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ABSTRACT

For n > 0 a fixed constant minimize the functional

C
5.(F) = swp [F00 P+ n [ (LF(x)) dx
d

a<x<b

over f in the Sobolev space wﬁ[a,c] which satisfy f(c) = 1, where a < b < ¢

Dm-]

and L = D" + a + ...+ aOI are fixed. There is always a solution to

m-1
this problem and if the m-dimensional null space of L is spanned by a
Chebyshev system on [a,c] then the solution is unique and equioscillates on
[a,b]. An explicit solution is given for L = D2 and is shown to yield the
solution to a control problem described below. A solution to the En prob-

Tem is conjectured.

Running Title: CORRIDOR PROBLEM
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TRAVERSING THE SMALLEST POSSIBLE CORRIDOR
UNDER ENERGY AND VELOCITY CONSTRAINTS

by
M. C. Spruill*

1. Introduction. A particle of unit mass travels in the x - y plane. Its

coordinates at time t are x(t) = (x(t),y(t)) where x'(t) = -1 and
%(0) = (c,1). The initial velocity y'(0) in the y direction and the accelera-
tion y" are subject to control. For those controls which have the property
that the particle hits the Tine x = a, a < c, the energy expended is

c-a

E= | (y"(t))zdt. Denote the corridor {(x,y): x €[a,b],|y| <y} by C(y)
0

where b € (a,c) is fixed. Given that E f_Eo is to be spent, what is the mini-
mum y > 0 for which the particle may be made to pass through the corridor

E.° Eoe[osw)s are

C(y)? The explicit solutions to the corridor problems C
: 0

given in Theorem 4.1,
The solutions are found by solving another class of problems Pn for

n > 0, which may be stated as follows. Given n > 0 minimize the functional

o (F) = sup [£(x)[% + n [ (F(x))%dx

a<x<b

V- O

over f?ewg[a,c] subject to f(c) = 1. The exp]fcit solutions to these prob-
lems may be found in Theorem 3.2. They equioscillate on [a,b] and are splines
on the entire interval [a,c] possessing two knats in [a,b]. The locations of

the knots coincide with those at which the solution achieves its maximum
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absolute value on [a,b]. The solutions to this class of problems may also
be used in optimal robust regression. One assumes that observations on
the random variables y(x) = f(x) + ¢ may be taken in the interval x €[a,b].

The value f(c) is to be estimated under the assumption that f is almost a
1
y
veloped by Speckman in [2] and employs the solution .to Pn' Some optimal ex-

Tinear function in the sense that ||f"|[§ < The estimator used was de-

perimental designs emb]oying Speckman's estimator are studied in [4].

The optimal design problem motivates the study of the minimization of
a more general functional than P For the fixed linear differential opera-
tor L = D" + am_]Dm'] *+ ...+ gy, where a; Ecj[a,c], j=0,...,m-1, defined

on wﬁ[a,c] define

C
5,(F) = sup [£(x)|% + n [ [LF(x)P0x.
a<x<b a

The function minimizing Bn subject to f*ewé[a,c] and f(c) = 1 will be term-

ed a solution to En' In the statistical context it could be used in extrap-

olation of a function which is almost a solution to Lf = 0 in the sense that

c .
/ (Lf(s))zds 5_%—. It is shown below that P, always has a solution and that
a v

if the m-dimensional null space of L is spanned by a Chebyshev system on
[a,c] then the solution is unique. In particular, the solutions gotten in
Theorem 3.2 must be unique since L = DZ.
We offer the following.

Conjecture: If L has a null space spanned by a Chebyshev system then there
exist m points {x1,...,xm} contained in [a,b] such that the unique solution

~

to Pn is given by



m
where {¢X_} are the Lagrange interpolation polynomials for the null space

i i=]

of L on [a,c] to the points X; s i.e.; by (xj) = Sij’ q is either zero or one,
i

hx(s) = G(x,s) - by (x)G(xi,s),

1 ™

Ho~13

;
: di .
G(x,s) solves LG(+,s)=0.0on [s,c] subject t0'—f7-G(x;s)| =3
X=$

dx i,m-1

2 2 _ 0
s(n) = [|h |l (on [a,c]), and z(n) = ] ¢
The functional oy is not differentiable as the following example shows. Let
a=0,b=1,¢c=2, fo(t) = -1+ 2t, and hn(t) = t/n for n > 1 and

