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1. Introduction

Speckman (1979) introduced the following minimax linear estimator. Let
Y = A6 + ¢ where Y EBQn, 6 €6, ® is a Hilbert space, A is a bounded linear
transformation from @ into n-dimensional Euclidean space, E(e) = 0, and
E(ee') = 021. The random vector Y is observable and 6 €@ is unknown. The
bounded Tinear mapping T: ® - ¥, where ¥ is a Hilbert space, is given as is
the linear functional t €@* and the scalar a. Find the linear estimator
26Y satisfying

min sup E (2'Y - r(e))2 =
o €R" || Te] l;ﬂ',vio‘

sup
[1Te] ]y <a

An example consisely represents the motivation behind the consideration of
such Tinear estimators. Suppose that the ith component of the vector Y is
Yi = e(xi) t ey, where {x],...,xn? < [0,1] and e, the mean function, is in
w§[0,2]. Suppose t(6) = 6(2) and Te = 6". On the null space of T,
8(x) = a + Bx. The linear estimator 26Y provides robustness against possible
"non-parametric" deviation from assumed linearity of the model. In this
instance, as Speckman shows, the minimax linear estimator of 6(2) is the
value at 2 of a data determined smoothing sp]fne 6 when the x values
XpseeesX are all distinct.

Our interest below is focused primarily on the problem of optimal design
of experiments when Speckman's estimator is employed, although we do extend
Speckman's estimator to the case of observations which are second order

processes. The extension proceeds exactly along the lines of Speckman's

proof. An expression for the performance is developed which enables the



straightforward extension of some existing theorems on optimal designs to
the present case. These optimal designs, unlike those for unbiased estimators
depend upon the number N of observations. An inequality is developed which
describes the relative error introduced in going from an optimal approximate
theory design to a discrete design via an algorithm given by Fedorov (1972).
Several example problems are solved employing a new theorem which provides
sufficient conditions for optimality.

One possibie classification of the optimal designs which we investigate
is given by the term robust. There are many papers on this topic. See,
for example Huber (1975), Kiefer (1980), Li (1981), Li and Notz (1980),
Marcus and Sacks (1976), Notz (1980), and Pesotchinsky (1980). The assumed
form of deviations from the model and the estimators all vary from paper to
paper. None of the papers mentioned have all assumptions the same as the
ones we make here. However Huber's (1975) minimax extrapolation problem is
sufficiently close and we are able to make some reasonabTe comparisons. These

may be found in example 2.

2. The estimator and its mean square error.

Let X be an arbitrary set and suppose‘that'for each finite subset

{x_H,...,xmn } of points in X one may observe the uncorrelated stochastic
m

11’t)""’Y(Xm,nmt): t €T} where

processes {Y(x
Y(x,t) = m (0,t) + e(t)

EEe(t)] = 0, and K(s,t) = E[e(s)e(t)] is known. The unknown parameter 6 is
an element of the Hilbert space ® and all of the mappings {mx}XEX are bounded

and linear from @ into the reproducing kernel Hilbert space H(K) generated by



K. Denote by B the covariance function generated by the vector of stochastic

processes. That is, B is defined on the set I x I', where

r = {x]], X]2""’X1n]""’Xm]""xmnm} x T, by

K(ti’tj) if Y; = (Xgiui,ti)
B(Y'9Y-) = and y; = (X st)
0 otherwise.

The reproducing kernel Hilbert space generated by B is denoted‘by H(B). For
the element g €H(B) the linear estimator <Z,g>B, where

Z = (Y(X11’t)”"’Y(an ,t)) has mean square error

m
_ 2
V(r,8,9) = E[<Z,g>p - 7(0)]
at 6 €® for estimating the value of the linear functional t. Since

Ny 2
E[<Z,g>p] = (m(6),g)g  and  Var(<Z,g>) = ||g]|g

we have

(2.1) V(r,6,9) = |lg][5 + ((m(e).9)g - <(8))?

where m: @ - H(B). We are given the bounded linear mapping T from @ to a

Hilbert space ¥ and wish to find if such exists an element 9 €H(B) minimizing

sup Ee(<Y,g>B - T(G))Z.
| [Te]|<]

Denote by M the mapping m*m + T*T.

Theorem 2.1. 'If R(M) is closed then whenever t-€R(M)



(2.2) inf sup V(t,6,9) = tM#r
g€H(B) [{Tel|<1

where M# is the Moore-Penrose inverse relative to the ordinary orthogonal
projections. If t ¢R(M) then the expression.on the 1.h.s. of (2.2) is +=.
If £ €R(M) and & is any solution to the equation Mé = t then m(8) = 99 yields

the unique minimax linear estimator of t(8).

