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On Brownian Slow Points

Burgess Davis

Abstract

It is shown that, for a Wiener process Xt’ both the quantities

infy T?ﬁh - X.|//h and sup, 1i X //h are almost

S0+ X 1m0+ = X¢)

surely equal to 1.

1. Introduction. Let W_, t > 0, be standard Brownian motion.

.t)
In the 1932 paper where they showed that almost every Brownian path
is nowhere differentiable ([7]), Paley, Wiener, and Zygmund proved the

stronger result that, for each ¢ > 0,

- Wy
T t+h t! _ _
P(Tim 4, T = Vt) =1,

and in 1963 A. Dvoretzky ([1]) improved this by establishing

_— |W+—W|
(1.1) P(TIM, gy ——t sy v t) = 1,

0+ =

for a positive constant <o The natural question, whether (1.1) holds for
all constants, was settled by JiP. Kahane in 1974 ([2]). The answer is no.
Kahane showed

Wy -
(1.2) P(a t: Tim o —ot -t

/Th

for a constant ¢y < =
Here, note that h may be allowed to approach 0 from either the left or the

right, giving a better result. (The two sided version of (1.1) is of course



weaker than (1.1).) Kahane calls those t which satisfy

11mh+0 lﬂﬁiﬂ_:_ﬁ&i_< ®
JTRT

sTow points.

The law of the iterated Togarithm implies that the slow points almost surely

have Lebesgue measure 0, but Kahane has proved ([2], [3]) that their Hausdorff

dimension a.s. equals 1 and that the Hausdorff dimension of those slow points

which are also zeros of wt is a.s. %, so that the slow points are a fairly

thick set. Kahane has very recently given another, simpler, proof of (1.2)

and the two sided version of (1.1), together with related results for other

Guassian processes, in [4].

Following Kahane, we will call a point t slow from the right if

T, e = Mol
h->0+ J

In Section 2 we investigate the question: How slow -from the right can
a point be? - It is shown that

. - I w
1n% hmm0+

- W

t+h t |

/h

(1.3) =1 a.s.

The proof that the expression to the left of the equality in (1.3) is no
smaller than 1 is a refinement of Dvoretzky's proof in [1], while the proof
that it is no Targer than 1 is not related to Kahane's arguments.

Let z be tHe.sma11est positive 0 of M(-%, %, x2/2); where M is the

confluent hypergeometric function (z = 1.3069), 1In Section 4 it is shown that



I | R
(1.4) P(inf, Tim o — Lt 7) = g,
/Th
but we cannot prove
L |W R |
P(inf, Tim, o — 0t - 5y =1,

/Th

Nonetheless, this is probably true. Not only does (1.4) hold, but also it

is shown in Section 4 that, if Xt and Yt are independent Brownian motions,

X = Xl
vh

S S \ : -
and if Dr = {t: 11mh_>0+ < r} and Dr is defined similarly,
X Y . . .
then Dr n Dr is almost surely empty if r < z and not empty if r > z.

S. Orey and J. Taylor have shown how rapid a point can be by proving

(see [5])

Wy W]
supy 11mh O+ tth t*r =1 a.s
2h ]og
This is equivalent to
| Wy
(1.5) sup, 1im, i e 1 a.s.,
t h0+/———-]—

giving a global upper bound for the Tim sup, as h » 0+, of wt+h - wt. In

his book ([5], p.148) F. Knight asks for a global lower bound for this 1im sup.

Precisely, Knight asks for a function ¢(h) > 0 such that,almost surely, for oll t
]1mh+0+(wt+h—wt)/¢(h) -1,and 11mh O+( t+h” t)/¢( ) = -1 for some t.

In Section 3 we come pretty close to solving this problem, and do give a lower

bound in the sense that (1.5) gives an upper bound. We prove



W W
(1.6) inf, Tim -t 't 5,
t h-0+ /ﬁ

We 'do not know -if the. 1im equals -1 for some t.

The two sided version of (1.6) is essentially known and not hard to prove.
It is
Wi

(1.7) inf, Tim i
Vihi

t -0

Note that the existence of times for which wt has a local maximum
shows that O can not be replaced by a larger number in (1.7). Only
strict maxima need be considered, and, these being countable, the
proof of (1.7) can be completed by examining the behavior of wt around
an absolute maximum. See [5] for a treatment of such ideas, which

yields sharper results than (1.7)."

Define the sets

| A, = {2 t€[0,1]: lwt+h - wtl <c/h vhe(0,17}
and

B

c-iEt €[0,1]: (wt+h - wt) > c¢/h v he(0,1]3.

