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Summary

Suppose that there is a population U = {1,2,...,N} of N identifiable
units and that two values Xs and y; are associated with the ith unit. The values
Xps XosenosXy are given but each Y; is determined only after the ith unit is
selected and observed. The objective is to estimate the population total

i
) Y;- It is assumed that yi=exs + djg(xi), 1 <1isg N, where 6€@cR, g is a
i=1

real-valued function of x, and (s .,SN) is in some neighborhood L of (0,...0).

100
The Rao-Hartley-Cochran strategy and Hansen-Hurwitz strategy are shown to be

1
approximately minimax under the model with g(x)=x® and L = LZ(M) = {(6],...6N) =
N
) 6? < M}, and that with g(x) = x and L = L_(M) = {(6],...,6N) = |61| <M

i=1

for all i}. The Tatter model applies to a problem considered by Scott and Smith
(1975). These two strategies are then compared with some commonly-used strategies
and are found to perform favorably when gz(x)/x is an increasing function of x.
The probTem of estimating 6 is also considered and is solved for any g when L

is EZ(M). Finally, some exact minimax results are obtained for sample size-ene.

*Research supported by NSF Grant No. MCS-79-09502.
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A MINIMAX APPROACH TO SAMPLE SURVEYS

1. Introduction

Suppose that there is a population U = {1,2,...,N} of N identifiable
units and that two correlated values X; and yi,wherexi > 0, are associated
with the ith unit. The values XpsXose oo sXy AT given but each Y; is determined
only after the ith unit is selected and observed. The objective is to

, N
estimate the unknown population total Y = Z Y5 based on a sample of size n.

Without loss of generality, we shall assume that X] S Xg Seve < Xy In
practice, X is often the value of Y; at some previous time when a complete
census was taken. Another application is in cluster sampling where Y; is

the ith cluster total and X; is the size of the ith cluster. Many procedures
have been suggested for using the auxiliary information.prbvided by x to
increase the precision of the estimate either at the design stage (e.g. using

a probability proportional to size design) or at the estimation stage (e.g.,
using a ratio estimator) or both. The superpopulation approach of Brewer (1963)
and Royall (1970a) incorporates the auxiliary information into a random
superpopu]ation model which often leads to the selection of a purposive sample.
Whether one should randomize or not had been one of the major controversies
between the fixed population approach and the superpopulation approach. In

this paper, we shall formulate a regression type model and use a minimax criterion

to justify randomization for gquarding against extreme population values.

We shall assume that

(1.1) Yi = 8x, * € 1 <1 <N,

where 6 € ® < R (usually @ = R or @ = (0,«)), and € is the "error" or "deviation"



from the strict linear relationship between y and x. We shall further assume

that

(1.2) e; = Gig(xi), 1<1i<N,

where g is a known function of x and (61""’6N) belongs to a fixed (usué]]y
small) neighborhood L of .(0,...,0). Usually g(x) is an increasing function of

x (e.g., g(x) = x*, & > 0), reflecting the idea that the error tends to increase
with increasing X; (which is usually the case in sample surveys). There are
many possible choices for the neighborhood L depending on the measure of distance
used. We may assume L to be the L2-ba1] LZ(M) = {(6],...,6N) :ig]af < M} or

the L -ball L{(M) ={(87,...,8):|6.] <M, for all i}, where M > 0 is fixed.

Our model is not a superpopulation model though it is somewhat similar to the

commonly used superpopulation model in which Yys---o¥y are assumed to be

independent random variables with

(1.3) E(yi) = 0x; and Var(yi) = ozv(x.)

Note that V(Xi) is the counterpart of gz(xi).
Throughout this paper, we shall assume squared loss function and only

consider sampling designs with fixed sample size n. Since a sampling design

with replacement can always be improved by one without replacement, we may

consider sampling designs without replacement only. Thus, without loss of

generality, we define a sampling design to be a probability measure P on &

§ = {S: ScU and #(S) = n}, where #(S) is the cardinality of S. We shall

also restrict to linear homogeneous estimators of the population total Y, i.e.,

estimators of the form ) ai(S) Vi where S is the selected sample. Such an
i€S

N
estimator can also be written as ) a, ) Vi with i(s) ~ 0 for all i£S.
=1 1(8)
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Lg;_gs = (a](S)""’aN(S)) . Then a linear homogeneous estimator is specified

by the vectors of coefficients {a ) of sampling

3sis e ses
design and estimator of Y is then called a strategy. The set of all such

A pair d = (P,{gs}

strategies will be denoted by Qn'
For any 6 €@ and ¢§ = (61,...,6N)'€I_, the mean squared error (MSE) of
3 8,8), is

a strategy d = (p,{ag} denoted by Rn(d;e,§) or Rn(P,{QS}

SES% S¢€s

N
defined to be ) P(S) (} Q(S)yi - ) y1.)2 , wWhere Yi = oxg * Gig(xi)'
SEs i€S i=1

Our goal then is to find a strategy to

(1.4) minimize sup R (d; 8, )

When exact minimax strategies are difficult to find, approximately minimax
strategies will be desirable.

