TRANSVERSING THE SMALLEST POSSIBLE CORRIDOR UNDER ENERGY AND VELOCITY CONSTRAINTS

bу

M. C. Spruill*
Georgia Institute of Technology and
Purdue University

Mimeograph Series #81-52

Department of Statistics
Division of Mathematical Sciences
October, 1981

*School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. This work was supported in part by NSF Grant No. MCS-8103444 and in part by AFOSR Contract No. F49620-79-0122.

TRAVERSING THE SMALLEST POSSIBLE CORRIDOR UNDER ENERGY AND VELOCITY CONSTRAINTS

by

M. C. Spruill*

ABSTRACT

For $\eta\,>\,0$ a fixed constant minimize the functional

$$\tilde{\rho}_{\eta}(f) = \sup_{a \le x \le b} |f(x)|^2 + \eta \int_{a}^{c} (Lf(x))^2 dx$$

over f in the Sobolev space $W_m^2[a,c]$ which satisfy f(c)=1, where a < b < c and $L=D^m+a_{m-1}D^{m-1}+\ldots+a_0I$ are fixed. There is always a solution to this problem and if the m-dimensional null space of L is spanned by a Chebyshev system on [a,c] then the solution is unique and equioscillates on [a,b]. An explicit solution is given for $L=D^2$ and is shown to yield the solution to a control problem described below. A solution to the $\tilde{\rho}_{\eta}$ problem is conjectured.

Running Title: CORRIDOR PROBLEM

^{*}School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. This work was supported in part by NSF Grant No. MCS-8103444 and in part by AFOSR Contract No. F49620-79-0122.

TRAVERSING THE SMALLEST POSSIBLE CORRIDOR UNDER ENERGY AND VELOCITY CONSTRAINTS

by

M. C. Spruill*

1. Introduction. A particle of unit mass travels in the x - y plane. Its coordinates at time t are $\underline{x}(t) = (x(t),y(t))$ where $x'(t) \equiv -1$ and $\underline{x}(0) = (c,1)$. The initial velocity y'(0) in the y direction and the acceleration y'' are subject to control. For those controls which have the property that the particle hits the line x = a, a < c, the energy expended is $E = \int\limits_{0}^{c-a} (y''(t))^2 dt$. Denote the corridor $\{(x,y)\colon x\in [a,b], |y|\leq \gamma\}$ by $C(\gamma)$ where $b\in (a,c)$ is fixed. Given that $E\leq E_0$ is to be spent, what is the minimum $\gamma\geq 0$ for which the particle may be made to pass through the corridor $C(\gamma)$? The explicit solutions to the corridor problems C_{E_0} , $E_0\in [0,\infty)$, are given in Theorem 4.1.

The solutions are found by solving another class of problems P_η for $\eta>0$, which may be stated as follows. Given $\eta>0$ minimize the functional

$$\rho_{\eta}(f) = \sup_{a \le x \le b} |f(x)|^2 + \eta \int_{a}^{c} (f''(x))^2 dx$$

over $f \in W_2^2[a,c]$ subject to f(c) = 1. The explicit solutions to these problems may be found in Theorem 3.2. They equioscillate on [a,b] and are splines on the entire interval [a,c] possessing two knots in [a,b]. The locations of the knots coincide with those at which the solution achieves its maximum

^{*}School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. This work was supported in part by NSF Grant No. MCS-8103444 and in part by AFOSR Contract No. F49620-79-0122.

absolute value on [a,b]. The solutions to this class of problems may also be used in optimal robust regression. One assumes that observations on the random variables $y(x) = f(x) + \varepsilon$ may be taken in the interval $x \in [a,b]$. The value f(c) is to be estimated under the assumption that f is almost a linear function in the sense that $||f''||_2^2 \le \frac{1}{\eta}$. The estimator used was developed by Speckman in [2] and employs the solution to P_{η} . Some optimal experimental designs employing Speckman's estimator are studied in [4].