. _ 2 _ _ _
t€[0,2]. Then pn(f0+hn) - pn(fo) = 2/n + 1/n°, pn(f0 hn) pn(fo) =0,
||hn||2 = 14/3n°, and if a bounded linear functional A were to exist satisfy-
ing [pn(f0+h)-pn(f0)-Ah] = o(]|h||) it would entail both Anh > 2 by consider-
ation of hn and Anhn + 0 by consideration of -hn. The methods employed in
the solution to Pn are adapted from the literature on the theory of optimal

design of experiments as found for example in [3].

2. Solving Pn' Suppose that f],...,fm is a T-system on [a,c] and h € (a,c)

m

as above. In general the subspace { )

a.f.:
=1

5 a'd=0}, where d is a fixed

arbitrary vector, does not have the Chebyshev property.

m

Lemma 2.1. The collection of functions 3={ § 8
J=1

Chebyshev property on [a,b]. In particular at least one of fj(c),

jfj: g'f(c)=0} has the

m
Je{1,...,m}, say f](c), must be non-zero and the system {gi} is a -
i=2

T-system for & , where

(2.1) g;(x) = f(x) - ?;73 i (x).

’1=0,.-u ,m--l 'Y



m
Proof: It is easily checked that the span of {gi} is &if f](c) # 0.
i=2
let a < 1y <1y < ... <71, 1 <band form the determinants
92(T1)...92(Tm_]) f](T])...f](C)
D= |: and A= |.
gm(T])...gm(Tm_]) fm(r1)...fm(c)

Since A = (—1)mf](c)D and the determinants A do not change sign the deter-

minants D must not change sign. (3

Theorem 2.1.  The problem ﬁn has a solution f Gwi[a,c]. If the null space

0
of L has the Chebyshev property then there exist points a X <Xy < een <
X < band g =0 or 1 such that

fo(x:) = (-1 sup [F,(x)]

0™ a<x<b

and the solution is unique if n > O.

Proof: If n = 0 clearly Sn(fo) = 0 and there are many solutions. Ifn >0
let fh ewé[a,c] be such that Sn(fn)+ inf Sn(f). The sequence Lfn satisfies
[]Lfn||§ 5_5n(f1). Since ||h||2 < k is weakly sequentially compact in

Lz[a,c] there is an element u eLz[a,c] and a subsequence n' such that

Lfn. ﬂ+-u. We may write, for a S Tp S Tp < ees < T < b,
m C
fo(x) = T foulrde (x) + [ h (s)LF (s)ds.
i=1 i a
c c ,
The integrals [ hX(s)Lfn.(s)ds converge to [ hx(s)u(s)ds for all xe[a,c].
a a
m
Since sup Ifn.(x)| 5_5n(f]) all of the m sequences {fn.(Ti)} are bound-

i=1

ed. Appealing again to sequential compactness of IR] we may assume that the

a<x<b



sequence n' has been chosen to satisfy fn'(Ti) > o also. Define the func-
. \2
tion foewm[a,c] by
m
fo(x) = Z

C
2y, 00 + [ hy(s)u(s)ds.

Since [[ul], < Tim||Lf .[[, it is clear that 5n(f0) < inf Bn(f). Since
fn(x) -> fo(x) for all x, fo(c) = 1. The first assertion of the theorem has
been proven.

For the following arguments we shall employ the notation of [1] in count-
ing the zeros of a continuous function on [a,b]. If xoe(a,b)is
an isolated zero of f and f does not change sign at X0 then Xg is termed a
non-nodal zero. All other zeros, including zeros at the endpoints are nodal
zeros. For any such function i(f) is the number of zeros in [a,b] counting
one for each nodal zero and two for each non-nodal zero. Suppose that g is
a continuous function on [a,b] and there are points a S Xy S Xg < el <X <D
and q €{0,1} such thatlg(xi) = (-1)i+qllg||m, i=1,....m. If there exists a
point Xg € {Xq5-.+ X} and a continuous function h such that h(xo) = g(xo)
then |[h||_ < ||g||_ entails Z(g-h) >m - 1. Consider the collection of
functions on [a,c]{ jg] ajfj: a'f(c)=0}. Their festriction to [a,b] is a
Chebyshev system spanned by the Chebyshev system Gose oo G which may be de-
fined, if f](c) # 0, except for the sign of one of them, from (2.1). By
Bernstein's theorem (see [1]) there are constants BysennsBy such that
g'f(c) = 0, and the function .21 ijj = gq is the minimax approximant to f,
on [a,b]. Therefore there‘ex%;t m points a SXp < e <X < b and a

q€{0,1} such that
(2.2) (99 (x5 )-Fo(x D (=) = | [gg=Fy ..