We will prove that P(AC)=O if ¢ < 1 and P(Ac) >0 if ¢ > 1, implying (1.3),
and that P(Bc) =0 ifc>1and P(Bc) >0 if ¢ < 1, implying

sup, 11m|+0+(wt+h—WéYVﬁ' = 1 a.s., which is equivalent to (1.6).

For the remainder of the paper the qualifier a.s. will usually be

omitted.



2. Proof of (1.3). First the following Temma is established. Let

~ denote minimum.

Lemma 2.1. If the nonnegative random variable X satisfies

(2.1) Tim nP(X > n)/EX*n = 0,

N0

then EXP < w, 0 <p<1.

PROOF. Note that the example P(X > t) = t'], t > 1, shows that

(2.1) can hold and EX = .
Now for any nonnegative random variable Z and any p > O, E7P is finite
or infinite depending on whether } NP P(Z 3_2") is finite or infinite.

n=1

Let v, = 2" P(X > 2"). Then (2.1) implies

) n-1
]1mn+m Yn/iz1 Yi = 0.

n-1 N
For ¢ > 0 let N(e) = N satisfy yn/ ) Y; < €5 N> N. Put ) Yi = Y-
i=1 i=1
k-1

Then vy < ey and vy < ey + T wygg)e IF we put ayy = (1 4 &)k,
J:

k-1

then ope1 2 €y and ap > ey + jZ]a ), and so, by induction,

N+j
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k

Tk S ek S y(1+e)", k > 1. Since eyiS arbitfary, this implies

ExP < w, p <1, as claimed. .

Let Tr(w) = 7, = Inf{t > 1: |th = r/t}. Precise information concerning
the moments of T, May be found in Shepp; [8]. For our purposes fhe fo]]owihg
lemma suffices. The notation Pa,b and Ea,b will signify probability and

expectation associated with wt given wa = b.

Lemma 2.2. If r > 1 there is a p = p(r) < 1 such that ET? = o, Further-

more E]’df] = o,

PROOF. First the well known proof of the second statement will be

supplied. For a stopping time T we have

(2.2) EWS = ET if ET <=,

and applying this to the Wiener process wt+] under P1,0 yields
- 1) < o,

E W2

1.0 T = E],O(T1 - 1) if E

1,0
. 2 _ 3. o Y e e _
Since P],O(WTT‘_ T]) 1, this implies E1,O(T1 1) = w», so ET,OT] S o,

To prove the rest of the lemma, fix r > 1 and define

vp = Inflt > 10 W =0 or W [> r/Al,

and in general

Yo = Infit > vy 42 [W]> /&), and

Note that on {W = 0}, if A >0,
Y2k-1
P(

Yok T Take1 7 Mok1 My



using the strong Markov property and Brownian scaling. Furthermore, if
€ = P1’](w£ = 0 before |W.| = rvt), then, on {v, , < 1.}, we have, for
k >2and x >0,

Plrak = o1 > Myl )

p - A W , W = P{W = 0|W
4 (Y2k Y2k-] g YZk-]' Y2k_2 sz_] O) ( sz_] I Y2k-2)

=vP]'3O(’I] > ] + }\).Et
ThuS, since {YZk'Z < TY'} = {Y2k_3 < Y2k_2}5 this g.ives

E( )P

- p o - YN
Yok Y2k_]) ke EE];@(TTHJ L® Eygk—ZI(Y2k52<T?)

TG - Yorg)

and iteration gives

ECvpy = ore1)” 2 a(efy (e =1 ¥ e (y, = )P

= oo,

Pick p < 1 such that ¢ E ({ =P > 1. This is possible since E; At
1,041 1,071

pv, p -~ p e x
Then Err Z-EYZk 3'E(y2k Y2k-T? + o 3s k » =,
Next put MW = M = max

Wels and T0 = T = inf{t > T: [W,| = M+ r/E}.

O<t<I tl r

Lemma 2.3. If c <1, ET, < =

PROOF. For t > 1 the equality (2.2) gives

2

TC*t

E(M + c/Tc“t)Z

ETc“t = EW

| A

EMe + 2CEM/T_T + CZETCAt.



Thus (1-c*)ET "t < EM® + 2cEM/T T

L Nt
2+ 2¢(EMP)E(ET 1) %

< EM

2

Since EM™ ig finite, ETc“t must stay bounded as t + «, S0 ETC < o,

As has been mentioned, the following theorem implies (1.3).
Theorem 2.1. If ¢ <1, P(A) =0, and if ¢ > 1, P(A ) > O.

