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ABSTRACT

Bechhofer and Tamhane (1981) proposed a new class of incomplete block

designs called BTIB designs for comparing p 22 test treatments with a con-

trol treatment in blocks of equal size k<p+1l. All BTIB designs for giv-
en (p,k) can be constructed by forming unions of replications -of a set of

elementary BTIB designs called generator designs for that (p,k). 1In gen=-

eral, there are many generator designs for given (p,k) but only a small

subset (called the minimal complete set) of these suffices to obtain all

admissible BTIB designs (except possibly any equivalent ones). Determin-
ation of the minimal complete set of generator designs for giveﬁ (p,k) was
stated as an open problem in Bechhofer and Tamhane (1981). 1In this paper
we solve this problem for k=3.  More specifically, we give the minimal
complete sets of generator designs for.k==3, p=3(1)10; the relevant
proofs are given only for the cases p=3(1)6. Some additional combinato-

rial results concerning BTIB designs are also given.



1. INTRODUCTION

Consider p+ 1 treatments indexed by 0,1,...,p with 0 denoting the
control treatment and 1,2,...,p denoting the p=22 tes£ treatments, It is
desired to simultaneously compare the p test treatments with the control
in b blocks each of size k<p+1l. We then have an imcomplete blo;ks de-~
sign situation.

The usual BIB designs are not, in general, appropriate for the
above multiple comparisons with a control problem. Bechhofer and Tamhane
(1981) proposed a new class of designs which they referred to a BTIB de-
signs for this problem. The Bechhofer-Tamhane paper is basic to the de-
velopments in the present article; we shall hereinafter refer to it as BT.
(We note that Pearce (1960) had earlier considered a related class of de-

signs which he referred to as designs with -supplemented balance, Pearce

did not restrict consideration to incomplete blocks situation. Another
related early paper is that by Nair and Rao (1942)).

For given (p,k) a BTIB design for any b can be built out of a set of

elementary BTIB designs called generator designs. For given (b,k) there
exists a finite number of generator designs (see Theorem 2.2 of tﬁe pres-
ent paper) but this number can be very large. However, it turns out that
only a small subset of these generator designs is sufficient in that es-

sentially all admissible designs (see Section 2 for a definition) can be

built from this set, i.e., any admissible design that cannot be con-
structed from this set is equivalent to some design that can be con-

structed from the set. This set is referred to as the minimal complete

set. Admissible designs are important because only they can be candidates
for an "optimal" design.

The primary objective of the present article is to show the minimal
complete nature of the sets of generator designs that we have constructed

for k=3 and p=3(1)10; the case k=2, p>2 is quite trivial and is men-



tioned only in passing Remark 2.3. The significance of these results is
that for each of the aforementioned cases we éan now assert that the opti-
mal designs can be built only out of the generator designs in the minimal
complete set for that case and addition of any other generator designs to
’.
the set will not alter the "optimal" designs in an essential way. Based
on the minimal complete sets presented here, Bechhofer and Tamhane (1982)
have prepared catalogs of "optimal" BTIB designs for k=2,3, p=k(1l)6.
While this paper was under review, Ture (1982) in a Befkeley disser-
tation extended our methods to obtain minimal complete sets for k=4,5,
p=k(1)10 and p=6, k=6. Ture uses more refined bounds than ours but his

basic method of proof is the same as ours.

2. NOTATION, DEFINITIONS AND SOME BASIC RESULTS

2.1 BTIB Designs

We assume the usual additive linear model for the observation yijh

taken on the ith treatment in the hth plot of the jth block:
yijh=p+ai-f8j+eijh : 2.1)

where the eijh are uncorrelated random errors with E(e.

1_]h) =0, Var(eijh) =

2
c (O<i<p, 1<j<b, 1<h <k). We consider only connected BTIRB designs

for which the contrasts oy - o (1<i<p) are estimable. ILet &0

- &i be
the BLUE of ¥ - a; (0<i<p). Then we have the following definition.

