.5)
where 91,...,6p_k are the eigenvalues of $22-1' To see (5.5) we first ob-
serve that
o
EX, | X,
(1
= q X] .
\ fo1i7y
Therefore,
o b
j:Z— 'l ?
11 daint
and
0 0
b - 4=
0 iy
Obviously,
2 2
it 112 = 1. 112
But,
2
[ 117 = tr(lypqd5.)-
Now, let

too.1 = QOU,
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where the columns of Q contain the eigenvectors of ¢22-] and

@ = diag(e],...,ep_k). Thus,

tr{f,,.1455.1) = tr(QeQ'Qe Q')

I
ﬁ
=

Note that with the above notation, criteria (5.2) and (5.4) are

equivalent to
. _p-k
min 5. 6

i

5.3 Loss of Variation

m1ntr'$X|Y min Z?;$ 0:. (5.6)
m1n[|¢X|Y||2 min 1P2X oZ. (5.7)
Since
o b Ay

it immediately follows that

0 0
iXIX1=<0 )

i22-1

Results (5.6) and (5.7) are consequences of this fact.



13

5.4 Predictive Capacity

2 = 5P . _k-p
G RE(x.,Y) = 2t . - A . .
(xJ Y) Zi=1 AJ min £ 7 © (5.8)

p -
max Zj=] GJJ j= i

Since the xj are fixed, this criteria is equivalent to (5.6). Since

1 for i=1,...,k

o Al

94

for i=k+1,...,p
where Tii.y is the conditional variance of X; given Y, Thus,

P 2 = yP _ gk-p
Zj=] Oij (stY) Zj=] 055 = 5% OiiLy

1
r’-
-3

g
‘—'-
i3

—3-

N
nNo
—

The result immediately follows.

min E(Z-X)'(2-X) = min 3525 ., (5.9)
min| |E(Z-X) (2-X)" ||% = min B2 oF . ' (5.10)
Since
0 0
7-X-= I X
LTI
it follows that
i 0 0
Z-X ~ ’
U PV

and the results (5.9) and (5.10) are immediate.

5.5 Other Criteria
Let Z be partitioned as X: Z = (Zi,Zé)'. By definition, Z] = X]

and Z, = EX2|X1. Also let m = min(k,p-k) and p?,...,pé be the canonical

2
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correlations between X] and X2. Then,

. |-.l - m 2
min E(ZZ-XZ) $22(22-X2) = (p-k) - max Liaq 05- (5.11)
Roughly, this criteria suggests that Z2 and X2 should be close in the
natural metric for these variables.

To prove (5.11) we first note that

E(Zy-X) §35(ZyXy) = tr EE3(Z,mX,) (ZyoXy)"

n

-1
tr 3558051

- =le o-Ty
= tr D= trlipoda iy
The first term is simply (p-k). The second term can be examined by con-

sidering the eigenvalues for the matrix given. Let p2 denote such an

eigenvalue. The defining determinantal equation is

R T T
[$52821%11412707 1] = 0.

However, this equation is equivalent to

[ardi1hgmo dps] = 0
which is the determinantal equation for the canonical correlations.
Equation (5.11) follows immediately.

Criterion (5.11) therefore suggests that variables should be select-
ed so as to maximize the squared canonical correlations between the re-
tained and discarded variables.

A final criterion is suggested by the above. If we focus on Z, we
can ask that these projections be kept apart for pairs of observations in
an expected value sense. Therefore, let Z] and 22 be the p-dimensional
random variables obtained from a pair of iid X variables by transformations

(3.1) and (3.4).
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7.V (7.~ = P —min PK
max E(Z] 22) (Z] 22) 2[zj=] Ajmmin zi_ 91]. (5.12)

Since Z is obtained from X by the transformation

I 0
= X,
-1
fodn O
it follows that
¢H $12

E(Z]-ZZ)'(Z]-ZZ? 2 tr

I SN

2[tr i]]+tr(i2]¢{}$]2)]

2[tr f-tr §,, 1.

Equation (5.12) follows immediately from the above equality.
Note that this criteria is equivalent to minimizing the sum of the

eigenvalues of {,, ;.