The optimal design problem motivates the study of the minimization of a more general functional than ρ_{η} . For the fixed linear differential operator L = D^m + a_{m-1}D^{m-1} + ... + a₀I, where a_j \in C^j[a,c], j=0,...,m-1, defined on W_m²[a,c] define

$$\tilde{\rho}_{\eta}(f) = \sup_{a < x < b} |f(x)|^2 + \eta \int_a^c [Lf(x)]^2 dx.$$

The function minimizing $\tilde{\rho}_{\eta}$ subject to $f \in W^2_m[a,c]$ and f(c) = 1 will be termed a solution to \tilde{P}_{η} . In the statistical context it could be used in extrapolation of a function which is almost a solution to Lf = 0 in the sense that $\int_a^c (Lf(s))^2 ds \leq \frac{1}{\eta}$. It is shown below that \tilde{P}_{η} always has a solution and that if the m-dimensional null space of L is spanned by a Chebyshev system on [a,c] then the solution is unique. In particular, the solutions gotten in Theorem 3.2 must be unique since $L = D^2$.

We offer the following.

<u>Conjecture</u>: If L has a null space spanned by a Chebyshev system then there exist m points $\{x_1, \ldots, x_m\}$ contained in [a,b] such that the unique solution to \tilde{P}_n is given by

$$(1.1) \quad \delta_0(x) = [s^2(\eta) + \eta z^2(\eta)]^{-1} [\eta z(\eta) \sum_{i=1}^m (-1)^{i+q} \phi_{X_i}(x) + \int_a^c h_X(s) h_c(s) ds],$$

where $\{\phi_{x_i}\}_{i=1}^m$ are the Lagrange interpolation polynomials for the null space of L on [a,c] to the points x_i , i.e.; $\phi_{x_i}(x_j) = \delta_{ij}$, q is either zero or one,

$$h_{X}(s) = G(x,s) - \sum_{i=1}^{m} \phi_{X_{i}}(x)G(x_{i},s),$$

G(x,s) solves $LG(\cdot,s)=0$ on [s,c] subject to $\frac{d^i}{dx^i}G(x,s)\Big|_{x=s}=\delta_{i,m-1},i=0,\ldots,m-1,$

$$s^{2}(\eta) = ||h_{c}||_{2}^{2}$$
 (on [a,c]), and $z(\eta) = \sum_{i=1}^{m} |\phi_{x_{i}}(c)|$.

The functional ρ_{η} is not differentiable as the following example shows. Let a=0, b=1, c=2, $f_0(t)=-1+2t$, and $h_n(t)=t/n$ for $n\geq 1$ and $t\in [0,2]$. Then $\rho_{\eta}(f_0+h_n)-\rho_{\eta}(f_0)=2/n+1/n^2$, $\rho_{\eta}(f_0-h_n)-\rho_{\eta}(f_0)\equiv 0$, $||h_n||^2=14/3n^2$, and if a bounded linear functional Λ were to exist satisfying $|\rho_{\eta}(f_0+h)-\rho_{\eta}(f_0)-\Lambda h|=o(||h||)$ it would entail both $\Lambda nh_n \to 2$ by consideration of h_n and $\Lambda nh_n \to 0$ by consideration of $-h_n$. The methods employed in the solution to P_{η} are adapted from the literature on the theory of optimal design of experiments as found for example in [3].

- 2. Solving \tilde{P}_{η} . Suppose that f_1, \ldots, f_m is a T-system on [a,c] and b \in (a,c) as above. In general the subspace $\{\sum_{j=1}^{m} \alpha_j f_j : \alpha' d=0\}$, where d is a fixed arbitrary vector, does not have the Chebyshev property.
- Lemma 2.1. The collection of functions $\mathfrak{F}=\{\sum\limits_{j=1}^m\beta_jf_j\colon\beta'f(c)=0\}$ has the Chebyshev property on [a,b]. In particular at least one of $f_j(c)$,

 $j \in \{1,...,m\}$, say $f_1(c)$, must be non-zero and the system $\{g_i^j\}_{i=2}^m$ is a T-system for $\mathcal F$, where