where_]]go-f0||°° = sup Igo(x)ffo(x)l. Also

a<x<b



Hag=foll, = 1nf{[|zsjfj-f0[|m: B'f(c)=0}.

Since Lg0 = 0 on [a,c] and g'f(c) = 0 entails (fO-gO)(c) = 1 we must have
[ fgll, = [1fg-9gll,- Furthermore there must be a point x €[a,b] at which
fO(x) = fo(x) - go(x) = ¢||f0|[w. We conclude i(fo-(fo-go)) >m-1on [a,b].
However if fO - (fo-go) = 9 is a non-trivial polynomial in the system
Jos-+.s9, We must have by Theorem 4.2 of [1] i(go).f_m - 2. We conclude that
9g° the best approximant from 3 on [a,b] is.zero. Consequently fO itself
equioscillates in the sense of (2.2). |

We now verify the uniqueness of the solution when the null space of L
is spanned by a T-system {f],..,fm}. Because the norm on the Hilbert space
Lz[a,c] is strictly convex, if h0 and h] are two solutions to the En problem
then En(ah0+(1-a)h1) < 5h(h0) unless kLh] = Lho, a.e. on [a,c] for some con-
stant k. Since |[ahg+(1-a)h ||Z < al[hg||2 + (1-a)| [ ]|Z, where

[[h|]_ = sup [h(x)|, we have (ah0+(]-u)h]) < 9(a) where the function y
a<x<b n

is defined by

2
9(0) = al gl 12+ (1-0)||hy |12 + nlkta(1-k))? | [Lhy| |5 -

Note that (0) = ¢(1) = 5_(hy) and v"(a) = 20(1-k)%] |Lhy[[5.  Thus, whether
[ILhgl| =0 or [|Lhy|| > O we must have [|hy[[ = ||hq[]_ . Again it must be
the case that h0 and h] share a common extreme Va]Ue at one of their points
of equioscillation. Therefore Z(hy-h;) >m - 1. If Lhy = 0 then hy - hy €3
and of necessity Z <m - 2 unless hy = hy. If [|Lhy[]| > O then k = 1 so that
again, h0 - h1 is in. 3 = {Zijj: g'f(c)=0} and z <m - 2. We conclude that

in any case h0 = h] proving that the solution is unique. [J

3. Exact solution to Pn. A requirement of our method of proof is the follow-

ing theorem. Let X be an index set, Bg» ¥y and 4, be three Hilbert spaces,



{mX} be a collection of bounded linear mappings from ho into H] » and

XE X
T be a bounded linear mapping from ﬁo into By Let h* be a given non-zero
bounded linear functional on Ho and set U = {h Ehoz h*(h)=1}. Equip Z with
a topology for which every point of X is a Borel measurable set and let =

denote the collection of all Borel probability measures £ on % whose sup-

ports S(g) are finite sets.

Theorem 3.1.  Suppose there is a point hO €U, a measure g €5 and o > 0 sat-
isfying

i) S(gy)e {x: |[m (hy)]] = sup ||m (hy)|],, s
0 X0 ¥y xex X 0 iy
ii) f(m;thO+T*Th0)dgo(x) = gh*, and
i11)  f([|mn[Z +[|Th]|2 )des(x) = 0 implies h = 0
X Hy Ho 0 )

Then among all h €U hy minimizes sup ||m (h)[|§i +[|Th][i .
z 1 2

Proof: Let N(£) = theuy: J([|m (h)]15 +[{Th||5 )de(x)> 0} and
] 2

* 12
d(h*,g) = sup bl
heN(z) j(||mx(h);[ﬂ]4¢|Th||u2)dg(x)

Clearly

. | 2 2 -1
3.1 d(h*,£) > £ h Th||% )d .
(3.1)  d(h*,e) > [ nenth oy [ Tm ( )Ilﬁq +|] ||“2 )de(x)]

Since

| A

. 2 2 . 2 2
inf [([|mh[["+][[Th]|")dg < inf sup (||mh|["+[[Th[]%)
nu NOU  x

| A

2 2
sup ||mxhgl| + ||Th0|i =3
x

we have d(h*,z) > = for all ze= .

