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1. INTRODUCTION

The problem of nonparametric estimation of a multivariate distribution
function in the presence of random censoring is considered. The multivari-
ate lifetimes could represent the times to death of animals in fixed-sized
litters, the failure times of components in a multicomponent system, the ob-
servations of partfcipants of a matched triples study, or the onset times
to stages of a disease in a patient. 1In the special bivariate case, there
are the numerous examples of paired data on eyes, lungs, kidneys, twins or
married couples. It is possible that the censoring is univariate or multi-
variate. Whereas the censoring of times to death of animals in litters
born at random times yet truncated at a fixed time is an example of univari-
ate censoring, the truncation at a fixed time of measures on the partici-
pants in a matched triple study would provide trivariate independent censor-
ing. The study of Tifelengths of twins and married couples would provide
an example of bivariate censoring with possible dependence between the two
censoring variables.

The estimation of one-dimensional distribution function estimators
with randomly censbred data has been extensively developed. The product-
limit estimator was proposed by Kaplan and Meier (1958). Under suitable
conditions , asymptotic normality and weak convergence of this estimator
was established by Breslow and Crowley (1974) and strong uniform almost
sure convergence was proved by Foldes and Rejto (1981).

The bivariate problem has merited some attention recently. Campbell
(1981) estimated the bivariate distribution function under bivariate cen-
soring for discrete or grouped data via the EM algorithm. Leurgans, Tsai,
and Crowley (1982) have proposed an estimator for univariate censoring

that utilizes Freund's bivariate exponential distribution. Campbell and



Foldes (1982) have proposed several estimators based on hazard gradient es-
timators and on products of one-dimensional product-limit estimators. If
is the weak convergence of the latter estimators which is the purpose of
this paper.

A path-dependent distribution function estimator based on the hazard
gradient is introduced in §2 after some notational development. The result
of strong uniform almost sure convergence of the estimator which was proved in
Campbell and F&ldes (1982) is presented.

A topological discussioh in §3 precedes an important lemma on empirical
processes in two-dimensional time. The main theorems of §4 prove the weak
convergence of the suitably normalized estimator. The discussion in the
final section considers estimators with different paths as well as estima-
tors which are products of product-Timit estimatdrs.. The extension from

two to k dimensions is noted.

2. NOTATION AND THE ESTIMATOR
For simplicity of exposition, bivariate observations are considered.
Let {Xi}?=] denote a sequence of independent random variables, X; = (X11’X12)’
from the continuous bivariate distribution function F. Each 51 represents
the Tlifetimes of a pair of (possibly dependent) items. Let {91}?=1 denote
a sequence of independent random variables, 91 = (011,012), from the con-
tinuous bivariate distribution function G. It is assumed that {Xi}?=] and

{gi}1=1

In general ¥i and 91 are not both observable. Define

are mutually independent.

Zji = min(in,Cji);
g€.. = 1 . Jj=1,2; i=1,2,...,
Ji {inicji}

where IA(x) is 1(0) if x €(4) A. Note that e corresponds to whether Z is



an uncensored value (e=1) or censored value (e=0). It is assumed that
Zi = (211,221) and gy = (511,521) are observable. Let H denote the distri-

bution function of ZT' Define the bivariaté survival function

F(t) = F(t],tz) = P(X]>t],X2> t2)

and with abuse of notation for t = (t1,t2)

F(E1aty) = PO > X, < t))5 FltgE,) = POX; < g%, t,).

Similar functions can be defined for G and H. By independence of X and C

Aty oty) = Fltyty)a(t,,t,) | (1)

for all t1,t2.

The hazard gradient approach of Marshall (1975) was employed by Campbell
and Foldes (1982) to estimate the distribution function as indicated below.
The cumulative hazard function is given by

| R(t) = -on F(L). (2)

Assuming R is absolutely continuous with partial derivatives that exist al-
most everywhere, let r(t) denote the gradient of R(t). Then R(t) can be re-
presented as the path-independent integral of r(z) from (0,0) to t. In par-
ticular, for the linear path (0,0) to (t],O) to (t],tz),

t
R(t) = [ ry(u,0)du + [ ry(tq,v)dv

0 0

= JR(8) _ 3R(s) - .
where r](§) 35, . r2(§) 35, for s (s],sz), i.e.,
Y4 t

~

R(E) = [ (F(u,0) 7 d F(u,0) + [ (F(ty,v)) T d F(Ey W)
0 0

where duF(u,§) and dVF(§,v) denote Lebesgue-Stieljes integration over u and

v, respectively, with s fixed.