(2.1)
$$g_{i}(x) = f_{i}(x) - \frac{f_{i}(c)}{f_{i}(c)} f_{i}(x).$$

<u>Proof:</u> It is easily checked that the span of $\{g_i\}_{i=2}^m$ is 3 if $f_1(c) \neq 0$. Let $a \leq \tau_1 < \tau_2 < \cdots < \tau_{m-1} \leq b$ and form the determinants

$$D = \begin{vmatrix} g_2(\tau_1) \dots g_2(\tau_{m-1}) \\ \vdots \\ g_m(\tau_1) \dots g_m(\tau_{m-1}) \end{vmatrix} \quad \text{and} \quad A = \begin{vmatrix} f_1(\tau_1) \dots f_1(c) \\ \vdots \\ f_m(\tau_1) \dots f_m(c) \end{vmatrix}.$$

Since $A = (-1)^m f_1(c)D$ and the determinants A do not change sign the determinants D must not change sign. \Box

Theorem 2.1. The problem \tilde{P}_{η} has a solution $f_0 \in W^2_m[a,c]$. If the null space of L has the Chebyshev property then there exist points a $\leq x_1 < x_2 < \dots < x_m \leq b$ and q = 0 or 1 such that

$$f_0(x_i) = (-1)^{i+q} \sup_{a \le x \le b} |f_0(x)|$$

and the solution is unique if $\eta\,>\,0.$

 $\begin{array}{lll} \underline{Proof:} & \text{ If } \eta = 0 \text{ clearly } \tilde{\rho}_{\eta}(f_0) = 0 \text{ and there are many solutions.} & \text{ If } \eta > 0 \\ \\ \text{let } f_n \in \mathbb{W}^2_m[a,c] \text{ be such that } \tilde{\rho}_{\eta}(f_n) + \inf \tilde{\rho}_{\eta}(f). & \text{ The sequence } Lf_n \text{ satisfies} \\ \\ ||Lf_n||_2^2 \leq \tilde{\rho}_{\eta}(f_1). & \text{ Since } ||h||_2 \leq k \text{ is weakly sequentially compact in} \\ \\ L_2[a,c] \text{ there is an element } u \in L_2[a,c] \text{ and a subsequence n' such that} \\ \\ Lf_{n'} \xrightarrow{W} u. & \text{ We may write, for } a \leq \tau_1 < \tau_2 < \dots < \tau_m \leq b, \end{array}$

$$f_{n'}(x) = \sum_{i=1}^{m} f_{n'}(\tau_i) \phi_{\tau_i}(x) + \int_a^c h_{\chi}(s) L f_{n'}(s) ds.$$

The integrals $\int\limits_a^c h_X(s) Lf_{n'}(s) ds$ converge to $\int\limits_a^c h_X(s) u(s) ds$ for all $x \in [a,c]$. Since $\sup_{a \le x \le b} |f_{n'}(x)| \le \tilde{\rho}_{\eta}(f_1)$ all of the m sequences $\{f_{n'}(\tau_i)\}_{i=1}^m$ are bounded. Appealing again to sequential compactness of \mathbb{R}^1 we may assume that the

sequence n' has been chosen to satisfy $f_{n'}(\tau_i) \to \alpha_i$ also. Define the function $f_0 \in W^2_m[a,c]$ by

$$f_0(x) = \sum_{i=1}^m \alpha_i \phi_{\tau_i}(x) + \sum_{a}^c h_x(s)u(s)ds.$$

Since $||u||_2 \le \underline{\lim} ||Lf_{n'}||_2$ it is clear that $\tilde{\rho}_{\eta}(f_0) \le \inf \tilde{\rho}_{\eta}(f)$. Since $f_n(x) \to f_0(x)$ for all x, $f_0(c) = 1$. The first assertion of the theorem has been proven.

For the following arguments we shall employ the notation of [1] in counting the zeros of a continuous function on [a,b]. If $x_0 \in (a,b)$ is an isolated zero of f and f does not change sign at x_0 then x_0 is termed a non-nodal zero. All other zeros, including zeros at the endpoints are nodal zeros. For any such function $\tilde{Z}(f)$ is the number of zeros in [a,b] counting one for each nodal zero and two for each non-nodal zero. Suppose that g is a continuous function on [a,b] and there are points a \leq x₁ < x₂ < ... < x_m \leq b and $q \in \{0,1\}$ such that $g(x_i) = (-1)^{i+q} ||g||_{\infty}$, $i=1,\ldots,m$. If there exists a point $x_0 \in \{x_1, \dots, x_m\}$ and a continuous function h such that $h(x_0) = g(x_0)$ then $||h||_{\infty} \le ||g||_{\infty}$ entails $\tilde{Z}(g-h) \ge m-1$. Consider the collection of functions on [a,c] { $\sum_{i=1}^{m} \alpha_{j} f_{j}$: $\alpha' f(c)=0$ }. Their restriction to [a,b] is a Chebyshev system spanned by the Chebyshev system g_2, \ldots, g_m which may be defined, if $f_1(c) \neq 0$, except for the sign of one of them, from (2.1). By Bernstein's theorem (see [1]) there are constants β_1, \dots, β_m such that $\beta'f(c) = 0$, and the function $\int_{j=1}^{m} \beta_j f_j = g_0$ is the minimax approximant to f_0 on [a,b]. Therefore there exist m points a $\leq x_1 < ... < x_m \leq b$ and a $q \in \{0,1\}$ such that