Proof: First suppose T §R(M). Since R(M) is closed there is a point

% €RH(M) = (M) such that (qb,r) # 0. Thus from (2.1), for any g €H(B),

2 2 2
V(T,dqb,g) = I!gllB +t (qub)

" and

2
sup  V(r,8,9) > |[g][5 + of(t,q)
[[Te] <]

for all a.

Now suppose © €R(M). Set t = M. First we consider the case with

[1T8|[# 0. In this case set o, é||Té|['] and minimize

(2.3) V(x,8559) = |1gl1% + ((m(ey),9)5 - (85))°

over all.g. By seeking a point 9 at which all directional derivatives vanish

we are led to
T(eo) .
(2.4) 9g = 5 m(ey) = m(s)
1+] [m(e,) | |

which is easily verified to minimize V(r,eo,g) and yields

V(r.00.9,) = |Im(3)[1% + [|T8]|. Suppose that ||Te|| < 1. Then

V(.0,90) = |lggl1% + ((m(6),gp)5 - <(6))?

= 1lggl1? + [(n(6),g)g - (m(3).m(e))g - (T6,Te) 17

2

= |m( ||B (Te,Te)y < | [m(8) ||B * IITGIIH



Therefore, for all g €H(B) and [|Te||, <1

V(Tae:go) < V(Tseoago) < V(T,eo,g)-
If © €R(M) then

inf sup  V(r,8,9) < sup  V(r,8,9,) < V(r,8,,9)
g [|Te]|<T |Te][<1

< inf V(r,eo,g) < sup inf V(t,6,9).
g [[Te|]<1 g

Since the opposite inequality always holds we conclude that

inf sup  V(r,8,9) = V(r,84,9,)
g [Tel|<]

i
—
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Next, if T6 = 0 observe that V(t,6,g) = |lg||§ + [(m(e),g)B

Thus unless (g - m(8), m(e))B = 0 for all e €7(T) sup V(t,6,9) = +. Let
|| To] <1

My = {m(e): 6 €N(T)}. Under the assumption that R(M) is closed it is

readily demonstrated that 2&T is closed. We have shown that g - m(8) €7h%

On the other hand g = g, + g, = entails g = m(6) and consequently
//(T //"T '7/(-'-

g = m(6). We have shown that if T8 = 0 then lsup' V(t,6,9) = += unless
| [Te||<1

||m(§)||§. In any case, if © €R(M) then

Ho

g =m(8). In that event V(t,8,9)

inf  sup V(t,0,9) =1 M#c
g [|Te]]<]
since | |m(3)]|5 + [|T5]|% = (M) = (MM#<)Mir = <Mr. Otherwise, for all

g Hsu[])| V(1,6,9) = +=. To see that <Y,go> is unique it suffices to prove
Te||<1 '

that if © = Mo, 1 = 1,2, then ||m(5,) - m(8,)[[g = 0. But this follows

immediately from the fact that if M( ] - 52) = 0 then
T T TN < -2
0= (M(e; - 6,) (0 - 8,)) = | [m(e; - 8,15 + [1T(e; - ez)llﬁ' |



3. Some theorems on optimal designs.

Define the mapping L: & > H(B) x ¥# = Vg by Lo = (m(e), Te). The inner
product on the Hilbert space Vg is [(u],uz), (v],vz)] = (u],v])B + (UZ’VZ)H‘
It is easily verified that L*L = m*m + T*T. One can prove that ®(L) is closed

if and only if R(L*L) is closed and that in this event R(L*) = R(L*L).

Lemma 3.1. If R(M) is closed then for all t €@
2

(3.1) inf sup  V(t,0,9) = sup ( (T,G% 5)
g [lTel|<] oeN | [m(o)||“+||Te]|

where N = {8: ||m(e)|{2 + ]|Te||2 > 0}.

Proof: The proof proceeds as in lemma 2.3 of Spruill and Studden (1978)

(except that our M here is a linear operator on @ and t replaces c) and will
not be given here. See Nashed énd Votruba (1976) Section 5.3 to verify that
all the needed characteristics of the proof of lemma 2.3 are present 1n-this

case. O

In all the above the design {X11""’X]n seensXo o } has been fixed. We
1

m,
m
wish now to examine the dependence of inf IIsupI V(t,6,9) on the measure &,
g Tol|<1
— n.
where £ in this case assigns masses according to E(Xij)= T%"j = 1,...,n1,
m

i=1,...,m, and In, = N. The developments below parallel those in Spruill

i=1
(1980) by identifying the mappings me therein with the mappings

LE: 0 - H(K)S(E) x ¥ = VE defined by (Lge)(x) = (mx(e), Te) for x €S(g). The

probability measure £ is in the collection 2 of finitely supported measures

on X. The inner product on V_ = H(K)S(g) x % is given by

£



[W1’w2]g =z g(x)[(u]x,le), (u2x,v2x)]. Define for t €® and ¢ €=

dr(1,8) = sup __ (r,0)°

AN TITITREY

where N = {8: f||LXe||2dg(x) > 0}. We shall say that the design £y €E is

optimal for t if

Vo = 12f d(r,g) = d(T,EO).