Define
Y4
K](g) = P(Zy<tq,Z,> ty.eq=1) = é G(u,tz)duF(u,Ez);
(3)
t
K2(1:) = P(Z] >t],221t2,ez=]) = (j)’ G(t],v)dvF(f],v).
Then
t t
1 _ -1 2 =1
R(E) = [ (R(,0))7Td K (0.0) + [ (ACt,)) T Ky(tv) (4)
0 u 0 v
Estimate H, K], and K2 by the empiricals
;N
Hy(8) = 4 L Hzp sty Zpact,)
. 1 f
K'In(;';) = n Z OL'H(E)Q
i=1
n
Kzn(r;) = n 'iZ'I OLZ'i(E);
where o,.(t) = I _1y and o .(t) =1 1.
Tite (Z]1 1,221 tZ’Eli 1) 21~ (Z >t],Z <t2 24 1)
Then R(t) is estimated from {gi}?= and {e. }1 -1 by
t] t
- 0 - -1
Ra(t) = [ (i (0,00) gy (u,0) f (Rt v Ky (£00) (5)
and F(E) by
Fa(t) = exp{-R (t)}. (6)

If F and G are continuous and if T1 and T2 are such that H(T],TZ) > 0,
Campbell and Foldes (1982) proved

sup _ |F (t)-F(t)| = o (/ @l%lﬂ-) a.s.

0<t15I]

0<t2§T2



3. WEAK CONVERGENCE OF EMPIRICALS IN TWO-DIMENSIONAL TIME

The study of the weak convergence of empirical processes in multidimen-
sional time culminated in articles by Neuhaus (1971) and Straf (1971). The
approach of Neuhaus (1971) is the reference for the topological discussion
below.

For simplicity one can reduce the domain of the bivariate distribution
function F from [8,»)x [0,») to the unit square, [0,1]x[0,1] by the trans-
formation uy = F(t1,ﬁ) and u, = F(t2|t1) = P(Xzf_t2|X1:3t]), as suggested
in Durbin (1970). The approach of Neuhaus (1971) is to restrict the real-
valued functions from the unit square. For the point t = (t],tz) inside
the unit square, let Q]’QZ’QB’Q4 denote the four open quadrants in the
square determined by t, where Q] is the upper right quadrant. The space
D2 is the set of all real functions from the unit square such that if {gn}

denotes a sequence in Q. such that lim t_ = t then Tim f(t_) exists for
i now N7 - n

i=1,2,3,4 and for i=1 its Timiting value is f(t). Let a denote the class

~

of all continuous functions from [0,1] onto itself. Let A= (AT,AZ)E;AXA
and |t| denote Euclidean distance in the plane. Define the metric d (which
can be thought of as an extension of the one-dimensional Skorohod metric)

for f,g in D2 as

d(f,g) = inf{e: there exists A = A, with sup[a(t)-t| <«
e>0 oo t

~

and szplf(’g)-g(a(y))l <e} .

~

Then (Dz,d) is a separable complete metric space, unlike the space of dis-

continuous functions in the unit square with the metric d or the sup metric.

Therefore, the Prohorov development of weak convergence is applicable.



let

U]n(y) = Vﬁ-(Hn(t1’E2) - H(t]afz); UZH(E) = /ﬁ-(Hn(E]’tZ) - H(f]stz))Q
(7)
Vin(t) = A (K (8)-K,

et

), §=1,2.

Lemma. Let T,,T, be such that H(T1,T2) >0, then as n » =
(U1n(E)’U2n(f)’v1n(f)’V2n(E)) converges weakly to a quadrivariate, two-dimensional-
time Gaussian process (u1(;),Uz(g),vl(p),vz(g)) with mean (0,0,0,0) and co-
variance structure given below, where a Ab = min(a,b), avb = max(a,b), and

s = (s155,)

COV(U](§)3U](E)) = H(S] At],SZVtZ) - H(S1:§2)H(t1,t2);

Cov(Uy(s)sUy(t)) = H(sy¥E s, Aty) - H(S Hs,)H(E st

9)s

Cov(V](g),V1(§)) = K](sT At1,SZVt2) - K](s],sz)K1(t1,t2);

Cov(V2(§),V2(§)) = K2(51Vt1=52'\t2) - K2(s1,52)K2(t1,t2);

’ -H(s],§2)H(E],t2) if sg <tyors,>t,

H(s],tz) + H(sz,t]) - H(s],sz) - H(t],tz)

v - H(s],§2)H(E],t2) if sy 2 tys 5y <ty
Cov(U1(§),V](§)) = K](S1:At],52Vt2) - H(s],sz)K](t],tZ);

-H(s],sz)KZ(t],tz) ifs;<tyors,>t,

(]
(@)
<
—
(@
—
—
N
~
-
-
Ny
—
et
~—
~—
1}

Kz(s]atz) + Kz(szat1) - Kz(s]’sz) = Kz(t]stz)
- H(s],sz)Kz(t],tz) if S1 2 tys Sy <ty