1
5



Using ii) we have for £0

u'ZU[(mxh,mxho)M] +(Th,Thg),, 1z ()2

d(h*,g4) = ﬁ%p ) Y 5
£0 J(] ]m, IIH] +|lThllﬁ2 )dey(x)
-2 2 2 2
s /Lm0 T+l ) deg(]
< Su 1 2
< sup 5 5
N(gg) f(l!mxhllH] +IlTh||ﬁ2 )dgg(x)
< Soc-'2 = 5(5_2) = % .
Since by (3.1) d(h*,6,) = « > [ i 2 2 471
ince by (3.1) d(h*,g5) = <> [ inf sup ([ |mehi]y +[[Th[]5 )T we
UnN(gy) X 1 2
: 2 2 2 2
have inf sup (| [mh{]y +[ITh|15 ) >sup (JIm (ho) |15 +IThol 15 ).

By iii) N(go) = Hy - {0} and we have proven the theorem. [
We shall prove below that there are points Xp < X in [a,b] such that

the representation (1.1) holds when L = D2.

In the general case their Toca-
tions in [a,b] will depend upon n. For this particular case we show that
Xz(n) = b and the location of x](n) is determined as follows. Let

_(b-a)? . 1 1 -
no = e Loyt ACHEEE

For n > n 0° x](n) =a. For 0 <n< no? x](n) is the unique real solution to

2
(b-x)= 1 - ]
(3.2) 24 1 2(c-b) - b-x
in [a,b). By x](n) below we shall mean the function which has just been de-
' 5 X=X X=X
fined. In the case of L = D", ¢ (x) = —=—, and ¢ (x) = ——.
X1 X1=Xo Xo Xo=Xq

Theorem 3.2. With x](n) as above xz(n) = b and g = 0 the conjectured solu-

tion (1.1), with L = D%, solves P .



Proof: Note that fO(c) 1. Fix n and Tlet 50 be the probability measure on

'¢x](°)l
|¢x](c)l+|¢x2(c)

[a,b] satisfying go(x]) = | and go(xz) =1 - go(x]). Every

function f in wg[a,c] may be written

f(x) =
1

[ e pO

- C
: f(xi)¢xi(x) + £ h, ($)LF(s)ds.

We have, setting ¥, = wg[a,c], H] = R, Hy = Lz[a,c], h* the evaluation func-

0
tional in wg[a,c] at c, the mappings mx(h) = h(x), Tf = /q ",

f(m;m f

W FotTHTTg)deg (x)(F)

1l
1~

o
EO(X'I)-F(X'I).FO(X'I) +n £ fa(S)f"(S)dS

i=1

2
2y (T2 T, (@11 r(x;)

2
s (n)en’ ()1 T o

als%(n)+nz%(n) 17 F(c).

Therefore ii) of Theorem 3.1 holds with a = n[s2(n)*nz2(n)]"" and hy = fo-
The condition iii) is also satisfied by £

In order to verify i) notice that
“Fy(x) = Fo(x,) = nz(n)[s2(n)nz2 ()T
o\"1 o\*2 na\n n/in n

and by straightforward but tedious computatioh, for»x ¢la,b]

Xy=b
g o et 7)) (x)eh) £ oy
X) = - s )das,
0 (b-x1)2 6 a
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where

C(

Xp 2 X2 b .

With x](n) as defined above one can check that for 0 < n < o> fé(x) = 0 for
xe[a,x]] and f(')(x) > 0 for xe(x1,b). For n > ngs f(')(x) > 0 for xela,b].