Note that all the strategies in Snbhave nonrandomized estimators. One
can also consider strategies with randomized 1linear homogeneous estimators.
A1l such strategies will be denoted by mﬁ . Clearly ﬁnczﬁﬁ. On the other
hand, since the squared loss function is used, for each strategy d in Qﬁ, there
is a Rao-Blackwellized strategy d' in &n which is at 1ea$t as good as d. However,
sometimes Rao-Blackwellization can only provide a small-amount of improvement
with the cost of introducing a quite complicated estimator which makes the
analysis difficult. Under such cases we may want to sacrifice a little bit
of efficiency to gain some simplicity, and thus use a randomized strategy in
&E. In this spirit, the well-known Rao-Hartley-Cochran strategy (Rao, Hartley
and Cochran (1962)), a strategy with randomized estimator, is shown in Section

3 to be approximately minimax over @ﬁ under model (1.71) - (1.2) with

1
g(x) = x, L = Lm(M), and that with g(x) = x®and L = LZ(M)’ when some reasonable



conditions are imposed on the configuration of Xqoe oo s Xy Also if the sampling
fraction is small, then the Hansen-Hurwitz strategy (Hansen and Hurwitz(1943)),
which is only slightly less efficient than Rao-Hartley-Cochran's strategy, but
is much simpler to implement, is also shown to be approximately minimax.

Under model (1.1) - (1.2), & is not identifiable, i.e., for given

{(yi,xi)}igl » there exist more than one 6 such that (1.71) and (1.2) are

satisfied. To make 6 identifiable, we should restrict ¢ to a suitable subset

L of L. The choice of ﬂ depends on what we think that e means. For instance,
N N

if 6 is interpreted as the population ratio ) Y; /) X; and we have a
i=1 i=1

situation where the individual ratios 6; = yi/xi are approximately equal, then

€5 represents the error of approximating yi( = eixi) by 0 - Under this

N N N N

interpretation, one has 8 J x, = } y. = ) (ex, + 6.9 )=98 ) x,+
=1 1 5Tt s T () j=1 1

N N

) 6ig(x1),vwhich implies that ) aig(xi) = 0. Then we are lead to

i=1 i=1

- N

L={seL: ) 61g(x ) = 0}, i.e., it would be appropriate to

i=1 i
(1.5) minimize sup Rn(d;e,g).

N
6€ @, €L, ) 8.9(x;) =0

Sometimes instead of having a definite meaning of 6, we merely know that the

line y = 6x would be a good approximation to the data {(yi,xi)}?=1 should
we have the chance to observe all the yi's. If 6 is such that
N N
2 2 _ . RY- 2
121 (v = ox3)" /7 g(x,) " = rg}n 1_51 (v; = 8'%)%/9(x;)%,

i.e., the value which give the weighted least squares fit, then

(1.6) o = I o0 2wy, 7 x2lax)172

.i

1l I~

1



and it is not hard to see that under model (1.1) ~ (1.2), one has

N
-] _
(1.7) Z Gi[g(xi)] X; = 0.
i=1
Therefore one should
(1.8) minimize sup R (d;0,6).

n ~

6ﬂﬁxﬁT1x1=0

iIo~—1=

p€@, sEL,

j
Clearly Problems (1.5) and (1.8) are the same when g(x) = x. It will

be shown later that for unbounded ® and L = LZ(M)’ (1.4) and (1.8) are identical
problems for any g. Thus the results on Rao-Hartley-Cochran strategy mentioned
earlier also apply to (1.8).

In Section 2, the problem will be formulated in matrix notation. We

shall introduce the important notion of risk-generating matrix and adjusted

risk-generating matrix, which are very useful in assessing the performance of

a sampling strategy when the estimator is linear. Section 3 is devoted to

the approximate minimaxity of Rao-Harltey-Cochran strategy and Hansen-Hurwitz
strategy. In Section 4, we shall compare the Rao-Hartley-Cochran strategy

with two commonly used procedures: simple random sampling (SRS) together

with ratio estimator and sampling with probabilities proportional to aggregate
size (PPAS) together with ratio estimator. We find that the Rao-Hartley-Cochran
strategy performs favorably when gz(x)/x is an increasing function of x,

e.g. g(x)= x* with o > 2. This seems to be consistent with comparisons based
on superpopulation models (see, e.g., Cassel, SSrnda],'and Wretman (1977) p.171).
In section 5, we shall study the problem of estimating the paramter 6 under
the jdentifiability condition (1.7). For quite arbitrary g, approximately

minimax strategies are derived. It turns out that if instead of selecting units



with probability proportional to size Xi» We select units with probability
X

proportional to 9 s then the modified version of Rao-Hartley-Cochran

g(x;)
i
strategy or Hansen-Hurwitz strategy are approximately minimax for estimating 6.

Before closing this section, we shall relate our problem to earlier
works in the literature. Blackwell and Girshick (1954) gave the first minimax
result for justifying the use of simple random sampling. Under the assumption

that the space of all possible y = (y1,...,yN) is permutation-invariant, they
showed the minimaxity of simple random sampling for any permutation-invariant
estimator and loss function. Works on minimax estimation of the population

mean under simple random sampling include, e.g., Aggarawal (1959), Royall

(1970b), Bickel and Lehmann (1981), Hodges and Lehmann (1981). Bickel and
- Lehmann (1981) essentially studied model (1.1) -(1.2) with Xp = Xy = ...= xN,e€R
and L = LZ(M) while Hodges and Lehmann (1981) considered model (1.1) - (1.2)
with Xp T aee = Xy 6 known, and L = Lm(M). They did not restrict to linear
homogenebus estimators as we do. Bickel and Lehmann (1981) also extended their
result to the minimaxity of (simple random sampling, sample mean). Stenger
(1979) obfained the minimaxity of (simple random sampling, sample mean) under '
the restriction that the estimators are linear homogeneous and satisfy a con-
dition similar to (2.2) in Section 2 of the present paper.