-H(E],SZ)K1(t],t2) if s3>ty ors, <t

Cov(U,(s),Vv,(t))
SR Ky(sqatp) + Ky(tyssp) - Kylsqasy) - Ky(tysty)

- H(s],sz)K1(t1,t2) if sy <ty 552ty



Cov(Uy(s)sVn(t)) = Ky(sqVtyss, Aty) = H(S1,5,)K,(t5t) 5

—K](s],sz)Kz(tl,tz) if sy < t; ors, > t,

Cov(V;(s),V,(t))

{

J(sl’tz) + J(t],sz) - J(S]asz) - J(t1st2)

\ - K1(sl,52)K2(t],t2) if 51 2 tys 5y < by

where J(t],t ) = P(Z1< t1sZ,< t2,€]=1,€2=1).
Proof. The finite dimensional distributions converge to multivariate nor-
mal distributions by an application of the multivariate central limit theorem

to the four-dimensional variables (I(Z )-H(t],fz),

1i5t1 22557

2
I ~H(t >t ) —1y - K (t),
(Z] >t],Z <t ) 1 (Z] <tysZy.> 2,81 1) 1
I( ]1>t1,Z <t2’€2 1) - Kz(g)). A simple calculation on these indicator

variables yields the covariance structure of the lemma. In order to prove
tightness in four dimensions, the tightness result of Neuhaus (1971, pp.
1292-5) for a one-dimensional empirical function of a multidimensional time

parameter is applied for U]n,U2 , and V2n separately. Then tightness

n’V1n

of the distributions of (U1n’U2n’V1n’V2n) follows immediately.

4., MAIN THEOREMS
The theorems in this section proceed in a fashion similar to the
proof of weak convergence in one dimension in Breslow and Crowley (1974).

The random variables (U1n’U2n’V ) and (Ul’ 2,V1,V2) can be replaced by

1n
random variables with the same finite dimensional distribution but which al-
so satisfy the condition that d((U]n’UZn’V1n’V2n)’(U1’U2’V1’V2)) converges

to zero almost surely, where d also represents the extension to D2><D2><D2><D2

of the metric d on D2.



THEOREM 1. If F and G are continuous bivariate distribution functions and
if T], T, < = are such that H(T],Tz) > 0, then for t = (t],tz) with

O<t]<T O<t2<T

1° 2°
/A (R (£)-R(t))

converges weakly to a two-dimensional-time Gaussian process W(t) given by:

W(E) = Aj(E) + By(t) + A(t) + By(t),

where
t
ME) = [ (R.0) 0 (4,004, (4,0)
Yo
B (8) = (f(t;,0)) 71V (t;,0) - / (H(u,0)) 72V, (u,0)d H(u,0)
(8)
t2 )
Bplt) = [ (REpav) ULty )0 Ky 87 0)
t
B, (t) = (A(ty,t,)) 2V, (t)5t,) - / F(ty,v)) 20y 0t v)d H(E, V).
Proof. From equations (4) and (5)
t] ) ”t]
(R (E)-R(ED) = 1 L1 (000)7 4 kg (00)- [ (R(w,0) 7k (00)
t . t .

+ g; t] ,V)) V Zn(tl 2V )- é’( (t'lav)) d Kz(t] V) 1.



Now
4 b
AL (42007 g (0,0) - IO<H<u,0)>'1duK](u,0)]
t
= 1S (R(4,00) P 1A(0,0) - i (u,0)1d K (u,0)
0

t
1.
+ fO(H(u,O))_] d, (K; (us0) - Ky (us0))
Y 1 1
+ [ [H(u,0) - H (u,0)][= - - = d K (u,0
fo[ (u,0) - H (u )][H(u,o) o) Hz(u,O)] 4K (u50)
a0 1
- d (K, (u,0) = Ky (u,0
+ fO[I:In(u,O) 10, (K1 (020 < Ky (0.0))
B A]n(t) ¥ B]n(t) * E]n(t) * E?n(g)
where
Y- _2
A'In(f') - IO(H(U’O)) U]n(uso)duK](usO)
t )
B1nt) = (A(t7.00)7 1y (67,0) - [ ((,0)) ™%, (.0} (u.0)
t 2
1 U7 (t,,0)
1 Tn*"1
E, (t) = — [ — _ d K+ (u,0
in(t /i Jo H(u,0)f(u,0) 1 (.0
YU (u,0)
E* (t) = f In d (Kq, (us0) = K;(u,0)).