5.6 Summary of Criteria

Principal components give the optimal solution for the ten criteria
given in section 4. When these criteria and the two additional ones of
the preceeding subsection are applied in the variable subset context, dif-
fering sets of variables can arise as optimal solutions. Each of the

criteria is equivalent to one of the following:

. . -k
min|$,y,¢| = min nf27 6. , (5.13)
. - p_k

min tr(¢22.1) min 2¥_1 0., (5.14)

. 2 . -k .2
min| |45, 1117 = min 2527 of (5.15)

or

max z?=] p? . (5.16)
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Note that

2
405,71 = [dpplni_; (1-65) .

Choices among the four criteria may depend upon the particular ap-
plication. Computational difficulty is another aspect which is relevant.

In principal components, results are often described by a percentage
of variation explained. In this context, the trace criterion is natural.

The form given by (5.8) leads to

25;? %
P=1T1 - o 100% , (5.17)
Bi=1 M
where P is the percentage of variation explained. Equivalently, (5.17)

can be rewritten as

1 0..R2(X.,Y)

K |
Y+ 1 O
J=1 337 100% . (5.18)

p
T NN
P = Jd Zi=k+

*3=1 %53

If the correlation form of the matrix is used, this reduces to
2
(

P = p_](k+z?

j=ke1R

XJ:Y))]OO% . (5.]9)

6. COMPUTATIONS

The determinential criteria (5.13) can be evaluated easily for all
possible subsets when p is not greater than about 20. The computation
time grows as 2P, The algorithm given in McCabe (1975) can be used for
this purpose. For 19 variables, computations took about 110 seconds on
a CDC6500 computer. The cost, at internal rates,was $2.50. The idea of
giving, for example, the top 10 subsets of each size is very appealing
from a practical point of view. In this way, a user can observe patterns

in which a particular variable shows up caonsistently in the subsets or
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where variables or collections of variables are interchangeable.

For the other three criteria, the computations are substantially
more complicated and hence, examination of all subsets appears to be
impractical. The trace criterion, however, suggests a natural step-type
algorithm:

Let the selected variables be labelled x(]),x(z),...,x(p). Then Tet
x(]) be such that

P

2
i=1 933k (3% py)

i

is maximized. Let x(z) be such that

P 0..R2(

i=1 %% (X3%(1) % (2))

is maximized. At step j, let X(3) be such that

p 2
Z_i='l Ui_iR (X_i,X(]),...,X(J-))

is maximized.

Of course, if a correlation matrix is used then the 34 drop out
of the above expressions. This step algorithm will not assure that the
trace is minimized for any given step k. However, it can be used to
select variables which explain a large proportion of the variation.

Modifications to the above algorithm could be made to increase the

chances of finding the optimal subsets. Variables could be deleted or

variables could be added several at a time.

7. EXAMPLES
To evaluate the procedures described in the previous sections, seven
sets of real data are analyzed. First,a computer program which computes

and ranks determinants for all possible subsets was used. Second,
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regressions were run to determine the percentage of variation explained
by the various subsets selected in the first step. These percentages can

be compared to the variation explained by the first few eigenvectors.

7.1 Data Set FIS

The first data set is due to Fisher (1936) and is analyzed in Anderson
(1958). There are four size measurements on Iris versicolor.

Results are presented in Table 1 -for both the correla-
tion and covariance matrices. As expected, these.two
matrices give different results in the rank order of the subsets. Also,
the determinant and percentage of variation give different orders. The
choice of matrix form and criterion for selection.of subset should be
made by the experimenter. Overall, however, the variable selection pro-
cedure compares favorably to the principal cdmponent analysis. For ex-
ample, with the covariance matrix, the first two principal components

explain 89.7% while variables 1 and 3 explain 87.3%.

7.2 Data Set J1.

Jeffers (1967) analyzed two sets of data to 111ustrate the use of
principal components. The first of these is J1 and consists of 13 measure-
ments on pitprops.