Scott and Smith (1975) probably is the first and only paper on the

minimaxity of unequal probability sampling schemes. Their interesting results

apparently stimulated our work. They considered the minimax estimation of a

N .

population total Y = ) Vi where Y5 = X325 with the observable z; taking
i=1

values in a fixed interval, say O <z < B. They fixed the estimator to be



X ) zi/n, where Zys...2, are the n observed values of z, and showed that
i=1
under some condition, if a sampling scheme with replacement is to be used,

then the probability proportional to size design is approximately minimax.
However, there are several restrictions in this work. First, the estimator

is fixed. As indicated by Scott and Smith (1975), their emphasis was on
choosing a design to give a maximum protection to a given estimator, i.e.,

to find minimax designs for a given estimator, rather than minimax strategies.
No doubt it is an important problem to vary the estimators and search for mini-
max strategies. Second, for sample size larger than 1, they restricted the

competing sampling schemes to those with replacement (i.e., if you select

the first observation by a certain scheme, then you should use the same scheme
over and over again till the n-th observation is selected). Thus when combined
with the restriction on estimators, many commonly used strategies including
(SRS, ratio estimator) and (PPAS, ratio estimator) are ruled out. Third, they
assumed that each z, is in the interval [0,B]. This is only one of many
possibilities that may arise. In fact, in Scott and Smith's model, one has
]yi| < Bx;. Therefore y. can be expressed as y; = %'Xi t ey with Igil 5_%—x1.
Now is is clear that this is a special case of our model (1.1) - (1.2) with

6 = B/2, g(x) =X, and L = L_ (B/2). Thus our results also apply to Scott

and Smith's problem; the above restrictions are then removed.

2. The risk-generating matrix and adjusted risk-generating matrix.

In this section we shall formulate our problem in matrix notation and
derive an important matrix for assessing the performance of a sampling strategy.

For convenience, the following notations will be adopted:



1=
1

the N x 1 vector of 1's

G = the N x N diagonal matrix with g(xi) as the ith diagonal element,
x = the N x 1 vector (x],...,xN)',
y = the N x 1 vector (y],...,yN)',
and
N
X = 121 X5 -
- Then for any d = (P, {gs}seg) EADn:
N N 2
R, (P, {agls a5 85 8) = SZESP(S) (iz1a’(5)y" - 1.213'1)

= 7 P(S) y'(ac - 1 -1)"
(2.1) A R

= T P(S)(ex + G8)'(ag-1)(ag-1)" (6x + G3).
Sés 7

Clearly (2.1) is a quadratic function of o if (gs - 1)" x # 0 for some S with
P(S) > 0. If @ is unbounded, then the maximum MSE will be infinite unless we

~

have (gs - 1)' x =0 for all S with P(S) > 0, i.e.,

N
(2.2) ) 3i(s)% = X for all P(S) > 0.

Therefore for unbounded ®, e.g., ® = R or (0,»), we may restrict to estimators
satisfying (2.2). We shall also make the same restriction when @ is bounded.
Condition.(z.z) in fact is equiva]ént to the unbiasedness of an estimator in
the usual superpopulation model (see, e.g., Cochran (1977), p. 159). Such

a restriction is reasonable and is indispensable when @ is unbounded. Clearly
(2.2) holds for the ratio estimator and the estimator used by Scott and Smith

(1975). A strategy satisfying (2.2) was called a representative strategy by




Héjek (1959). We shall denote the collection of all the representative
strategies in Sn by Sn.

For a strategy in ﬁn, obviously one has

R(P,{ac} , 8, 8) = P(S) ' G' (a. - 1) (ac - 1)' G &
(Palaghs g 2 S%g S T
(2.3)

= 8'6{] P(S)ag-1) (ag-1)'1G¢

Ses :

which is independent of 6 and is a quadratic form in the matrix

G{) P(S) (gs - 1) (gs - 1)'} G. This matrix plays an important role in
SES

assessing the performance of the strategy d = (p’{QS}SGEg)' We shall call

Y P(S) (gs- 1) (gs— 1)' the risk-generating matrix, and G{ ) P(S)(qs—l)'(g -1)1G
SES S€s ”

the adjusted risk-generating matrix of the strategy (P’{QS}Seig); and we shall

denote the adjusted risk-generating matrix of a strategy d by Rn{(d)tor R(d),

when n is clear to us).

We have the following basic property of R(d).

Proposition 2.1. If d is representative, then R(d)is singular and satisfies the
1

condition R(d)G 'x = 0.

This is a straightforward consequence of (2.2); the proof is thus omitted.
The identifiability condition (1.7) can be written in vector form &' g'] x = 0.
Now in view of (2.3) and Proposition 2.1, one has the following

Proposition 2.2. If (i) L = LZ(M) and (ii) @ is unbounded or ® is bounded

and the estimators satisfy (2.2), then (1.4) and (1.8) are identical problems.
Moreover, a minimax strategy minimizes the maximum eigenvalue of R(d).

This brings out an interesting connection to the theory of optimum designs.
A minimax strategy in Proposition 2.2 is like an E-optimum design (see, Kiefer

(1974) for some terminology of optimum design theory). In fact, when
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X] = Xo = ool = Xy (i.e., there is no auxiliary information), one has

R(d) 1 = 0 under (2.2), i.e., R(d) has zero row sums. In this case, if d* is

the strategy (simple random sampling, sample mean), then R(d*) minimizes
tr B(d) and is completely symmetric in the sense that all the diagonal elements
are the same and all the off-diagonals are the same, i.e., all the eigenvectors
in the nondegenerate directions have the same eigenvalues. An argument similar
to Proposition 1 of Kiefer (1975) then shows the minimaxity of d* when the
space of all y = (y],...,yN) is permutation-invariant. The so-called C-matrix
of a balanced incomplete block design is also completely symmetric. Thus d*
plays the same role as a balanced incomplete block design in block design
setting.