Definition 2.1: For given (p,k,b) a BTIB design is any design for which

var(&o-&i)=const.=7202 (say) (1<ic<p), (2.2)

and

~

corr(é}O -&i,ao - &i,) = const. =g -(Say) (L#i',1<i,i’ <p) (2.3)

2
where the parameters 1° and p depend, of course, on the design.



Let rij(O-srij <k-1) be the number of times the ith treatment appears
- , . b .
in the jth block (0<i<p, 1<j<b) and let )‘ii' = Zj=1 rij ri’j (L1 #i,
0<i, i’<p). The following is Theorem 3.1 of BT, .

Theorem 2.1: For given (p,k,b) a design is BTIB iff

Mor = Rgg = =hg, = Ay (say), (2.4)

and

Mo =Ay3=---=A =1, (say). (2.5)

p-1,p

Furthermore, 1‘2 of (2.2) is given by

T —— (2.6)
Ao (g tpr))
and p of (2.3) is given by
Xl
p = ————— 2.7)
)\0 + Xl
-

Clearly, for a BTIB design to be implementable we must have )\0>O.

Also note that if each rij =0 or 1 and 1if )‘O=)‘1=)‘ (say) then we get a
BIB design; thus BIB designs form a subclass of the class of BTIB de-
signs.

2.2 Generator Designs

We start with the definition of a generator design.

Definition 2.2: For given (p,k) a generator design is a BTIB design

(not necessarily connected or implementable) no proper subset of whose
blocks forms a BTIB design, and no block of which contains only one of
the p+1 treatments.

Remark 2.1: 1In BT it was noted that for each p>2, k=2 there are ex-

actly two generator designs:

_fo0 0 11 p-l}
b ={1p - o}, = {2} .. . (2.8)



Although, for p>2, k=2 there are exactly two generator designs, it
is not clear whether for any (p,k) there are only finitely many generator
designs. This question is answered in the affirmative in Theorem 2.2.
First we state two lemmas which are self-evident.

Lemma 2.1: A design with a frequency vector n 1is BTIB iff

[ %
} P
Mn=2}-= X ‘ (2.9)
! 2(29-1)
)\1 Ja
for some integers )‘O =0, )\1 20 but not both zero. O

Lemma 2.,2: 1If '5(1) and 2(2) are two BTIB designs with n]_Ez) > nlgl) for
h=1,2,...,s with a strict inequality for at least some h (denoted by

5@ > 4 D) then g @ _ 4O

g=

is also a BTIB design. | .
Theorem 2.2: For given (p,k) there exist oﬁly finitely many génerator
designs.

Proof: For given (p,k) let o/ be the set of all distinct blocks
which can be used in a BTIB design and leﬁ us index these blocks in some
manner 1,2,...,s; ,/ consists of all samples of size k with replacement
from integers 0,1,...,p except those p+1 samples of the type (i,i,...,1)
for 0 <i <p. Next index the pairs (0,1), (0,2),...(0,p), (1,2), (1,3),

«» (p-1,p) by 1,2,..., t=p(p+1)/2. Let E={mgh} be a txs matrix
where moh~ Tinty ,h(Osi<i' <p), g is the index of the pair (i,17%)
(lL<g<t), and h is the index of the block (L<h<s). Then any design
can be represented by a s-vector n= (nl,nz,...,ns) where nhzo is the
frequency of the hth block in the design (l<h <s) and b=>jﬁ=l n -

Now suppose that the theorem is not true. Then there exists an



2
infinite sequence of generator designs n(l), n( ), «ee. . Choose a sub-

_ (i) ~ , (i)
sequence {n J 1 from this sequence with the property that n

(i) ~ *

n ; such a subsequence can always be chosen. Then from Lemma 2.2 it
~ i,.,) @) i,

i+l n J is a BTIB design, Therefore n i+l is not a

>

follows that n n
generator design. Thus we have reached a contradiction which proves the
theorem. ‘ Ol
Remark 2.2: The representation (2.9) can be used to construct BTIB de-
signs and 1in particular generator designé for at least small values of

p and k. 1In fact, manybof the generator designs given in the present
paper were constructed by using (2.9); the rest were constructed by
using the methods given in Section 3.2 of BT. To employ (2.9) it is
first necessary to know the feasible values for the pair (10,11); these
feasible values are obtained from Lemmas 3.2 and 3.3. Next for given
(xo,xl) a lower bound on b is obtained from Lemma 3.1. For K0==0, xl>-0
or for x0==xl>-0 the desired BTIB is usually a BIB design (if it exists)
and known results from the theory of BIB dgsigns can be used. For other
combinations of XO and xl’ (2.9) is applied and solution is obfained by
trial and error.