Table 2 gives the results. Jeffers suggests using the first four
components (73.7%) or the first six (87.0%). If variables rather than
components are used, then the six variables 2,3,5,11,12,13, which account
for 79.2%, give'slight1y better performance than the first four components.
The price paid for the increased simplicity of working with variables

rather than components is that two extra dimensions are needed.
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7.3 Data Set J2

Jeffers' (1967) example concerned a study of characteristics of
winged aphids. Nineteen different measurements were analyzed, including
a binary variable (number 18).

The results are presented in Table 3. Jeffers suggests that only
the first two components, which explain 85.4% of the variation, have prac-
tical significance. There are clearly several sets of five:variables:
which explain as much variation. Furthermore, the four variables 6,11,17,

19 explain 84.7%.

7.2 Data Set AH

Ahamad (1967) analyzed crime statistics using principal components.
There are 18 variables measuring different types of crimes. Since there
are only 14 observations in this data set, the full matrix is singular
and some caution is neéessary to interpret the results properly.

In Table 4, the results are given. Clearly, three or four variables

contain most of the information.

7.5 Data Set CHE

Cheetham (1973) used principal components to study polymorphism in
chejlostomes. The 11 variables used and details of the analysis are de-
scribed in his paper. The correlation matrix is given in Table 8.

Cheetham works with the first four components which account for 77.6%
of the variation. Once can get reasonably close to this figure with five

variables and exceed it with a variety of sets of six variables. (Table 5)

7.6 Data Set ORH
Orheim (1981) studies the constituent elements in coal samples. The

correlation matrix for the amounts of nine elements is given in Table 9.
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The results are presented in Table 6. The principal components and
variable selection methods compare favorably. The number of variables
needed to match the component variation explained is generally one more

than the number of components.

7.7 Data Set CS

Campbell and McCabe (1982) have studied various characteristics of fresh-
man. computer science.majors in an attempt to discriminate between those who
persist as majors and those who drop out. The pooled correlation matrix
for this study is given in Table 10.

Table 7 gives results for this data set. As with the previous example,
one or two extra variables give similar percentages of variation explained

relative to the principal components.

7.8 Summary of Results

Tables 1 to 7 generally indicate that the principal variable method
gives results comparable to principal components analysis. Since, for any
given number of dimensions, principal components explain the maximum varia-
tion percentage, an equal number of variables cannot explain more. However,
by considering a small number of additional variables, comparable results
are obtained. The simplicity of dealing with variables rather than Tinear
combinations would seem to justify this increase in many applications.

For interpretability, the percentage of variation explained appears
to be most suitable. However, the determinantial cfiterion is easily com-
puted. A reasonable compromise is to use the determinant to screen for
good subsets and then evaluate them in terms of variation explained.

The final choice of variables should be left to the researcher who

knows and understands the variables. Tables, such as those given herein,
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facilitate this choice and allow the incorporation of other information,

such as cost of measurement, into the selection process.
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Table 1.
Selected Variables for FIS Data (4 Vars)

Determinant (X1O3) Percentage of Variation Explained
Variables
Selected Correlation Covariance Correlation Covariance
1 1000. 266. 53.6 69.0
2 1000. 98. 50.8 41.4
3 1000. 221. 62.5 68.5
4 1000. 39. 59.0 47.8
1 2 723. 19.0 77.5 82.9
1 3 431. 25.4 74.1 87.3
1 4 701. 7.3 81.2 83.6
2 3 686. 14.9 81.9 80.3
2 4 559. 2.2 74.2 58.7
3 4 381. 3.3 75.5 73.1
1 2 3 285. 1.65 92.7 98.2
1 2 4 366. .38 94.3 91.9
1 3 4 162. .37 87.1 91.9
2 3 4 212. .18 90.1 : 83.2
1 2 3 4 84.0 .019 100. 100.