Therefore i) holds and the theorem has been proven. [J

4. Solution to the control problems CE. The corridor probiem CE may be solv-

ed by minimizing |[f|| = sup |[f(x)| over f’eWé subject to f(c) = 1 and
a<x<b

(f”(t))zdt = ||f" 2 < E. If f, does this the trajectory of the solution
2 0

X W0

(t) to CE satisfies x(t) = (c—t,fo(c-t)), for t ¢[0,c-a].
Lemma 4.1. If E > 3(c-b)~3

T -3
and [|fy||5 = 3(c-b)™".

then there is a solution fy satisfying |[f,|| =0
If E < 3(c—b)_3 the problem CE has a unique solution

. : It 2—
foe  The solution f, must satisfy [|fy[]; = E.

Proof: Every function f in wg[a,c] may be written

f(x) = f(b) + f'(b){(x-b) + ? Z f'(t)dt ds.
b

If we take f(b) = f'(b)

i

f'(t) = 0 on [a,b] then

c s c
1="(c) = [ é f'(t)dtds = [ (c-t)f"(t)dt
b b
and by Schwarz's inequality the latter integral is no larger than
(c-b)®
iy 5 . Therefore if f is to satisfy [[f[|_ = 0 in addition to the

other conditions, then [|f"||§ 3_3(c-b)'3 with equality if and only if

f'(t) = k(c-t) on [b,c]. The first assertion has been verified.
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The verification that a solution exists is similar to the proof of the
existence of a solution to ﬁn and will not be repeated here.

We next verify that if E < 3(c—b)'3 then every solution must satisfy
[]fallg = E. Suppose, to the contrary, that llfﬁllg = a < E. Consider for
e €(0,1) the functions g, satisfying ge(s) = (1-e)f0(s) for s ¢[a,b] and

gs(s) = k(c—s) for s € [b,c] where k satisfies
1= (1-e) [ (b)+1 (6) (c-b)] + k L&
/L0 0 3
Using the fact that fO(s) = kz(c—s), s ¢ [b,c] and

3
- ' _ (c-b)

1 fo(b) + fo(b)(c b) + k2 5

it can be verified that

11 2 1] 2 —_
Ig 'lz.i I|foll2 + Ke = o + Ke.

For ey sufficiently small we have ||g" [lg < E and
€0

||9€0H°° = (]'Eo)llfollw < ||follw

0 solves CE.

An argument similar to that used in Theokem 2.1 may now be used to prove

contradicting the assumption that f

that the solutions equioscillate and are unique. O
Let 9, solve P, and define the function ¢ (n) = || g;||§. Straightforward
but tedious calculation reveals that

[ ((c=b)?(c-a) (c-a) 2]“ .
P(n) = [(‘E——jgjL——>(1+3n'E;Ij?it;;?> s N >2my

2
ot = [( S L B YR R L
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Clearly Tim ¢ (n) = 0 and from (3.2) 1im ¢ (n) = 3 3 - Also ¢ (n) < 0.
oo n~0 (c-b)
Theorem 4.1. If E> 0 is a given positive number then the function fE

minimizing sup |[f(x)| among all functions f’ewg[a,c] for which f(c) =1
a<x<b

c
and [ (f"(x))zdt < E yielding the solution §E(t) = (c-t,fE(c-t)), t €[0,c-a],
a

to the corridor problem CE may be found as follows.

i) IfE 3_3(c—b)'3 then there are many solutions. The one using the
lTeast energy satisfies [|f|| = 0 and f'(x) = ?(C-;) )
c-b

ii) IfE < 3(c-b)_3 there is a solution to ¢ (n) = E and the unique

solution to CE is the solution to P

o 1(E)

Proof: The assertion i) has already been proven in Lemma 4.1. The range of
¢ is (0,3(c-b)_3) and qj_] exists by the remarks preceding the theorem.
letn=¢ _](E). By lemma 4.1 CE has a unique solution, call it 99> and
furthermore |[96||§ = E. By theorém 3.2 Pn has the unique solution f,. By
definition of the function ¢, ||f6|]§ = E. Our claim is that f; = g,.
Since fO solves Pn we have pn(go) 3_pn(f0). This implies that

gl 1, 3_||f0||°° and therefore that f; also solves Cp. The unicity of the
solution shows that fo = gp as asserted. [

IfFE=0 fO has a graph which is a straight 1line passing through

(2P, 0) and (c,1).
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