$$(g_0(x_i) - f_0(x_i))(-1)^{i+q} = ||g_0 - f_0||_{\infty},$$
where $||g_0 - f_0||_{\infty} = \sup_{a < x < b} |g_0(x) - f_0(x)|.$ Also

$$||g_0-f_0||_{\infty} = \inf\{||\Sigma\beta_jf_j-f_0||_{\infty}: \beta'f(c)=0\}.$$

Since $Lg_0=0$ on [a,c] and $\beta'f(c)=0$ entails $(f_0-g_0)(c)=1$ we must have $||f_0||_{\infty}=||f_0-g_0||_{\infty}$. Furthermore there must be a point $x\in[a,b]$ at which $f_0(x)=f_0(x)-g_0(x)=\pm||f_0||_{\infty}$. We conclude $\tilde{Z}(f_0-(f_0-g_0))\geq m-1$ on [a,b]. However if $f_0-(f_0-g_0)=g_0$ is a non-trivial polynomial in the system g_2,\ldots,g_m we must have by Theorem 4.2 of [1] $\tilde{Z}(g_0)\leq m-2$. We conclude that g_0 , the best approximant from 3 on [a,b] is zero. Consequently f_0 itself equioscillates in the sense of (2.2).

We now verify the uniqueness of the solution when the null space of L is spanned by a T-system $\{f_1,\ldots,f_m\}$. Because the norm on the Hilbert space $L_2[a,c]$ is strictly convex, if h_0 and h_1 are two solutions to the \tilde{P}_η problem then $\tilde{\rho}_\eta(\alpha h_0 + (1-\alpha)h_1) < \tilde{\rho}_\eta(h_0)$ unless $kLh_1 = Lh_0$, a.e. on [a,c] for some constant k. Since $||\alpha h_0 + (1-\alpha)h_1||_\infty^2 \le \alpha ||h_0||_\infty^2 + (1-\alpha)||h_1||_\infty^2$, where $||h||_\infty = \sup_{a \le x \le b} |h(x)|$, we have $\tilde{\rho}_\eta(\alpha h_0 + (1-\alpha)h_1) \le \psi(\alpha)$ where the function ψ is defined by

$$\psi(\alpha) = \alpha ||h_0||_{\infty}^2 + (1-\alpha)||h_1||_{\infty}^2 + \eta(k+\alpha(1-k))^2||Lh_0||_{2}^2.$$

Note that $\psi(0)=\psi(1)=\tilde{\rho}_{\eta}(h_0)$ and $\psi''(\alpha)=2\eta(1-k)^2||Lh_0||_2^2$. Thus, whether $||Lh_0||=0$ or $||Lh_0||>0$ we must have $||h_0||_{\infty}=||h_1||_{\infty}$. Again it must be the case that h_0 and h_1 share a common extreme value at one of their points of equioscillation. Therefore $\tilde{Z}(h_0-h_1)\geq m-1$. If $Lh_0=0$ then $h_0-h_1\in \mathfrak{F}$ and of necessity $\tilde{Z}\leq m-2$ unless $h_0=h_1$. If $||Lh_0||>0$ then k=1 so that again, h_0-h_1 is in $\mathfrak{F}=\{\Sigma\beta_{\mathbf{j}}f_{\mathbf{j}}\colon \beta'f(c)=0\}$ and $\tilde{Z}\leq m-2$. We conclude that in any case $h_0=h_1$ proving that the solution is unique. \square