2.3 Admissible Designs and Minimal Complete Set of Generator Designs

Now we define the concepts of inadmissible and admissible designs.
These concepts are motivated by the problem of joint confidence interval

estimation of the ¢ - see Section 5 of BT for further details.

0
Definition 2.3: Suppose that for given (p,k) we have two BTIB designs D1
and D2 with parameters (bl,xél),Xfl)) and (bz,xéz),xfz)) and their 72 and

p values are given by (2.6) and (2.7) respectively, D2 is inadmissible

. . 2 2 ,
with respect to (wrt) D, iff b, <b,, T, T, and Py 2py With at least one
inequality strict. If a design is not inadmissible then it is said to be
admissible. If b, =b 1-2= 'rz and = (or equivalently b, =b -)\(1) =
——1nas 172> 17 T2 PL™ P2 1 "22 "

(z) ,(@@)_.(2) .
XO , xl -xl ) then D1 and D2 are equivalent.

/



For given (p,k) the candidates for an "optimal' design will be all
| admissible designs that can be constructed from a givén set of generator
designs. Now we give the definition of the minimal complete set of gen-
erator designs: .

Definition 2.4: For given (p,k) the smallest set of generator designs

fDi (1 <i<n)} from which all admissible designs for that (p,k) (except
possibly any equivalent ones) can be constructed is called the minimal

complete set of generator designs.

We note that for given (p,k), the minimal complete set is unique up
to substitution of any generator design in the set by an equivalent one.
This fact follows from the definition of the minimal complete set.

To obtain the minimal complete set from a given set of generator de-
signs we proceed in two steps. In the first step we delete any equiv-
alent generator designs (except, of course, one representative of each
set of equivalent generator designs). Furthermore, if the union of two
or more generator designs yields an equivalent generator design, then we
delete the latter design.

In the second step we delete the so-called strongly (S-) inadmissible
generator designs from the set of nonequivalent generator designs obtained
in the first step. The concept of S—inadmissibility is defined as follows:

Definition 2.5: If for given (p,k) we have two BTIB designs D1 and D2

(not necessarily generator designs), we say that D2 is S-ipadmissible wrt

D1 if D2 is inadmissible wrt Dl’ and if for any arbitrary BTIB'design D

we have that D2UD3 is inadmissible wrt D1L1D3.

3

An easily verifiable sufficient condition for S-inadmissibility of

D2 wrt D1 1s that

(1) _ (@) (1) _.(@)
by sbyy g7 = AT A=Ay (2.9)



with at least one inequality being strict. We use a special case of (2.9)
namely

b, <b

repeatedly in the sequel to decide whether a given design Dzvis S-inadmis-
sible or equivalent wrt another design D1J

Remark 2.3: It is easy to see that the two generator designs in (2.8)
constitute the minimal complete set for k=2 for each p>2. This is be-
cause these are the only two distinct generator designs possible and
neither of them is S-inadmissible wrt the other one.

Remark 2.4: For some values of (p,k) it is possible to further cut down
a list of generator designs by deleting the so-called combination (Cc-)
inadmissible designs and thus obtain the minimal complete set; for a
definition of C-inadmissible designs, see Definition 5.5 of BT. For
(p,k) values considered in the present paper the use of this concept is
not needed. This is because it can be shown that for these values of
(p,k), if any generator design is not in the minimal complete set then it
is either S-inadmissible or equivalent wrt a union of the generator de-
signs in the minimal complete set. Furthermore, it is checked that every
implementable generator design in the minimal complete set is admissible
at least by itself, and every generator design not containing the control
is part of at least one admissible design. Therefore none of these gen-
erator-designs are C-inadmissible.