PROOF. Fix ¢ < 1, and for a subinterval [a,b] = I of [0,1] Tet

A {2 tel: |X Xel < c/h, 0 < h < 1}. Note that, if

I t+h ~

M, = MaXa <t <b W, - W [, then a; < {[wa+h-wa[ <My + ¢/, b-a<h<1}, bya

geometrical argument. Thus, conditioning on wa and changing scale, we have
P(ap) < P(T, > (b-a)™!),

and especially, if I has Tength n~|

intervals I, of length nt.

s P(AI) E.P(TC > n). Divide [0,1] into

Then P(Ac) <y P(AI ) <nP(T_. >n). Lemma 2.3

c
gives ET, < =, s0 nP(TC >n) -+ 0, proving P(Ac) = 0.

Now fix ¢ >1 and put T = {Z t €[0,1]: W, ~ W] < c/h, SUEIER

t+h

Note that r < T if n >m. We will show that 1im +mP(Fn) > 0, implying

P(NT ) = P(A,) > 0. Put Von = Vo = 0» and, if 7> 1,

n=1"
Vin = Vi T (viq + 1)~inf{t >Viq ¥ N W, - WV1-1|'1 c/E:V;jT}.
Then
(2.3) P(vi+] - Vs = ]vai) = P(TC >n), and
(2.4) E(v1+] - vi|wv_) = n—]ETCAn.

i
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0f course v, > 1 if vi - v, ;=1 for some i < k. Thus

Pom P(v;pq = v4 = 1 for some 1 < m such that v, < T}
m
N 121 P(TC >n) P(v1 < 1)

>m P(TC > n) P(vm < 1).

Let'{nk}i=] be a sequence of integers approaching infinity such that

nPle, > n)/Ex *ny >>a > 0 for all k, such a choice being possible by

Lemmas 2.1 and 2.2. We also assume
ETCAnk/nk < 1/6.

Let the integer My satisfy

(2.5) 1/3 < (m/n)Ex_n, < 1/2.
By (2.4),
Ev = (m /n, )Ex “n, ,
mk,nk k "k c 'k
S0 P(v >1) < 1/2,-
>Ny

and, using the left inequality in (2.5), we have

P(r, ) > qhk,mk

| v
3
=~
o
—_
A

Iv
3
>
‘o
———
,_1
\%
>
==
g
~
]

jv

mkaETC“nk/an

> a/6.
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3. Proof of (1.6). The arguments involving BC are very similar to those
of the last section and proofs will just be sketched. Let

ng = inf{t >0: Wy < a/t}. Precise information on the moments of Na has
been supplied by Novikov in [6]. Here we need only the following analog

of Lemma 2.2.

Lemma 3.1. If r <1 there is a q = q(r) <1 such that En_ = «.

Furthermore E]’2n1 = o,

PROOF. That Eq qny = = follows from Eg qnq = Eg (W, - N2 if

-9 ) _ ) |
E0’1n1 < =, because P0’1(wn] = n1) = 1. Since P1’2(n] 1>2) > P0,1(”1 > ),

x>0, we get E] ony >

m-

Eg,1n1 =
The proof of the first assertion of Lemma 3.1 can be patterned on the

proof of the first assertion of Lemma 2.2. The analogs of the times ¥;

here are
vy = Inflt > 10 W, =2/ or W< v/
and in general
Yor T inf{t > Yo-1° Nt < /t}, and
Tope1 = INFLE > o2 W= 2/8 or We < r/E}.
Now let M™ = miny_ . o W, , and let U = inf{t > 1: W, = /E= T + M7}

Lemma 3.2. If c > 1, EUC < o,

PROOF. For each t > 1, (2.2) gives
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Ell ap = 2

> E(/T7E =T 4 )2,

and the rest of the proof resembles the proof of Lemma 2.3.

Theorem 3.1. Ifc > 1, P(B ) =0 and, if c < T, P(B.) # 0.

c

PROOF. Note that if [a,b] = I is a subinterval of [0,1], and if
MI = m1'naitib wt - wa s then

(4 tela,b]: W -W,>c/h vhe(0,1]}

t+h t

C Wy - Wy > cvh =" (b-a) + ME, b-a<h<1},
and the rest of the proof that P(Bc) =0, c >1, follows from Lemma 3.2
just 1like the proof that P(AC) =0, c <1, followed from Lemma 3.3.
Furthermore, the proof that P(BC) >0, ¢c <1, is almost the same as the

proof that P(AC) >0, ¢c>1.