3. Exact solution to P_{η} . A requirement of our method of proof is the following theorem. Let χ be an index set, μ_0 , μ_1 , and μ_2 be three Hilbert spaces,

 $\{m_\chi\}_{\chi\in\mathcal{X}}$ be a collection of bounded linear mappings from \mathbb{H}_0 into \mathbb{H}_1 , and \mathbb{T} be a bounded linear mapping from \mathbb{H}_0 into \mathbb{H}_2 . Let h^* be a given non-zero bounded linear functional on \mathbb{H}_0 and set $\mathbb{U}=\{h\in\mathbb{H}_0\colon h^*(h)=1\}$. Equip χ with a topology for which every point of χ is a Borel measurable set and let Ξ denote the collection of all Borel probability measures ξ on χ whose supports $S(\xi)$ are finite sets.

Theorem 3.1. Suppose there is a point $h_0 \in U$, a measure $\xi_0 \in \Xi$, and $\alpha > 0$ satisfying

i)
$$S(\xi_0) \subset \{x: ||m_x(h_0)||_{H_1} = \sup_{x \in \mathcal{X}} ||m_x(h_0)||_{H_1} \}$$
,

ii)
$$\int (m_X^* m_X^h h_0^{+} T^* T h_0^{-}) d\xi_0^{-}(x) = \alpha h^*, \text{ and}$$

iii)
$$\int (||m_x h||_{H_1}^2 + ||Th||_{H_2}^2) d\xi_0(x) = 0$$
 implies $h = 0$.

Then among all $h \in U$ h_0 minimizes $\sup_{\mathcal{X}} ||m_{\mathbf{X}}(h)||_{\frac{1}{2}}^2 + ||Th||_{\frac{1}{2}}^2$.

<u>Proof</u>: Let $N(\xi) = \{h \in \mathbb{H}_0 : \int (||m_x(h)||_{\mathbb{H}_1}^2 + ||Th||_{\mathbb{H}_2}^2) d\xi(x) > 0\}$ and

$$d(h^*,\xi) = \sup_{h \in N(\xi)} \frac{[h^*(h)]^2}{\int (||m_X(h)||_{\frac{1}{4}}^2 + ||Th||_{\frac{1}{4}}^2) d\xi(x)}.$$

Clearly

(3.1)
$$d(h^*,\xi) \geq \left[\inf_{h \in N(\xi) \cap U} \int (||m_X(h)||^2_{\sharp 1} + ||Th||^2_{\sharp 2}) d\xi(x) \right]^{-1}.$$

Since

$$\inf_{N \cap U} \int (||m_X h||^2 + ||Th||^2) d\xi \le \inf_{N \cap U} \sup_{\mathcal{X}} (||m_X h||^2 + ||Th||^2)$$

$$\le \sup_{\mathcal{X}} ||m_X h_0||^2 + ||Th_0||^2 = S$$

we have $d(h^*,\xi) \ge \frac{1}{S}$ for all $\xi \in \Xi$.

Using ii) we have for ξ_0

$$d(h^*,\xi_0) = \sup_{N(\xi_0)} \frac{\alpha^{-2}(\int [(m_x h, m_x h_0)_{\frac{1}{H_1}} + (Th, Th_0)_{\frac{1}{H_2}}] d\xi_0(x))^2}{\int (||m_x h||_{\frac{1}{H_1}}^2 + ||Th||_{\frac{1}{H_2}}^2) d\xi_0(x)}$$

$$\leq \sup_{N(\xi_0)} \frac{S\alpha^{-2}[\int (\sqrt{||m_x h||_{\frac{1}{H_1}}^2 + ||Th||_{\frac{1}{H_2}}^2}) d\xi_0(x)}{\int (||m_x h||_{\frac{1}{H_1}}^2 + ||Th||_{\frac{1}{H_2}}^2) d\xi_0(x)}$$