n 0 f_(u,0)i(u,0) -
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In a similar manner,

ts

t
_ 2 _
Al fO(Hn(t],v))']dVK2n<t],v) - IO(H(t1,v))']de2(t1,v)]

= Aon(t) + Byp(t) + Epp () + E5 (2,

where
t) L
AZn( ) = fO(H(t],v)) U2n(t1,v)dVK2(t],v)
| t
By (£) = (A(ty5t5)) 1V, (tg5t,) - fo(ﬁ(t],V))'ZVZn(t],v)dH(E],v)
t 2
2 Us (ty,v)
1 2n* "1
E, (t) = — — - d K,(tq,
an(t) = e fo (b V)R Y 2(ty2¥)
t
2 U, (tq,v)
B (t) = f =20 d, (Ko (£7V) = Ky(tg¥)).

T 0 \
0 H (tyV)H(tyv)

Now as n tends to infinity, E. (t) and E* (t) converge in probability

*
Jn Jn
to zero in the supremum metric by an argument similar to that of Breslow
and Crowley (1974) and hence converge in probability to zero in the metric
d, for j = 1,2. Further, Ajn(g) converges almost surely to Aj(g) and
Bjn(g) to Bj(g) in the sup metric and hence in d, for j = 1, 2. Therefore,
/ﬁ(Rn(g) - R(t)) converges weakly to W(t). That W(t) is a Gaussian process
with mean 0 follows immediately from the Lemma. The covariance structure

of W(t) can be calculated from (8) and from the covariance structure of

(U'I LY Uzav-l 3 Vz).
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THEOREM 2. If F and G are continuous bivariate distribution functions
and if Ty» T, < « are such that H(T], T2) < =, then for 0 < ty < Tys

0<t, <T

2 2

M(F, (£) - F(t))

converges weakly to a-two-dimensional-time Gaussian process W*(t) which

has mean 0 and covariance

Cov(w*(s],sz), w*(t],tz)) = F(s],sz)F(t1,t2)Cov(w(s],52), W(t1’t2))'

Proof. By (6)

M(F, (1) - F(

A Taylor's series expansion yields
- - -R(t) RO 2
MR () - F(t)) = -e" =7 AR (t) - R(t)) - e MR () - R(E))™ (9)

where sup IRﬁ - R| < sup an - R|. The second term on the right of (9)
converges to zero in probability in the sup norm and hence in d. Thus,
%T(En(p) - F(p)) converges weakly to -F(;)w(;) which is a Gaussian process

with mean 0 and desired covariance.

5. OTHER ESTIMATORS

Campbell and Foldes (1982) introduced another path-dependent estimator.
For Nn(t) =n ﬁn(t), define the estimator Sn(E) of ?(E):

o -(t ’0) 62 -(t stz)
_on [ N(Z4450) R nof Nty Zy;) o
AU Lieeon =1 \ Wy )7 ’

provided N(;) > 0. This is the product of two one-dimensional product-limit

estimators, one a marginal estimator for the first coordinate, and the second
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a conditional one on the second coordinate given Z] > t]. It has been
proved that for T1,T2 <» sych that ﬁ(T],Tz) >0

sup_ [F (1) - S (t)] = oD) aus.
O<t]§I1

0<t2iT2
Therefore Sn(t) inherits strong uniform almost sure consistency as well as
weak convergence from ?n(y).

The estimators Fn(g) and Sn(p) depend on the path from (0,0) to (t],o)
to (t],tz). Since R(t) and F(t) are path independent, it is possible to
have also developed estimators for the linear path from (0,0) to (O,tz) to
(t1,t2). In general these estimators differ from Fn(E) and Sn(p). However,
the strong consistency and weak convergence results follow in the same way.
The covariance structure of the limiting Gaussian process does depend on
the path.

The extension of these estimators and their asymptotic properties from
two-dimensional time to k(>2)-dimensional time is straightforward. In
k-dimensions there are k! piecewise linear paths similar to the two mentioned
above. Strong uniform almost consistency follows readily. It is convenient
to use the definition of Dy in Neuhaus (1971) to develop the weak convergence
results.

The drawback of the estimators ﬁn and Sn is that the estimators are not
necessarily survival distribution functions. Although monotonicity is
assured along the path of definition, it is not guaranteed along other
ever-increasing paths nor is it tﬁe case that non-negative mass is assigned
to rectangles. The fact that the estimator is uniformly strongly consistent

for the properly behaved function F minimizes this problem for large samples.
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In that Sn can be thought of as a generalized maximum 1ikelihood estimator
along the designated path, one could obtain such a generalized maximum
likelihood estimator subject to the constraint that the estimator is a
distribution function. It is conjectured that these asymptotic results

will not be changed for such an estimator.
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