Principal Components Cumulative Percentage of Variation Explained:
Correlation 1 - 73.2, 2 - 86.8, 3 - 96.7; Covariance 1 - 78.1, 2 - 89.7,
3 - 98.4.
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Table 2.
Selected Variables for J1 Data (13 Vars)

Subset ) _ 3 Percentage of
Size ~ Variables Selected Determinant(X10”) Variation Explained
1 1 1000 26.0

2 1000 25.9

7 1000 25.7

10 1000 23.6

2 5 8 ' 1000 27.8
11 13 1000 21.0

4 10 1000 41.1

4 13 1000 29.3

3 6 11 12 997 38.7
2 11 12 992 46.1

1 11 12 992 46.2

4 11 13 990 38.1

4 4 9 11 13 961 56.7
2 5 11 12 950 56.4

1 5 11 12 948 56.6

1 9 11 12 945 52.8

5 4 9 11 12 13 883 65.1
11 12 13 877 59.0

1 5 11 12 13 871 66.9

3 5 9 11 13 871 64.9

6 3 5 11 12 13 783 73.0
45 9 11 12 13 762 73.5

23 5 11 12 13 726 79.2

5 8 11 12 13 696 68.8

Principal Components Cumulative Percentage of Variation Explained:

1-32.5, 2 - 50.7, 3 -65.2,4-73.7,5-80.7, 6 - 87.0.
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Table 3.
Selected Variables for J2 Data (19 Vars)

Determinant Percentage of

Su@set 3 - Variation
Size (X107) Explained
1 13 1000 70.3
14 1000 69.2
12 1000 69.1
3 1000 68.3
2 17 19 999 65.5
1 7 999 42.6
8 17 996 74.4
17 18 971 67.8
3 11 17 19 817 71.4
9 11 17 789 76.6
5 11 19 750 69.6
8 11 17 750 78.7
4 9 11 17 19 363 82.3
5 9 11 19 350 81.8
6 11 17 19 345 84.7
5 9 11 18 326 81.4
5 9 11 17 19 127 85.1
9 11 18 19 115 84.5
6 9 11 17 19 110 88.2
5 89 1 17 108 88.4
6 5 9 10 11 17 19 33 89.9
56 9 11 17 19 33 90.5
89 11 17 19 33 90.3
56 9 11 18 19 31 90.4

Principal Components Cumulative Percentage of Variation Explained:

1 ~-73.0, 2 ~-85.4, 3-289.4, 4 -292,0.
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Table 4.
Selected Variables for AH Data (18 Vars)

| Subset Determinant Percentage of

(xo%)  faatior
1 7 1000 70.5
5 1000 70.5
8 1000 69.4
6 1000 68.4
2 1 6 999 76.7
1 18 999 74.9
1 16 999 73.8
10 13 999 56.2
3 1 16 17 964 90.6
1 14 17 939 88.6
12 17 925 91.1
1 4 17 921 88.6
4 1 13 14 17 562 95.3
1 10 13 14 552 92.9
1 6 13 17 492 94.6
1 4 10 13 489 91.4

Principal Components Cumulative Percentage of Variation Explained:

1-71.7, 2 - 87.8, 3-93.3, 4 - 96.7.



Table 5.
Selected Variables for CHE Data (11 Vars)

Sgbset . 3 Pergentage of
Size Determinant (X10°) Variation Explained
1 2 1000 27.9
1 1000 26.3
6 1000 24.5
5 1000 23.6
2 3 9 999 37.8
2 7 999 49.3
1 11 999 38.7
3 10 999 39.0
3 3 9 11 962 48.1
4 78 958 51.0
78 11 957 44.0
5 9 11 953 53.0
4 89 11 895 57.8
78 11 890 59.9
4 78 11 886 60.3
1 89 11 843 64.8
5 3 789 11 760 73.8
4 789 11 715 72.1
1 3 89 11 688 76.2
1 4 89 11 676 75.4
6 34 789 11 483 80.2
4 6789 11 463 81.8
3 6789 11 458 82.0
1 34 8 9 11 430 82.3

Principal Components Cumulative Percentage of Variation Explained:

1-33.3,2-59.1, 3 -68.7, 4 ~77.6, 5-84.5, 6 - 89.0.