For convenience, hereafter the maximum eigenvalue of a matrix A will
be denoted by Amax(g). For a strategy with randomized estimator, a represent-
ativeness condition similar to (2.2) is also desirable in order that the MSE
be finite when @ is unbounded. The mean squared error of a strategy d Eﬁs
satisfying the representativeness condition is also a quadratic form

§'R(d)s with the adjusted risk-generating matrix R(d) satisfying R(d) 9'15 =0,

~

a
too. Later on, we shall show that when L = L (M) and g(x) = x®, all the

2
nonzero eigenvalues of the adjusted risk-generating matrix of the Rao-Hartley-
Cochran strategy are the same. This may explain why the Rao-Hartley-Cochran

strategy performs very well under the minimax criterion; it is Tike a balanced

design in experimental design settings.

3. Approximate minimaxity of Rao-Hartley-Cochran strategy.

For a sample size n, the Rao-Hartley-Cochran strategy first forms n

random groups of units, one unit to be drawn from each group. The number of



11

units N], N'2,...,Nn in the respective groups are made as equal as possible,

fe., [Ny - N[ <1 forall i.j=1,2,....,n. Llet X, =} Xs .
J J i€ the jth group '

Then the probability of selecting the ith unit in the jth group is Xi/xj’ and
the estimate of the population total is

L)

x|

R n

Youe = T X,
HC =, .
RHC 520 73 %5

where yj, Xj refer to the unit drawn fromagaroup j. This strategy will be denoted

by d Clearly dRHC is not in §n since the estimator YRHC is a randomized

RHC®
estimator. Therefore dRHC can be improved by some strategy in &n. However,

since dRHC is well-known and is easy to implement, we shall ignore its improved
version 1in Sn and state our main results in terms of dRHC'

We shall calculate the adjusted risk-generatinglnatrix of dRHC’ R(dRHC)

through the Hansen-Hurwitz strategy (denoted by dHH) since dRHC is closely
related to dHH and that the mean squared error of dHH is easy to calculate.
Recall that strategy dHH is a with replacement scheme in which the probability

of selecting the ith unit at each stage is xi/X and the estimator of the

. .o -1, N
population total is YHH =n X 121 yi/xi, where (x],y]),...,(xn,yn) are the

observed values of (x,y) with possible repetitions. When n > 1, this strategy

is in neither Sn nor ﬂﬁ because of the with replacement feature.

N

For n=1, the mean squared error of d,, is R {d,,s 8 8)=6'G{ ) P(i)(a;-1)
HH 10HR3 0 2) =Rt a;-1

(a;-1)'16¢ where a, is the Nx1 vector with X/x; as the ith coordinate and

all the other coordinates are zero. Through some simple calculation, we obtain

. . -1 ~1
(3.1) Rl(dHH; 0,8) = ¢ g{d1ag(x1 X,...

where gN is the N x N matrix of ones. Forn > 1, YHH is an unbiased estimator
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of Y and is essentially the average of a random sample. Therefore

— -.I . _ _1 ] . "] "']
6,8) = n~ Ry(dy; 0,8) = n  ¢'G {diag (x;  X,...,x X)-Jy}G ¢

(3.2) R (d e

HH

Now, wWrite N=nR+k, where R and k are integers with 0 < k <n, and let
_ -1 -1 -1

(3.3) u = (N-1)" (N-n) + N (N-1)" "k(n-k).

by (9A.66) and (9A.67) of Cochran (1977), we have

(3-4) Rn(dRHC; esé) = U o Rn(dHH; 9,§).

Therefore, we have

1 1 -1

(3.5) R (d =y - n G {diag (xq Xs...oxy X) - dy} G

~n RHC)

L
<

Furthermore, when g(x) = x* , we obtain that

_ =1
(306) Bn(dRHC) = un (XI - 9 JN 9)9

which has all the nonzero eigenvalues equal to un'1X. Thus we obtain the

following proposition.

I

Proposition 3.1. Let g(x) = x®. Then for any M > 0, we have

1

sup Rn(dHH;e,G) =n XM, and
6€0, § €L, (M)
-1
sup R (dp,rs 6,8) = un XM
o ce, ge Ly(m) M RC

To establish the approximate minimaxity of dRHC’ we need to give a lower
bound for the maximal MSE of an arbitrary strategy. The following theorem

provide such a useful Tower bound.
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Wik

Theorem 3.1. Let g(x) = x® and ® be unbounded. Then for M > 0, we have

N-n N-n
(3 x-)2 0.V Xl
1 =1 i=1 !
(3.7) min sup Rn(d; 6, 8) >n XM . > N
d€S  o€@, §€L, (M) ) G S
n ~ 72 j21 1

If @ is bounded, then (3.7) holds for d EE%.

Proof. For any t > 0, let

(3.8)  Z =R (d) +t (Vxps...u/X )" (Vx:

ye e e VX
n n 1
By proposition 2.1, we have Bn(d)(/ii,...,/iN)' = 0; i.e., each row of Bn(d)
is orthogonal to (/ii,...,/?“)'. Therefore if A{shps--shy 7 and O are
the eigenvalues of Bn(d), then the eigenvalues of Z will be
N .
Mo Apseeeshy_s and t ] x. = tX. We shall first give a lower bound for the
i=1
maximal eigenvalue of Z and then by suitably choosing t we may obtain a good

lower bound for the maximaleigenvalue of Bn(d).