3. MINIMAL COMPLETE SETS OF GENERATOR

DESIGNS FOR k=3, p=3(1)10

3.1 Preliminary Lemmas

We need three preliminary lemmas giving relations between the param-

eters of a BTIB design.



Lemma 3.1: For any (p,k) consider a BTIB design D with parameters

(b’)‘O’)‘l)' We have the following inequalities on b:

2Px0 + p(p-l)x1 ZPXO + p(p-l)x1

k(k-T) <bs 2(k-1) :

3.1)

Furthermore, the lower inequality is an equality iff the design is binary
i.e., if each rij=o or 1 (0<i<p, 1<jc<b).

Proof: Let r, denote the number of replications on the ith treat-

ment, ri=)j§,’=1 rij (0O<i<p). From (A.l1) and (A.5) of BT we have
k 2 2 6.2
Ty = PA, +E To; (3.2)
j=1
and
b 2 )
kr. =), + {p-L))\, + T r,, (lL<ic<p). (3.3)
i 70 1 j=1 ij .

Adding (3.2) and (3.3) we obtain

P b
r, =kb = (2phy + p-LAy + % % r2,) /k. (3.4)

ol i=0 j=1 13

I Mo

i

Now subject to the restriction that the rij are nonnegative integers
b 2
. . T

satisfying Z?=O rij =k for 1<j<b, it is easily verified that 2};:0 ?'J=1 ij

1

is minimized when each rij =0 or 1 and it is maximized when for each j there

is a pair of treatments i1, (11;412,0511,12 <p) such that rilj =k-1,

r; s=land r . =0 for i#i ,i,(0<i<p,l<j<b). Furthermore, the minimum
i,] ij 1°72

value of T Zrij is kb which when substituted in (3.4) yields the lower

bound on b in (3.1). The maximum value of b Er'z'j is b(k2 =2k +2) which
when substituted in (3.4) yields the upper bound on b in (3.1). O
Lemma 3.2: When k is odd, the quantities pxo and )\0+ (p-l))\1 must be

even,

cr



Proof: Let bil, denote the number of blocks in which the ith treat-

ment is replicated g times (0 < g <k-1, 0<i<p). Note that

b 9 k-1 o
r.=E£.b.,Er..=Zl,bL (3.5)

Substituting (3.5) in (3.2) and (3.3) we get

k-1 :
PAg = T #(k- z)b (3.6)
Z_
and
k-1 \
At (=LA = % 2(k-2)b, i2 (1<i<p). 3.7)
E_.

By noting that when k is odd, the coefficients £(k-4) are even for

1< ¢<k-1 the lemma follows. m
Lemma 3.3: For any BTIB design for p >3, k=3 we have
(p'l))‘l 2\, | (3.8)
foo o
if )\1>O and if the design does not contain the generator design l12 I ]
12 P

Proof: The lemma follows trivially for X = Thus assume that

0
)\0>0. We may change any blocks of the type( )for izl to( )without
i
affecting )\ or )L We may also assume that for some i >1 there are no

For that particular i we can write

blocks of the type( )because otherwise the BTIB design would contain the
0
generator design (1
1

NN O
o

b
T r,,r.,., - % r,,r.. (3.9)



71,

The last step of (3.9) follows because the summand is negative iff rij =2,
rOj =1 and ri,j==0 for i’#1i, a possibility that is ruled out. O

3.2 Proofs of Minimal Complete Sets for k=3, p=3(1)6

In this section we give minimal complete sets of generator designs
for k=3, p=3(1)6 and prove the minimal complete nature of the set in
each case. The method of proof in each case is the same and we outline
the general method here thus avoidiﬁg the repetitive details in each proof.
In addition, in Section 3,3 we give minimal complete sets of generator de-
signs for k=3, p=7(1)10 without the accompanying proofs which the reader
can easily construct once he understands the general method illustrated in
this section for p=3(1)6.