Note that as can be seen from (3.1) and (3.2) the £g computed as optimal will

depend upon the sample size N for in (3.1) we have inf sup = N']d 1 (r,8).
g |[Tel{<l N T

We shall concern ourselves Tater with this dependence. For now we take T as
given and investigate the minimization of d (v,£) over £ €&.
Define

R={f Lxa(x)de(x): ¢ €3, €8}

where & = {¢: X > H(K) = #| |]|e(x)]|<1}. We shall have occasion to invoke

some or all of the following.assumptions.

A1) @ is a Hilbert space.

A2) The mappings L ® »~ V are all bounded Tinear mappings and R(Lg) is closed
in VE for each £ €8, where (Lge)(x,t)u= (mx(e)(t), Te) for x-€S(g).

A3) There is a proper closed supporting hyperplane to ® at each of its boundary

points.

A4) For each e €@, 6 # 0, sup [[|L o[>0,
X

Lemma 3.2. Let A1-A4 hold. Then

a) B8 T €R implies v <-j—, and
0 —-62

b} B t €sR implies v, > L
0 —-62



Proof: This lemma corresponds exactly to Lemma 3.1 of Spruill (1980) with

the replacements we have indicated. The proof proceeds in a straightforward
manner by making those replacements so we will not give all of it here.
However the proof of part (b) of Spruill (1980) contains an error which we
here take the opportunity to rectify. The error occurs following inequality
(14) therein; (B-e)t may not be in R for all e sufficiently small. We proceed
as follows. Since B t €5R there is a sequence of points {rn}n>1 c R such that

(6), ¢

m

, n
{r - 8t||,~ 0. Since r (8) = ¥ a. (L
n ® n 521 900Xy,

jn) g_s;p ||Lx(e)|| for all n

we conclude that g(r,e) < sup [[L (8)]||. Therefore sup ||Lx(9)|| =gt(08) which
X X

corresponds to equation (16). [

Theorem 3.1. Under conditions Al)-A4) if < E&(LELg) for some design & €% then
d(r,go) = Vg and £y €2 if and only if there is a function ¢ €3 such that
L1 4 * i
||¢]]V =1 and | LX¢(x)ng(x) is
i)  proportional to t and

ii) in R N R.

Proof: As above when the proper replacements are made the same arguments go
through. Note that, as is not made clear in Theorem 3.1 of Spruill (1980) the

G-inverse M# is relative to the orthogonal projectors. 0O

Theorem 3.2 of Spruill also goes through. However we have a much improved
version which we state below in its stead. Parts of the improved portion of
the theorem have already been proven in Spruill (1981) and we refer the reader
to that proof, again with the obvious identifications. Since the proof of the

remaining portion was not given in Spruill (1980) we record it below. Let



= {p€®: (t,6) = 1} and recall that LX = (mx(e); Te)’ an ordered pair

in V = H(K) x & for all x €X.

Theorem 3.2. Suppose there is a point 8 €A and a design £o €z satisfying
i) S(gg) = {x: ||Lx 0)|| = s;p |IL (8g) 11,3

ii) LXL &g dgo( x) = ot for some o > 0, and

iii) | 1L, e|| dgy(x) = 0 entails z(e) = 0.

Then 3 satisfies dT(r,gO) = 1Ef dT(T,g) and

2
|

. . 2
iv) inf sup []L (8)]] e

A X v b5
The conditions on-mx, T, and t in order for this to hold are m all bounded and
linear, T bounded and linear and t €®. Conversely, if conditions Al1)-A4) a1so
hold and an optimal design (dT(T,go) = 1Qf dT(T,g) < ) £y €E exists then a

point 8y €4 may be found satisfying all conditions i) through iv).