Now, the maximaleigenvalue of Z = Xnax (2)

> the maximal diagonal element of Z

)2

= max { )} X: P(S) (a.,c\-1)° + t Xx.}
1<i<N S gg 1 i(s) 1
2 2 2
= max {[ X5 P(S) (a:,ey-1)" + t x5]/x:}
1< 1 <N 5'268 1 i(S) 1 1

| v
—_

Il ~122
| |
Y

N
2 P(S) (ai(S)—])z ¥ t.xi]}/izlxi

- . 2 2 N 2

1
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Next, as was demonstrated in section 2, (2.2) should hold if we want the
maximal MSE finite. An important consequence of (2.2) is the following
inequality:

(3.10) iEES(ai(S) X5 = Xy

i€S
= n_] ( Z X_i)2 .
1£S

) N-n

Now, due to the assumption that x; < x, < -..< Xy, We have T x. 3__2 X5
i£S i=1
2 Neno
and § X5 > ) X;. Therefore backing to (3.9), we obtain that
iES i=1
N, N, N,
(3.11) Apax(Z) > {[n ('Z xi) + {Z X;]+t .Z X;HX .
i=] j=1 i=1
Consider any t such that t < [n (_Z x:)"+ ) x1J/(X -'Z Xi)

A simple computation leads to

tX<{ln (] %)%+ ] x;1+t ] x/X
i=1 i=1 i=1

Therefore, t X can not be the maximal.eigenva]ue of Z. Thus by the discussions

after (3.8) we obtain that AmaX(Bn(d)) Amax(g). Finally, in (3.11), let t

2

X5) Then we get the desired bound. O

He-1=2

N-n N-n
tend to n_]( ) X1)2 + ) X?] /(X2-
=1 =1

i=1

How sharp is the bound on the right side of (3.7)? First, when X]=Xo% e =Xy

it can be verified that this bound equals n-]XM(N—1)_](N-n), which is exactly the
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maximal MSE of the (simple randomization, sampie mean). Thus our bound is

sharp in this degenerated case. Now, compared to maximal MSE of our candidate,

dRHC (or dHH when p is close to 1), the bound on the right side of (3.7) will
N
X2—.Z x?
be good provided that u - N—n1=] N=T < T+e for some small e.
() x1)2 +n ) X8
i=1 i=1

This will be the case if the sampling fraction ﬁ-is small and (or) the xi's

do not vary too much. In fact, when N/n is integral and X =X e =X

N’
N
X2 - P x?
u =1 = 1. We summarize this result as follows.
N-n N-n
2 2
(ZX'I) +n z X_i
i=1 i=]
N
1 X2— fo
Corrollary 3.1. Let g(x)=x® and ® is unbounded. Suppose ux- N-n1=] T
2
( 2.%x)7n( ] x;

i=1 i=1

Then the Rao-Hartley-Cochran strategy is (1+e)-approximately minimax, in the
sense that, for any sampling strategy deiﬁn, we have

sup R (dp3 658) < (1+e)sup R (ds 6,8)
oea,sel,y(m) M RHC oca, sEL,(M) "

If ® is bounded then the ébove inequality still holds if déiﬁn.

Note that because of Proposition 2.2, the Rao-Hartley-Cochran strategy is
also (1+e)-approximately minimax when the identifiability condition (1.7) is
imposed. Furthermore, the Hansen-Hurwitz strategy will also be approximately
minimax if u is close to 1.

Now let us turn to the case g(x) = x and L = L_(M). We need the following

lemma:
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Lemma 3.1. If M is a NxN matrix such that 1' MI = 0, then there is an

Nx1 vector § with +1,-1 entries such that s'M§ > N(N-])-] trace M when N is

even, and §'Ms > (N+1)N_] trace M when N is odd.

Proof. Let P be the set of all the NxN permutation matrices P. Clearly,

. ) P'MP is of the form aly + bd for some real number a and b.
" PeP T :

Moreover, a and b can be determined by the fact that trace al + bQN = trace M

=|—

the matrix

and that 1'(al +bd, )1 = l] Z 1'P'MPT = lq Z 1'M1 = 0. After some
. ~ ‘7~ "T=<N’~ - N! Pep =~ " " N. ~ e
computation, we get

-1 = -1
a =y_p trace M, and b N(N-T) trace M .

Consider the case where N is even first. Let ¢° be the vector with the
first g— coordinates equal to 1 and the last g-coordinates equal to -1. Then
we have

Max {§'Ms | § = §°P for some P in P}

[l
=
o

1

=

]

—
(—'.
]
o
O
(0]
=

Thus the case where N is even is proved. Next, we consider the case where

N is odd. Let §° be the vector with the first N%l- coordinates equal to 1 and

the last N%l- coordinates equal to -1. Then similar computation leads to

-1

Max {6'Ms | 6 = §° P for some P in P} > Na +b = (N+1)N"' trace M. The

proof is now complete. O
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We are ready to derive a uséful Tower bound for the maximal MSE of

an arbitrary strategy.

Theorem 3.2. Let g(x) = x and ® be unbounded. Then we have

i N Non oy 1,2
min  sup Rn(d; 6,8) > (n (_z Xi) + _z Xi) N(N-1) "M%,
des  0ca, sl (M) i=1 i=1
if N is even, and
N-n N-n
min  sup R (45 08) > ("1 ( L x)2+ I x5 (N,
i=1 i=1

demn 6 €@, §eLw(M)
if N is odd.

If ® is bound, then the above inequalities hold if dE&ﬁn.

Proof. Without loss of generality, we may assume M = 1. By Proposition 2.1,

we have Bn(d)1 = 0; i.e., all row sums of Bn(d) are zero. Therefore by

Lemma 3.1, there exists a ¢* €L (1) such that §*'Bn(d) §* 3_N(N-1)f]

]

tr Bn(d)
if N is even and §*'Bn(d)§* > (TN tr Bn(d) if.N is odd. It remains to
establish a Tower bound for tr Bn(d).