Table 6.
Selected Variables for ORH Data (9 Vars)

Subset Percentage of

Size Determinant (X103) Variation Explained
1 1 1000 36.6
2 1000 35.5
5 1000 35.3
3 1000 25.2
2 4 7 999 36.6
1 4 999 52.8
5 8 999 53.6
1 8 999 55.0
3 34 933 55.4
4 6 9 924 54.2
4 7 9 921 50.3
2 4 7 916 65.5
4 2 4 9 803 77.3
1 4 9 774 77.5
45 9 762 78.1
2 4 9 735 78.2
5 2 4 67 9 567 87.5
1 4 7 9 557 88.1
4567 9 546 86.6
1 34 7 9 541 87.9
6 1 34 67 9 265 93.5
234 6 9 263 92.8
3456 259 92.0
2 4 6789 228 92.1

Principal Components Cumulative Percentage of Variation Explained:

1-42.3, 2 - 62.8, 3 - 76.1, 4 - 85.8, 5 - 92.5, 6 - 96.4.



Table 7.

Selected Variables for CS Data (11 Vars)
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Supset _ 3 Eergentage of
Size Determinant (X10”) Variation Explained
1 3 1000 21.2
10 1000 20.2
8 1000 19.2
6 1000 18.7
2 7 10 999 30.9
5 9 999 19.9
2 4 999 21.9
34 999 30.7
3 910 998 40.2
3 9 996 41.2
4 5 9 996 29.3
34 9 994 40.0
4 345 9 988 50.1
34 9 987 50.5
5 9 981 51.0
45 9 11 981 41.7
5 345 7 9 972 60.3
45 9 11 962 53.4
4 5 9 955 51.0
4 5 910 949 58.9
6 2345 9 904 69.9
2 4567 9 902 67.2
2 45 89 11 878 68.5
2 456 9 11 876 68.2

Principal Components Cumulative Percentage of Variation Explained:

1-28.0, 2 - 43.0, 3 - 53.2, 4 - 62.5, 5 -70.9, 6 - 79.0.



Table 8.

Correlation Matrix for CHE Data

2 3 4 5 6 Ji 8 9 10 11
1. .221 .368 .268 .701 .289 .891 .256 -.238 -.378 ~.035
2. .490 .484 .537 .825 .020 -.230 .510 .439 .270
3. .550 .430 .484 .164 .068 .010 .036 .188
4. .423 .465 .082 .087 .184 .165 .236
5. 444 405 211 .205  .039 .054
6. 31 -.135 .292  .268  .301
7. 174 -.328 -.45% -.077
8. -.235 -.248 -.095
9. .594  .053
10. .292
Table 9.
Correlation Matrix for ORH Data
S s A TI  FE SE SR BA
AL .961 419 -.010 .926  .373 .328 .030 .304
SI 454  -.071 .879 .370 .280 032 .269
S -.058 .425  .657  .465 . 061 .225
CA -.050 .195 .005 .629  .103
TI .336  .416 .024 .272
FE .424 .093 .185
SE LA13 .261
SR .489

BA
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Table 10.

Correlation Matrix for CS Data

SATV HSR HSS  HSMAS HSMAG HSSCS HSSCG HSENS HSENG  SEX
1. SATM  .376 .174 .048 .268 .352 .216 .179 -.036 .073 ~-.183
2. SATV .217 -.010 .119 .138 .097 .243 .070 .279 .026
3. HSR .015 .078 .582 .032 .599 -.039 .682 .287
4. HSS -.018 -.033 -.069 -.066 .063 ~-.114 .089
5. HSMAS .187 .09 .110 -.009 .132 -.023
6. HSMAG .094 .531 .047 .452 .194
7. HSSCS .150 .035 -.006 -.266
8. HSSCG .063 .564 .122
9. HSENS .028 .084
10. HSENG . 354
11. SEX

*Variable names: SATM-SAT Math, SATV-SAT Verbal, HSR-high school rank,

HSS-high school size, HSMAS-high school math semesters, HSMAG-high school

math grades, HSSCS-high school science semesters, HSSCG-high school science

grades, HSENS-high school English semesters, HSENG-high school English

grades, SEX-sex (0O=male, 1=female)