To show that for given (p,k), a set of generator designs {Dl,Dz,...,Dn}

is minimal complete, we consider an arbitrary BTIB design D for that (p,k)

having parameters (b,xo,xl). Then for that D we show that there exists a
n

*
BTIB design D = U f.D, (i.e., constructed out of the set {p.,...00H
j=1 L1 1 n
such that x;==x0, x; = kl and b*ﬂsb. Thus D is either equivalent to or

S-inadmissible wrt D~ (cf. (2.10)). The proof is completed by finally
noting that the set fDl,...Dn] consists of nonequivalent generator designs,
none of which is S-inadmissible wrt to any other ones or unions of any
other ones and therefore that set-is hinimal complete,

In the proofs below for given (p,k) typically we must consider several
cases depending on the values of (xo,xl); in each case we simply construct
the desired D* Suéh that xg==x0, x;==xl and explain why p* requires the
smallest possible number of blocks (by using Lemma 3.1) which implies that
b* <b.

//



Theorem 3.1: For p=3, k=3 the minimal complete set of generator designs

is as given in Table 3.1.

Table 3.1
Minimal Complete Set of Generator Designs for p=3, k=3 *
(1) (1)
Dy Design by Ao M.
B 00 0 |
D1 1 1 1 3 2 1 \
2 3 3

o
N
— e,
W N =
'—l
o
-

Proof: Parameters XO’ ll of an arbitrary BTIB design D must satisfy
the following: (i) xl -xo /2 > 0 by Lemma 3,3, and (ii) xl -xo / 2 must
b { t b 1 = = -
e an integer because XO is even by Lemma 3.2, Let f1 KO /2, f2 xl o /2
and D*==f1DllJf2D2. Note that D* requires the smallest possible number of

blocks because Dl and D2 do, both being binary designs. - -

Summaries of the proofs of the next three theorems will be given in
condensed form. The summaries will 1ist cases that need to be considered,
values of AOvand A] for these cases, the values of the fi yielding D*, and
brief explanatory remarks. From these summaries the reader éhou]d be able
to_construct a detailed proof that the proposed set of generator designs is

indeed minimal complete.

Theorem 3.2, For p=4, k=3 the minimal complete set of generator designs

is as given in Tagble 3.2,



Table 3.2

Minimal Compleﬁe Set of Generator Designs for p=4, k=3

D, T
i Design bi XO xl

0000 ‘.

D1 0000Q 4 2 0
1234
0000O00O0

D2 111223 6 3 1
234344
000011 éﬁl

D3 01122133 7 2 2
324434 4]
00111122

D4 13223334 8 1 3
24344434
0000000012

D5 0011112233 10 4 2
3422343444
1112

D6 2233, 4 0 2
344 4

Proof. Consider an arbitrary BTIB design D with parameters (b,xo,xl) for

Case 1. Ay = 0.
f] = 10/2, f2 = f3 = f4 = f5 = f6 = 0. |
Remarks: D* must be equivalent to D. By Lemma 3.2 Ao must be even.

0 (mod 3), »; > 0.

1

Case 2. AO 1

A0/3, f3 = f4 = f5 =0, f6 = (A]-A0/3)/2.

fi =0, f,

Remarks: A, - Ag/3 is > 0 and even by lemmas 3.2 and 3.3. D* achieves the
lTower bound on b of Lemma 3.1.

Case 3. AO =1, A] > 0.
f]=f2=f3=09 f4=],f =Os f6=(>\]-3)/2'



Remarks: M is odd by Temma 3.2. A # 1 since no BIBD exists with v = p+1 = 5,
k =3, and » = 1 (see Raghavarao, 1971, p. 86). D* achieves the smallest integer
value of b > lTower Timit of lemma 3.1.

Ay = 1 (mod 3), X0
f1 =0, f, = (1g-4)/3, fq = f, 5

Remarks: f6 is > 0 and even by Temmas 3.2 and 3.3. Ao = 1 (mod 3) and Temma

Case 4. >4, x> 0.

1
=0, f

=1, f6 = {A]—Z-(AO-4)/3}/2.
3.1 suffice to show D* has the minimum number of blocks possible.

Case 5. A, = 2 (mod 3), A, > O.

0 1

f] =0, f2 = (AO—Z)/Z, f3 =1, f4 = fpo =0, f6 = {A]-Z-(AO-Z)/3}/2.