By a straightforward computation, we have

d) = ) P(S 1)2x2
_ N 22
= SZESP(S) 1;](3.1(5)-]) X_I
_ 2 2
_sespﬁ)(1%sh1“)x{mi) +iésﬁ)
> ) P(s) - (n”1( ) x;) + ¥ x2) (by(3.10)
Ses igs ! igs ]
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Therefore, the proof is complete. O

Again, one can verify that this bound is sharp when Xy oo =Xy
On the other hand, we have the following bounds for the maximum MSE of dRHC

and dHH'

Proposition 3.2. Assume g(x) = x. Then for any M > 0, we have

sup R (dyys 6,6) 5_n'] X2 M2
6€@,8€L,(M)
and
. -1 ,2 2
sup Rn(dRHC’ 8,86) <un X M.,

€0, o€ L2(M)

Proof. Without loss of generality, we assume M=1. From (3.1), we obtain that

dy) = 0" [diag(x;Xs...,xX) - 63,6]. Since GJG 1is nomnegative definite,

N
-1

HH)

we conclude that for any ¢ EL2(1), § Bn(dHH)§ <n

R

X X = n_]X2 as desired.

1

I~

. i
Similarly, we obtain the bound for dRHC O

Note that equalities hold in Proposition 3.2 when there exists a number

. m N
m such that ) X; = Z X Now we are ready to establish the approximate
i=1 i=m+1 '

minimaxity of dRHC when the x.'s do not vary too much, and that of dHH when,

i
in addition, the sampling fraction ﬁ- is small.

Corroilary 3.2. Let g(x)=x and ® be unbound. Suppose

N-T X
A T T TNen

Non <l+eg when N is even, and

A e < 1+¢ when N is odd. Then the Rao-Hartley-

N+1 N-n 2 N-n 2
(2 Xi) +n ) X
i=1 i=]
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Cochran strategy is (1+e¢)-approximately minimax, in the sense that for any

sampling strategy dE.;Qn, we have

sup R (dppcs 858) < (1+e) sup R (d5 8,8)

6€@, s€L_(M) 6€@, s€L_(M)

If ® is bounded, then the above inequality holds if dreﬁn .
Note that the Hansen-Hurwitz strategy is also approximately minimax if
p is close to 1.
Now take @ = {%—} and M = %—. Then our results applies to the problem
of Scott and Smith (1975). For their problem, the Rao-Hartley-Cochran strategy

is approximately minimax over all the strategies in ﬁn (note that @ = { %-}
2 N-n 2 N_n 2
is bounded), if uX“/[( } Xi) +n ) Xi] is close to 1. Note that we do not
i=1 i=1

put any restriction on the sampling designs and the only restriction on the
estimators is the representativeness condition (2.2) which is reasonable,
while Scott and Smith (1975) fixed the estimator and restricted to sampling
schemes with replacement. Furthermore, our result applies to much more
general models.

So far the approximate minimaxity results were only estab]ished for

g(x) = x&8, L = L,(M) and g(x) = x, L = L_(M). Results for other forms of g(x)

o
are rather difficult to derive. We do not have satisfactory results in this
direction. Therefore in the next Section, we shall compare the Rao-Hartley-
Cochran strategy with two commonly used strategies (SRS, ratio estimator)

and (PPAS, ratio estimator) under a variety of functiens g. It turns out

that the Rao-Hartley -Cochran strategy performs when g(x) = x* witha > 2.
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4. Comparisons.

Comparisons of various sampling strategies had been done in the 1literature,
see, e.g., Chapter 7 of Cassel, Sarndal, and Whetman (1977) and the references
cited there. They were mostly empirical studies or based on some superpopulations.
The criteria used were often expected (with respect to superpopulation) mean
squared error and hence were "average" type criteria. The comparison we
shall make here is different and is based on a minimax criterion. Barrewing
optimum design theory terminology, one can say that our criterion is like an
E-criterion and the earlier comparisons were more or less based on something
like the A-criterion.

We have seen that the Rao-Hartley-Cochran strategy is approximately

1
2

minimax under model (1.1)-(1.2) with L = L,(M) and g(x) = x. A comparable

o
superpopulation model is (1.3) with v(x) = x. Under this model Brewer (1963)

and Royall (1970a) showed that the best strategy is to select a purposive
sample S* which consists of the n units with the largest x values and then
use the ratio estimator. Under our assumption that x < ... < Xy We have

S* = { }. Let this strategy be denoted by d Now let us first

XN'h‘H"“’XN 1°

1
compare d1 with dp,. and dHH,-when g(x)=x=.
We compute the maximal eigenvalue of Bn(d]) below:

AMAx (Rn(d]))

| v

the largest diagonal element of Bn(d])

| v
x
=
Py
=
1
el
p—g

| v
=
=1
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Comparing this bound with the result of Proposition 3.1, we get the

following proposition.

Proposition 4.1. Assume g(x) = x2. Suppose ) X 3_]Z¢§- - ) Xs -
i=1 i=N-n+1
Then for any M > 0, we have
sup R (dys 6,8) > sup R (dy,5 6,8)
660, §€L,(M) -l 6¢@, § €L, (M) n*"HH
> sup R (dapcs ©58)

060, §€L,(M)

Therefore, if the sampling fraction ﬁ-is small and the extreme values of xi's
are not too extreme, then q] is worse than dHH and dRHC'

Two sampling designs which are commonly used together with the ratio
estimator are SRS and PPAS. Let (SRS, ratio estimator) and (PPS, ratio
estimator) be denoted by d2 and d3, respectively. Recall that in a PPAS
sampling scheme, each sample S is selected with probability proportional to
XS = ) X5 - Such a sampling design was proposed to make the ratio estimator

iesS
design-unbiased and is often associated with the names of Hajek, Lahiri,
Midzuno, and Sen. We shall show that both d, and d, are inferior to d

2 3 RHC

x
under model (1.1) - (1.2) with g(x) = x® and L = L,(M). Later we shall extend

o
the result to an arbitrary function g such that gz(x)/x is increasing in x.