$$\leq S\alpha^{-2} = S(S^{-2}) = \frac{1}{S}.$$

Since by (3.1) $d(h^*,\xi_0) = \frac{1}{S} \ge [\inf_{U \cap N(\xi_0)} \sup_{\mathcal{X}} (||\mathbf{m}_{\mathbf{X}}\mathbf{h}||_{\mathbb{H}_1}^2 + ||\mathbf{T}\mathbf{h}||_{\mathbb{H}_2}^2)]^{-1}$ we have $\inf_{U \cap N(\xi_0)} \sup_{\mathcal{X}} (||\mathbf{m}_{\mathbf{X}}\mathbf{h}||_{\mathbb{H}_1}^2 + ||\mathbf{T}\mathbf{h}||_{\mathbb{H}_2}^2) \ge \sup_{\mathcal{X}} (||\mathbf{m}_{\mathbf{X}}(\mathbf{h}_0)||_{\mathbb{H}_1}^2 + ||\mathbf{T}\mathbf{h}_0||_{\mathbb{H}_2}^2).$ By iii) $N(\xi_0) = \mathbb{H}_0 - \{0\}$ and we have proven the theorem. \square

We shall prove below that there are points $x_1 < x_2$ in [a,b] such that the representation (1.1) holds when $L = D^2$. In the general case their locations in [a,b] will depend upon η . For this particular case we show that $x_2(\eta) \equiv b$ and the location of $x_1(\eta)$ is determined as follows. Let

$$\eta_0 = \frac{(b-a)^2}{24} \left[\frac{1}{b-a} + \frac{1}{2(c-b)} \right]^{-1}$$
.

For $\eta > \eta_0$, $x_1(\eta) = a$. For $0 < \eta < \eta_0$, $x_1(\eta)$ is the unique real solution to

(3.2)
$$\frac{(b-x)^2}{24 \eta} - \frac{1}{2(c-b)} = \frac{1}{b-x}$$

in [a,b). By $x_1(n)$ below we shall mean the function which has just been defined. In the case of $L=D^2$, $\phi_{x_1}(x)=\frac{x-x_2}{x_1-x_2}$, and $\phi_{x_2}(x)=\frac{x-x_1}{x_2-x_1}$.

Theorem 3.2. With $x_1(\eta)$ as above $x_2(\eta) \equiv b$ and q = 0 the conjectured solution (1.1), with $L = D^2$, solves P_{η} .

<u>Proof</u>: Note that $f_0(c) = 1$. Fix n and let ξ_0 be the probability measure on $\frac{|\phi_{X_1}(c)|}{|\phi_{X_1}(c)| + |\phi_{X_2}(c)|} \text{ and } \xi_0(x_2) = 1 - \xi_0(x_1). \text{ Every function f in } \mathbb{W}_2^2[a,c] \text{ may be written}$

$$f(x) = \sum_{i=1}^{2} f(x_i) \phi_{X_i}(x) + \int_a^c h_X(s) Lf(s) ds.$$

We have, setting $\mathbb{H}_0=\mathbb{W}_2^2[a,c],\,\,\mathbb{H}_1=\mathbb{R},\,\,\mathbb{H}_2=\mathbb{L}_2[a,c],\,\,h^*$ the evaluation functional in $\mathbb{W}_2^2[a,c]$ at c, the mappings $m_x(h)=h(x)$, $Tf=\sqrt{\eta}$ f",

$$\int (m_{X}^{*}m_{X}^{*}f_{0}^{+}T^{*}Tf_{0}^{*})d\xi_{0}(x)(f)$$

$$= \sum_{i=1}^{2} \xi_{0}(x_{i}^{*})f(x_{i}^{*})f_{0}(x_{i}^{*}) + \eta \int_{a}^{c} f_{0}^{"}(s)f^{"}(s)ds$$

$$= [s^{2}(\eta)+\eta z^{2}(\eta)]^{-1} \left\{ \frac{\eta z(\eta)}{z(\eta)} \int_{i=1}^{2} |\phi_{X_{i}}(c)|(-1)^{i}f(x_{i}^{*}) + \eta \int_{a}^{c} h_{c}(s)f^{"}(s)ds \right\}$$

$$= \eta[s^{2}(\eta)+\eta z^{2}(\eta)]^{-1} [\sum_{i=1}^{2} \phi_{X_{i}}(c)f(x_{i}^{*}) + \int_{a}^{c} h_{c}(s)f^{"}(s)ds]$$

$$= \eta[s^{2}(\eta)+\eta z^{2}(\eta)]^{-1}f(c).$$

Therefore ii) of Theorem 3.1 holds with $\alpha = \eta[s^2(\eta) + \eta z^2(\eta)]^{-1}$ and $h_0 = f_0$. The condition iii) is also satisfied by ξ_0 .