5
Remarks: f6 is > 0 and even by lemmas 3.2 and 3.3. Ag = 2 (mod 3) and

lemma 3.1 suffice to show. that D* has the minimum number of blocks possible.

This covers allvpossible cases and hence completes the proof of the
theorem. C
Theorem 3.3. For p =5, k = 3 the minimal complete set of generator

designs is as given in Table 3.3.



Table 3.3

Minimal Complete Set of Generator Designs for p=5, k=3

; . (1) (1

Di Design bi ko Xl
rooooo B

D, 00000 5 2 0
1_12345
0000012

D, 0113423 7 2 1
2354545
]'0000011122

D, 1123423433 10 2 2
1_2345554545
(oooooooooo

D, 1111222334 10 4 1
2345345455
1112231

D 2233444 7 0 2
3554554
1111112223

D 22233433¢4¢4 10 0 3
3454554555

Proof. Consider an arbitrary BTIB design D with parameters (b,xo,kl)

for p =5, k = 3,
To start with XO must be even by Temma 3.2. The cases to be considered are

thus.
Case 1. Ay = 0.
f] = AO/Z, f2 = f3 = f4 = fs = f6 = (.
Remarks: D must be equivalent to D*.
‘Case 2a. ;) =10, =0 (mod 3), A > 0.

- - - - - - »
f1 = f2 = f3 = f4 = f5 = f6 = 0.

Remarks: D* achieves the lower bound on b of lemma 3.1.

Case 2b. Ay = 0, A = 1 (mod 3), A > 0.

i}
—h
n
—h
It
o
-
(5]
1}
N
-
-—h
(o]
1}
P
>
—
1
o
e
~
w

fp=f="Ff3=1,



Remarks: A o> 1 since no BIBD exists with v = p+1 = 5, k = 3, and A = 1 (see
Raghavarao, 1971, p. 86). D* achieves the smallest integer value of b > lower
bound of lemma 3.7.

Case 2c. Ao = 0, e 2 (mod 3), A > 0.

fp=1f,="fa="F =0,f =1, f, = (A]-Z)/3.
Remarks: D* achieves the smallest integer value of b > lower bound of Temma 3.1.
Case 3a. Ay = 0 (mod 4), Ao > 4, Mo- A0/4 =0 (mod 3), A > 0 f] =_f2 = f3 =0,

f4 = A0/4, f5 = O’ f6 = ()\]‘)\0/4)/3.
Remarks: D* achieves lower bound on b of Temma 3.1.

Case 3b. 2

0 0 (mod 4), A > 4, A o- x0/4 =1 (mod 3), Ay > 0.

f, =0, f2 =2, f,=0, f, = A0/4—1, f5 =0, f6 = (A]—1-A0/4)/3.

1 3 4
Remarks: D* achieves the minimum possible number of blocks > Tower bound of

Temma 3.7.

Case 3c. A, = 0 (mod 4), Ao 2 45 Ay - AO/4 = 2 (mod 3), A > 0.

fr = f,=f

1 2 5
Remarks: D* achieves the minimum possible integer b > Tower bound of Temma 3.1.

=0, fy = A0/4, fro =1, f6 = (A]—Z-AO/4)/3.

Case 4a. Ag = 2 (mod 4), Ag 2 4, M o- (A0+2)/4.z 0 (mod 3), A > 0.

f1 =0, f, =1, f5 =0, f, = (3;-2)/4, f = 0, fg = {3)-(35+2)/4}/3.

1 3
Remarks: D* achieves the minimum possible integer b > lower bound of lemma 3.1.

Case 4b.

2 (mod 4),'>\O > 4, M o (A0+2)/4 =1 (mod 3), A > 0.

fi=f,=0, f3 =1, f, = (3-2)/4, fg = 0, fg = {4;-1-(3;+2)/41/3.

1 2
Remarks: D* achieves the lower bound on b of lemma 3.1.

Case 4c. Ag = 2 (mod 4), Ag > 4, A]-(AO+2)/4 = 2 (mod 3), A > 0.

f, =0, f, =1, f, =0, f4 = (AO-Z)/4, f5 =1, f6 = {k]-Z—(A0+2)/4}/3.