Some conditions on the configuration of Xqs--esXy are needed there.

1
Now assume g(x) = x® and write Xg = ) X; . Then we have
i€s
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. (x2/x§ - 2 /X1 + x)

I % OCxE - axxg) + X

The equality holds only if X; = X, = ...= xy. Since Bn(dz) is singular, we

(R (d2)) > 1 trR (d,) z_n'](N—l)_](N—n) X , and the

ax‘~n = N-1 ~n' 2
equality holds only if Xp T Xo T .. = Xy Comparing with the result of

conclude that Am

Proposition 3.1, we establish the following proposition.

1
Proposition 4.2. Assume g(x) = x® and %— is integral. Then, we have
sup R (d,5 8,8) > sup R (dy,~3 ©58) »
pe@sel,(n) " 2 o€ €L (m) " R
and the equality holds only if Xq = Xo = «un = Xy

After some computation we can show thattr:Bn(d3) = tr R (d2). Therefore
a similar argument leads to the following proposition.

1

Proposition 4.3. Assume g(x) = x® and %-15 integral. Then, we have

sup R (dy; 6,8) > sup R (dy~s 658) »
pe@sel,(m) " oco,sel,(M) " RHC

and the equality holds only if Xp = eee T Xy
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Now consider a general function g such that gz(x)/x is increasing in x.

Substituting G = diag (g(x]),...,g(xN)) into (3.5), we have

-1, - 2 2
(4.2) Ri(dppc) = 1 = n {diag(X g™ (xq)/xqs-.o5Xg™(x)/xy) - G J\G .
Since G QNQ is non-negative definite and gz(x)/x is an increasing function

of x, it follows that

(4.3) Mg R (dpye)) < u n7IX g% () /-

On the other hand, we have

A (R (d2)) > the N-th diagonal element of Bn(d

max‘~n 2)

>z 9

| v
[{=]

Therefore, to show that Amax(Bn(dRHC)) < (R (dz)), it suffices to

max:'~n
demonstrate that

n” oo N - (N-1)X 2
(4.4) T S ) P () PO R
*N n
Write a= - and f = T - ‘Then, we may rewrite (4.4) as
ok
(4.5) N 1-6)% £ % - (1-F)%(2nf+1)a% + (1-£) (n2(1-F)-2(n-1))a-(n-1)% > 0.

Discarding the first term of (4.5) and changing (n-1) and (n-])2 to n

n and n® respectively, we obtain the following sufficient condition for (4.5)
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to hold as below:

2 2 2

(4.6) -(1-f) (2nf+1)a" + (1-F)n(n(1-f)-2)a-n" > 0.

Now, letting

(8.7) v=g /1 500 el
n(1-f)
and solving (4.6), we get
2
(4.8) (-2 5T cacy . 1Y
Zn+N

Therefore we obtain the following result.

Proposition 4.4. Assume that gz(x)/x is non-decreasing in x. Suppose (4.8)
1

holds, where a is the ratio of Xy and the average of xi's, j.e., a = xN/(N' X)

and % is defined by (4.7). Then, we have

sup R (d,5 8,8) > sup R (dy,~5 658) .
ee®&ELZM) 2 ee®@6LZM) h" RHC

Note that the possible value for a is between 1 and N; and % is very

close to 1 if the sampling fraction f is small. Therefore, (4.8) amounts to

- 2
N < (N ]X) . D—%— » which is a reasonable condition if n or N
2n"+N

is large enough, because it simply means that the largest x value is not too

saying that X

far away from the average x value. We further remark that because of the
asymmetry of Bn(dz), we would expect that even if (4.8) does not hold, dRHC
may still be much better than d2. However, we shall not elaborate here.

A similar argument also applies to the comparison between dRHC and d3.

So d C performs favorab]y when g(x) = x* with a > L. Some comparisons of

RH
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dRHC with strategies using ratio estimator can be found in Chapter 7 of

Cassel, Sarndal, and Wretman. The comparison there was based on superpopulation
model (1.3) with v(x) = xB (comparable to our model ith g(x) = XZB) and

the assumption that N is very large and that the frequency distribution of the
auxiliary variable values S ERRRFTY is approximately a gamma distribution.

On p. 171, they wrote that dRHC was a good choice for 1 < g < 2. This

seems to be consistent with our finding that dRHC is good for o (comparable

to %J > %

5. Estimation of 0.

Sometimes one may be more interested in estimating 6 than the population
total Y especially when Xi'S are the value of ¥s at some previous time. In
this section, we shall study the minimax estimation of ¢ under model (1.1) -
(1.2) with identifiability condition (1.7). We shall focus the discussion

on the case L = LZ(M)'

1

When g(x) = x®, by (1.6), we have & = Y/X; the estimation of Y then is
the same as that of 6. Therefore Theorem 3.1 and Corrollary 3.1 are applicable.
In Section 3, for the estimation of. Y and L=L2(M), we had only been able to
derive satisfactory results for g(x) = x%. In this section, however, we shall
show that for estimating 6, parallel minimax results can be established for an
arbitrary g. Thus theorem 3.1 and Corrollary 3.1 could be viewed as a special
case of the results in this section.