Proof: The proof of the first part as given in Spruill (1981) goes through
upon noting that A N N(ao) Uuan Nc(go) = A (called U there) and A N NC(EO) = ¢
by iii). Now suppose that A1)-A4) hold and that £g €E is optimal. By theorem
3.1 there is a function ¢: X > H(K) x & such that ||¢(x)]] = 1,

(3.3) [ L¥ ¢(x)dgy(x) = g,

and gt €3R. By A3 there is a A # 0, A €® such that (A,r) < 8(x,t) for all

r €R. Since by A4 sup IILX(A)II > 0 we may find a sequence of points {x
X

in X satisfying [[L(A)[[ + sup [[L (A)]] and [|L, (A)]] > 0. Set

n X n
L, (A) _
P = L; n . Then ry €® for all n and since (3.3) holds
n [ LX ) |
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m
Hm IILXn(A)H ii-—z-1€0(yi)(l_;1' 8(y;)5 )

< sup L () ]]

with strict inequality unless [[L (X)[] = sup [[LA[] for x €S(gy).  Set

X
8y = ;%Xj-(w(x) # 0 since ot(r) > 0). Clearly i) is satisfied. From above
we also conclude that for all x ES(EO),¢(x) = kXLx(A). This in turn implies,
for x €S(g) that o(x) = TTI_(XTTT . Therefore

J LE o(x)dgy(x) = [f LA, (8,)dey(x )][s;pIILX(A)||]'1

and we see that ii) is also satisfied. If iii) is not satisfied then there is
a sequence 6 such that i ||Lx(en)||2d£0(x) ~ 0 and T(en) +~t # 0. This implies
d(r,go) = +w which contradicts our assumptions. We conclude that iii) is

satisfied and consequently that (iv) also is satisfied. O

When ® 1is finite dimensional, X is compact, and the mappings Lxe are
continuous in x for each fixed & then one may prove much stronger theorems
than 3.1 and 3.2. We state, without proof, one such theorem. We shall need
the following conditions.

B1) The mappings Lx:'® ~+ V are linear for each x €X.

B2) There is a topology on X for which X is compact and one point subsets
are Borel measurable.

B3) For each fixed 6 €® the mappings Lxe: X -~ V are continuous in X.

B4) @ is a finite dimensional Hilbert space.
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Theorem 3.3. Under conditions A4) and B1)-B4) there is an optimal design
&g €z for estimating t(e) whose support contains no more than dim @ points.
In addition conditions Al1)-A4) are satisfied so that a point 60 exists in
A= {8: (1,8) = 1} satisfying i)-iv) of Theorem 3.2.

‘ Find]]y one can prove the following theorem, which is the analogue of

Theorem 4.1 in Spruill (1980), using the same techniques as employed there.

Theorem 3.4. If Lx is a bounded Tinear operator for each x €X, there is a
constant k > 0 such that for all o

sup [L,ol], > kl]ol[.
X
and (A1) holds, then (A3) holds.

4. Finding good exact designs.

We shall demonstrate the effectiveness of the theorems above in producing

designs which minimize, for a given T and t, the function dT(a,T). However
we should recall that for a given N, T, and © we really would like to minimize
the expression in (3.1) which may be written as N-]dT//N(T,E). In the usual
design problem using the best linear unbiased estimator the operator T is the
zero operator. In that case one may employ the optimal approximate theory
design to pass, for each N, to a good design ¢ in

S {e€g: # supp(g) < N and M < N with-Meg(x) an integer Vx €supp(g)}
Fedorov (1972) gives such a procedure and inequalities which provide a measure
of the departure from optimality of the design so constructed. In our present
case we observe the possibility that the designs which minimize dT//N(T,E) will
depend upon N. Thus a change in the routine of passing from the approximate
theory to the exact theory has been introduced. Moreover, since the assumptions
employed by Fedorov in providing the inequalities do not hold it is not clear

what procedure should be employed in the construction of a good exact design
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from the optimal approximate theory design. We shall prove in this section
that Fedorov's procedure continues in the present case to provide as good a
method of finding a good exact design from the approximate as it does when
unbiased linear estimators are employed.

There is a reasonable alternative to the modus operandi upon which we
have embarked which bears mentioning. If in the definition of the linear
estimator we measure the allowable deviation from the model relative to the
size of the sample we may circumvent some ensuing difficulties. Specifically,
if we take the supremum over 6 satisfying ||Te|]| g_N—% the minimax mean square

1

error is N dT(T,g). For this estimator the approximate theory optimal design

(if one exists) will not depend upon N. Still the assumptions employed by
Fedorov in bounding the error in passing from the optimal approximate theory

design to a good design in EN do not hold for the functional dT(T,E).