1 3
Remarks: D* achieves the minimum posgible integer b > Tower bound of lemma 3.1.

This covers all possible cases.



For p = 6, k = 3 the minimal complete set of generator

Theorem 3.4.

designs 1s as given in Table 3.4.

Table 3.4
Minimal Complete Set of Generator Designs for p

6, k=3

1

~~
o~
N
< o — —t - o~
~
o
N~ O
< o~ — 2] [Ta) o
el
Nal Ne] ~ — [Ta o
—t — —
O N o
[@ R SV
O ¢ un
_\.llj O M w
o N WO O Mmun ~
w.o — ™Mo O ™ & o
% O & w O N WO ™M N O
A ﬂl\[..d [ RE JEVe O NN N O
. [3a JES Vo] O ™M O O N & N M
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Proof. Consider an arbitrary BTIB design D‘ with parameters (b,)\o,)\l)

for p = 6, k = 3,

Case 1. x] = 0.

p = f3=fy=1f5=1"fg=0.

Remarks: By lemma 3.2 Ag must be even. D* must be equivalent to D.

fl = ag/2s f, = f = f

Case 2. Ay = 0 (mod 5), A > 0.

fi = f, = f3 =0, f, = 4/5, fg = (A= 1/5)/2, f¢ = 0.

1 2 3
Remarks: M- AO/S is even and non-negative by lemmas 3.2 and 3.3. D¥*
achieves the lower bound on b given in Temma 3.1.

Case 3. Ao = 1 (mod 5), M
=1, f3 = 0, fy = (A0—1)/5, f5 = {x]-lv(xo-1)/5}/2, f6 = 0.

> 0.

f, =0, f

1 2
Remarks: A]—l-(xo-l)/S is even and non-negative by lemmas 3.2 and 3.3.

D* achieves the Tower bound on b given in lemma 3.1.
Case 4. g = 2 (mod 5), A > 0.

£ =0, f, =2, f3 =0, f, = (3)-2)/5, fg = {3,-2-(3-2)/5}/2, fg = 0.

1 2 3
Remarks: x]-Z-(AO-Z)/S can be shown to be non-negative and even using lemmas

3.2 and 3.3. D* achieves the lower bound on b given in lemma 3.1.
Case 5. Ag = 3 (mod 5), A > 0

fl = f, =0, f3 =1, f, = (3-3)/5, fg = (0-1-(3-3)/6}/2, f; = 0.

Remarks : A]—l-(AO-3)/5 can be shown to be non-negative and even using
lemmas 3.2 and 3.3. D* achieves the lower bound on b given in lemma 3.1.

Case 6. A, = 4 (mod 5), A, > 0.

e
1 2= f3= 1 1y

Remarks: A]—Z-(A0-4)/5 can be shown to be non-negative and even using

lemmas 3.2 and 3.3. D* achieves the lower bound on b given in lemma 3.T.

1

fp =0, 1 = (2g=8)/5, fg = {n-2-(x-4)/5}/2, f5 = 0.



This covers all possible cases and hence completes the proof of
the theorem;

3.3 Minimal Complete Sets for k = 3, p=7(1)10

In this section we give the minimal complete sets of generator
designs for k = 3, p = 7(1)10 without the accompanying proofs, The
interested reader can construct the proofs for himself along the lines of
the proofs in the previous section or he can obtain the proofs by writing
to one of the authors,

Table 3.5

Minimal Complete Set of Generator Designs for p=7, k=3

. P NS BN GY

Di Design b1 XO Xl
0000000

D, {{0000000 7 |2 0
1234567
000000011223

D, |[{112345746354 12 | 2 1
234566757677
roooooooooooooo124

D, [¥11112223334567635 17 | 4 1
Lz 4 574576667767
0000000000000000000O0O0 0]

D, Wt11111222223333644¢4556)21 |6 1
234567345674567567677
1112233 '

D, ({24664545 7 |o 1
3576776




Table 3.6

Minimal Complete Set of Generator Designs for p

8, K=3
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Table 3.7

9, k=3

Minimal Complete Set of Generator Designs for p
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