In order to verify i) notice that

$$-f_0(x_1) = f_0(x_2) = \eta z(\eta)[s^2(\eta) + \eta z^2(\eta)]^{-1}$$

and by straightforward but tedious computation, for $x \in [a,b]$

$$f'_0(x) = \frac{4\eta(c-(\frac{x_1^{-b}}{2}))}{(b-x_1^{-b})^2} - \frac{(b-x_1^{-b})(c-b)}{6} + \int_a^x h_c(s)ds,$$

where

$$\int_{a}^{x} h_{c}(s)ds = \begin{cases} 0 \le x \le x_{1} \\ \frac{1}{2} (x-x_{1})^{2} \frac{(c-b)}{b-x_{1}} & x_{1} \le x \le b \end{cases}.$$

With $x_1(\eta)$ as defined above one can check that for $0 < \eta < \eta_0$, $f_0'(x) = 0$ for $x \in [a,x_1]$ and $f_0'(x) > 0$ for $x \in (x_1,b)$. For $\eta \ge \eta_0$, $f_0'(x) \ge 0$ for $x \in [a,b]$. Therefore i) holds and the theorem has been proven. \square

4. Solution to the control problems C_E . The corridor problem C_E may be solved by minimizing $||f||_{\infty} = \sup_{\substack{a < x < b \\ a}} |f(x)|$ over $f \in \mathbb{W}_2^2$ subject to f(c) = 1 and $\int_{a}^{c} (f''(t))^2 dt = ||f''||_2^2 \le E$. If f_0 does this the trajectory of the solution f(c) = 1 to f(c) = 1 to f(c) = 1 and f(c) = 1 to f(c) = 1 and f(c) = 1 to f(c) = 1 t

Lemma 4.1. If $E \ge 3(c-b)^{-3}$ then there is a solution f_0 satisfying $||f_0||_{\infty} = 0$ and $||f_0^{"}||_2^2 = 3(c-b)^{-3}$. If $E < 3(c-b)^{-3}$ the problem C_E has a unique solution f_0 . The solution f_0 must satisfy $||f_0^{"}||_2^2 = E$.

<u>Proof</u>: Every function f in $W_2^2[a,c]$ may be written

$$f(x) = f(b) + f'(b)(x-b) + \int_{b}^{x} \int_{b}^{s} f''(t)dt ds.$$

If we take f(b) = f'(b) = f''(t) = 0 on [a,b] then

$$1 = f(c) = \int_{b}^{c} \int_{b}^{s} f''(t)dtds = \int_{b}^{c} (c-t)f''(t)dt$$

and by Schwarz's inequality the latter integral is no larger than

 $||f''||_2\sqrt{\frac{(c-b)^3}{3}}$. Therefore if f is to satisfy $||f||_{\infty}=0$ in addition to the other conditions, then $||f''||_2^2 \ge 3(c-b)^{-3}$ with equality if and only if f''(t)=k(c-t) on [b,c]. The first assertion has been verified.

The verification that a solution exists is similar to the proof of the existence of a solution to \tilde{P}_n and will not be repeated here.

We next verify that if E < $3(c-b)^{-3}$ then every solution must satisfy $||f_0''||_2^2 = E$. Suppose, to the contrary, that $||f_0''||_2^2 = \alpha < E$. Consider for $\epsilon \in (0,1)$ the functions g_{ϵ} satisfying $g_{\epsilon}(s) = (1-\epsilon)f_0(s)$ for $s \in [a,b]$ and $g_{\epsilon}(s) = k(c-s)$ for $s \in [b,c]$ where k satisfies

$$1 = (1-\varepsilon)[f_0(b)+f_0'(b)(c-b)] + k \frac{(c-b)^3}{3}.$$

Using the fact that $f_0(s) = k_2(c-s)$, $s \in [b,c]$ and

$$1 = f_0(b) + f_0'(b)(c-b) + k_2 \frac{(c-b)^3}{3}$$

it can be verified that

$$||g''||_2^2 \le ||f_0''||_2^2 + K_{\varepsilon} = \alpha + K_{\varepsilon}.$$

For ε_0 sufficiently small we have $||g_{\varepsilon_0}^{"}||_2^2 < E$ and

$$||g_{\epsilon_0}||_{\infty} = (1-\epsilon_0)||f_0||_{\infty} < ||f_0||_{\infty}$$

contradicting the assumption that f_0 solves C_F .