4. Independent Wiener processes. The arguments in this section are
similar to those of Section 2, but we make use of Shepp's results in [8].
Fix r >0, and for 0 <t < 2 and |s| < W% let ft,s be the continuous
version of the density of WZI(Tr > 2) under Pt . 'Of course f vanishes

L]

off (-/Zr, /Zr). Then if a(r) = o = 2/Py gfr, < 2), we have

ﬂ4-1) f]’y(s)/f]’o(s) < o, - /Zk <'s < /2r.
To see this let I be a closed subinterval of {-rvZ, rvZ) and define the set

Fo{(t,s): 1<t=<2,fs)<nwE} by (t,s) €F if g(t,s) > g(1.y), where

g(a:b) = Pa’b(wz €l and TY‘ > 2).
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Then F is a closed set containing a curve joining (1,y) and the
midpoint of I. et v be the first time (t, W,) €F. Using the Strong

Markov Property, we get g(1,0) > g(1,y) P O(v <t " 2). Fory >0

9

we have P],O(V <71 2) 2Py olr, < 2, wTr > 0) with a similar formula
for y < 0, so g(1,0) > ag(1,y), implying (4.1).
Similarly, we can prove that for each y € (-r,r) there is a

K(r,y) = K> 0 such that

(4.2) f (s)/f] 0(3).1 K, - /2r < s < /2r.

1,y
Shepp shows in [8] that if z is as in Section 1 and r > z, there exists

y(r) = y€(0, %) such that E],Or}i = «, and so, using (4.2) and conditioning

'Y=°° - . -
on wTrAZ, we have E]’yTr for each y € (-r,r), implying

(4.3) 11m)\_)0o P(rr > A)AP = » for each D > y.

Now let X, and Yt be independent Wiener processes. Put

2, so, by (4.3),

t

g = (X)“rr(Y). Then P(er >A) = P(t. > )

r Tr

11'mx_)oo P(er:>x)A2p = » if p > y. In particular, there is an o = a(r) < 1

r

such that Eeg = », Now, methods similar to those employed in Section 2 show

that, for r > z, P(Di( n DI # ;ﬂ) = 1. Note the sef c:orres‘:onémj ) AC is

{2t ef0,1]: X - X Iv[¥eyy, - Yil < v/h Vhe(0,1])3,

o t+h t+h
and thet

8, = inf{t > 1: ‘Xt+h - XtIVIYt+h - Ytl > rv/hl.

The sets Ar and Dr are defined in Section 1.
a1

Shepp also proves that, if s < z, there exists-a § = §(s) > 3 such

that E] OTi <, Conditioning on XT ~o and using (4.1), this gives
? S
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(4.4) Tim sup

, $ ¢
Ao~ Pye(-s,s) P],y(Ts > AT <

Now fix r€(0,z) and let s = (r + z)/2. Put
= {8 t €[(k/n,(k+1)/n]: |X

- XeIV[Yipy - Vil < /A v h (0,103,

= e t+h t+h
Let M be the smallest integer such (s-r)M > r. Define the events Cj kin = Cj’
-M < Jj <M, and Gi,k,n =G, -M < i <M, by
Cy = {t.X) et{tox): |x- o I < sv/t=(k/n), (k+1)/n <t < (k/n)+1},

where o; = X(pqy,, *+ (s=r) )j/¥n, and

G1='{(t,Yt) e{(t,x): |x- -8 | < s/E=(k/m)7, (kt1)/n < t < (k/n)+1},

where g = Y(k+1)/n + (s-r)j/vn.
Conditioning on X(k+1)/n’ and using Brownian scaling, we see both P(Cj)

P, (t_ > n) so that

ye(-r,r) "1,y' s
P(Cj N Gi) = O(n'zs) = o(n']) by (4.4). A geometrical argument gives

and P(Gi) are maximized by sup

rec u Cj N Gi’ so that P(r) = o(n'1), yielding
T,J
n-1
P( ur ) =0(-I)s
k=0 k.n

which implies

X an¥y =
P(Dr n Dr) = 0.

These arguments easily generalize to n independent Wiener processes,
with the aid of the results in [8]. Let z, be the smallest positive zero

of M- 1/n, 1/2, f%z), where M is the confluent hypergeometric function.

Then we have

n .
Theorem 4.1 N D ' is a.s. empty if r < z, and not empty if r > Z,-




_]4_

A proof of (1.4) can be made which is very similar to that of
Theorem 4.1. Here it is convenient to work with a Brownian motion

Zs t €(-=,=). We note that S, = Z(ke1) /ntt -'Z(k+1)/n’ t >0, and

t’
Rt = Zk/n-t - zk/n’ t > 0, are independent Wiener processes. Furthermore

wrelk, Bl z - 2| < oV h€(0,110-1,0))

can be shown to be contained in a set defined in terms of St and Rt
in a manner similar to the way UCirlej was defined in terms of Xt and
Yt earlier, and thereby shown to have probability equal to o(1/n) if

r < z, from which we get

Pt €011 [Zyyy - Zyl < rifli v h €60,17 W [91,0)) = U,

t+h

which is equivalent to (1.4).
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