Let us again restrict to Tinear homogeneous estimators and use the

same notation as before. By (1.6),

N
Lo0)1 gy L o017 X

<D
1]
i~

i



26

N
and hence 6 can be viewed as a population total ) 8, with
i=1
(5.1) o, = [o0e) T 2xys /) Lo(xi)T 26,2
: LA EE RS 1.=191 Xj o
Let
22 2 N
(5.2) z, = [g(x,)] " x; and Z = ) z..
i i i i2q
Then, we have
_ =1 -2 .
ei - VA {[g(xi)] Xi(exi + 6ig(xi))}
= Z_](ez + 8. z %)
i i®i7

Since Z is a known constant, the problem of estimating 6 is now reduced to
that of estimating a population total in model (1.1) - (1.2) with x and g(x)
replaced by z and g(z) = z% respectively. Therefore by Theorem 3.1 and
Corrollary 3.1 an approximately minimax strategy is to divide the N units into
n random groups of sizes as equal as possible, choose one unit from each group

with probability proportional to z = x2/[g(x)]2, and then estimate 6 by

) -1, 0 ejZ
Sonc = L (.Z _ET'Zj)’ or, equivatently,
=1 7
- 1,0
Spuc = Z ('Z Xj 2 Zj)’
Jj=1
where xj,yj refer to the unit drawn from group j, and Zj =) Zs-

i€ the jth group
Let us again denote this strategy by dRHC' Then we have
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Theorem 5.1. Suppose u - N-n1 Non < 1+e, and ® is unbounded
(7 z.)2 + N.Z z?

i=1 ! i=1

where 7 and z; are defined by (5.2) and u is defined by (3.3). Then for any
sampling strategy deasn, |

sup . (MSE for estimating 6 under dRHC < (1+e) = Sup . (MSE for
6€@, §€L,(M) 0€@,8€L,(M)
estimating 6 under d),

where iZ(M) = {§65L2(M) D8 g_]x = 0}. If @ is bounded, then the same

inequality hold if d satisfies the representative condition that

i(s) X; = 1 for all S with P(S) > 0.

We may also generalize the Hurwiz-Hansen strategy for the estimation of
6 for arbitrary g as follows. The sampling scheme is to select n units with

replacement such that at each stage, the probability of selecting the i-th unit
1 n

2), and the estimator is — ) y./x. where y.,x.
nszq J°J J7J

refer to the unit being selected at the j-th stage. If u is close to 1, then

is proportional to z, (= x?/g(xi)

this strategy will also be approximately minimax.
It is interesting to note that although Theorem 5.1 is proved by trans-
forming to a model covered by Theorem 3.1 and Corrb]]ary 3.1, Corrollary 3.1

itself is indeed a special case of Theorem 5.1.

6. Some exact minimax results for n=1.

Scott and Smith (1975) derived some exact minimaxity results for n=1.
We shall show that similar results also hold for our problem.
When the sample size n=1, there is only one estimator satisfying the

representativeness condition (2.2), i.e., Y = x;]

yix. Therefore the problem
is purely the choice of designs. Let P* be the design such that the ith unit

is selected with probability proportional to X3 then we have the following



28

1

Theorem 6.1. Let n=1, g(x) = x&, and Y be the estimator x;]yix. If

X; for some S0 c {1,2,...,N}, the P* minimizes

o~
x
I}
ol
~2

sup R](P,Q;e,§) over all sampling designs P for any ® and M > 0.
66®,§€L2(M)

Proof. By proposition 2.2, without loss of generality, we may impose the
indentifiability condition (1.7) on o, i.e.,
N

(6.1) 6 = Y/X and )
i=1

-
I
o

S. X.2
i M

A~

Then the mean squared error of (p*, Y) is

1
The last equality follows from (6.1) and the assumption that y; = exg ¥ Gixiz'

~ i
Let Ly(M) = { 8 € L,y(M): ] 8, x;%=0}. Then

A

(6.2) sup . R.(P*, Y; 0,8)

. 5 MX.
96®@6L5M)

| A

On the other hand, let

W=

o (Mxi/X) , if i ESO,

~1 . .
-(Mxi/X) , if i QSO.

[N

Then obviously J s%2 = M and T ok «& = 0. Therefore g* = (6%,...,5%) € L,(M)
1 i

and for any P,
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.i

—~
=
-
-
»
D
-
On
*
Ne”
I}
-
He~12

1}
-
He~=
=]
>
(e
*
><

n
=
L)

Il e~12

= MX .

It follows that sup . R

(P,Y; 6,6) >MX > sup . R](P*~Y; 6,8). O
eE®,§6L2(M) "

Ce€ ,§6L2(M)
Readers familiar with Scott and Smith (1975) could easily recognize
the similarity between Theorem 6.1 and their Theorem 1. In fact Theorem 1 of

Scott and Smith (1975) can be extenced to the following

. . -1
Theorem 6.2. Let n =1, g(x) = x, and Y be the estimator X in.

N
If I x;=% 1 x; for some Syc {1,2,...,N}, then P* minimizes
1650 i=1 :
sup R](p,Q; e,g) over all sampling designs for any ® and M > 0.

6€@,sckl (M)

Theorem 1 of Scott and Smith (1975) becomes a special case of Theorem 6.2
with @ = {B/2} and M =B/ 2 . One can also write down a similar result for the

N
problem of estimating 6. ‘The condition needed is then j 2, = % ) z;
i€s i=1
0

B 2 2
for some SO’ where Z, = Xy /[g(xi)] .

If | ) X; - 1| < ¢ for some S,, then results similar to Theorem 2 of

i€ SO

Scott and Smith (1975) (i.e., approximate minimaxity) can also be established.

O’
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