An argument similar to that used in Theorem 2.1 may now be used to prove that the solutions equioscillate and are unique. \Box

Let g_{η} solve P_{η} and define the function $\varphi(\eta) = ||g_{\eta}^{"}||_2^2$. Straightforward but tedious calculation reveals that

$$\varphi(\eta) = \left[\left(\frac{(c-b)^2(c-a)}{3} \right) \left(1 + 3\eta \frac{(c-a)}{(c-b)(b-a)^2} \right)^2 \right]^{-1}, \quad \eta \ge \eta_0$$

and

$$\varphi(\eta) = \left[\left(\frac{(c-b)^2(c-x_1)}{3} \right) \left(1 + \left(\frac{b-x_1}{4} \right) \left(\frac{1}{c-x_1} + \frac{1}{c-b} \right) \right)^2 \right]^{-1}, \quad 0 < \eta < \eta_0.$$

Clearly $\lim_{\eta\to\infty} \varphi(\eta) = 0$ and from (3.2) $\lim_{\eta\to0} \varphi(\eta) = \frac{3}{(c-b)^3}$. Also $\varphi'(\eta) < 0$.

Theorem 4.1. If E > 0 is a given positive number then the function f_E minimizing $\sup_{a \le x \le b} |f(x)|$ among all functions $f \in W_2^2[a,c]$ for which f(c) = 1

and $\int\limits_{a}^{c} \left(f''(x)\right)^2 dt \le E$ yielding the solution $x_E(t) = (c-t, f_E(c-t)), \ t \in [0, c-a],$ to the corridor problem C_F may be found as follows.

- i) If E \geq 3(c-b)⁻³ then there are many solutions. The one using the least energy satisfies $||f||_{\infty}=0$ and $f''(x)=\frac{3(c-x)}{(c-b)^3}$.
- ii) If E < 3(c-b)^-3 there is a solution to $\varphi(\eta)$ = E and the unique solution to C_E is the solution to $P_{\varphi}^{-1}(E)$.

<u>Proof:</u> The assertion i) has already been proven in Lemma 4.1. The range of ϕ is $(0,3(c-b)^{-3})$ and ϕ^{-1} exists by the remarks preceding the theorem. Let $\phi^{-1}(E)$. By lemma 4.1 $\phi^{-1}(E)$ has a unique solution, call it $\phi^{-1}(E)$ and furthermore $||\phi^{-1}(E)||_2^2 = E$. By theorem 3.2 $\phi^{-1}(E)$ has the unique solution $\phi^{-1}(E)$ by definition of the function $\phi^{-1}(E)$ by $||\phi^{-1}(E)||_2^2 = E$. Our claim is that $||\phi^{-1}(E)||_2^2 = E$. Since $||\phi^{-1}(E)||_2^2 = E$ is also solves $||\phi^{-1}(E)||_2^2 = E$. The unicity of the solution shows that $||\phi^{-1}(E)||_2^2 = E$ as asserted. $||\phi^{-1}(E)||_2^2 = E$. The unicity of the

If E = 0 f_0 has a graph which is a straight line passing through $(\frac{a+b}{2}, 0)$ and (c,1).

5. <u>Acknowledgment</u>. Portions of this work were done during a sabbatical year spent in the Department of Statistics at Purdue University.

References

- [1] Karlin, S. and Studden, W. J. Tchebyshev systems: with applications in analysis and statistics. Wiley, Interscience, New York, 1966.
- [2] Speckman, P. Minimax estimates of linear functionals in a Hilbert space. To appear in Ann. Statist.
- [3] Spruill, M. C. Optimal designs for second order processes with general linear means. Ann. Statist. 8 (1980) pp 652-663.
- [4] Spruill, M. Carl. Optimal designs using Speckman's minimax linear estimator. Purdue Mimeo Series 81-49.