In the following A = AaAO, B = 8680’ and D = DE)‘D0 where AO’ BO, and D0 are

all bounded Tinear operators from @ into Hilbert spaces and all their ranges

are closed. For 1 €® fixed define

2
ED(A) = [ sup —illgl—]'J
6EN(A,D) o(A+D)e

where we take [+w]—] = 0 and N(A,D) = {o: o(A+D)o > 0}.

Lemma 4.1. For all scalars k > 1

kEp(A) > Ly(kA) and kLn(A) > L p(A).

o) > L

Proof: The same proof works for both. We show the first. Since
6(kA+D)e > e6(A+D)e we have N(A,D) < N(kA,D). Also for all eeN(A,D) we
have o(kA+kD)s > o(kA+D)s so that
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2
k[D(A).Z [ sup -—Lllgl——]'1
6eN(A,D) o(kA+D)s
2
[ sup  —Ara8) ] o (kA). O
6eN(kA,D) o(kA+D)e

Lemma 4.2. ED(A+B) 3_[D(A).

Proof: We have N(A,D) < N(A+B,D). Also 6(A+B+D)e > o(A+D)e so

2
ED(A) 5_[ sup _.leﬂil_{]'].
6EN(A,D) o(A+B+D)e

(A+B) > [ (A) is trivially

D D
true. If t €R(A+D) then for o €N(A+B,D) - N(A,D), (A+D)e = 0. Since

We know that if t ¢R(A+D) then [D(A) = 0 so that L

R(A+D) = 7-((A+D)*) = 7+(A+D),. (t,6) = O for all such 6. Therefore, on

2
N(A+B,D) - N(A,D),e giéiD 5 = 0 and we conclude that

sup (£,6)° _  sup (1,0)% .

o eN(A+B,D) e(A+B+D)e ~ oeN(A,D) o(A+B+D)s
This proves that KD(A) 5_ED(A+B). O

Let N be a fixed positive integer and T, as above, be a bounded Tinear

operator from © into #. Suppose that £*€= satisfies

;2'5 dT/‘/N (T,F,) = dT//N_ (T:‘E*)

and that # supp(g*) = r < N. Also suppose that gﬁ €2y satisfies

inf dT/‘/N (ng) = dT/I/N (Tagﬁ)o
ECE\

Define the measure éN €gy from £* as follows. Denoting by [ ] the least

integer function defined by [x] = smallest integer greater than or equal to
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X, assign [(N—r)g*(xi)] observations at Xs €supp(&*). Since

[(N-r)a(xi)] < (N-r)g(xi) + 1 this uses < E ((N-r)g(xi) +1=N-r+r=N\
i=1

observations. Assign the other observations in.any manner and denote the

proportion of the total N at X5 by éN(xi).
Theorem 4.1. The design éN constructed from £* as above satisfies

V2 A L
> - N-r

0 <1

_ dT//N(Ts E*)
dr/ K (ts £§)

and 0

| A
—

<

=3

whenever M(g) = L;Lxdg(x) has closed range for all & €=,

Proof: Both relationships above are a consequence of
(4.1)  LpIm(en) > Lym(ed > [yIMg )T > (1-p L M(e*)]

where D = T*T/N so we show (4.1). The left-most inequality follows from

[’

[1]

N+ The middle inequality follows from the fact that gy €&, by
definition of gﬁ. The proof of the right-most inequality uses the facts

established in Temmas 4.1 and 4.2. Since N¥?'> 1

where NéN(xi) = [(N-r)g*(xi)] oo Since oF

| v
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N ~ ~ ~ T
[(N-r)EX(x;)] + o
where v = Nor - g*(xi) 3_—:;—3_0. By Lemma 4.2

~

LD[M(g*) +ooysb¥ L ] z_fD[M(g*)] concluding the proof of the theorem. [
i T

Note that r itself may conceivably depend upon N. We do not investigate
this general question here. In the examples below r remains bounded for all
N so that by making N sufficiently large the relative loss which comes about

by using éN instead of gﬁ can be made as small as desired.

5. Some examples.

In this section we investigate the application of the theorems to some
examples of varying complexity. In each example the strategy is

a) to find if possible a point §g € = {6: (t,6) = 1} satisfying

. 2 2
inf sup ||L_6[|" = sup ||L 85|, and
Ao X X X x"0

b) to find a measure ¢ €% satisfying

HI<D

J (L 8, L o8)de(x)

2
x°0° “x S;p HLx60II w(8)

2 2
and S(g) < {x: ]ILX(60)|| = s;p |ILX60|[ }.

Without checking the assumptions Al)-A4) we can not be sure that this procedure
will yield an optimal design. However, even if Al)-A4) are not satisfied it may
work and even if Al1)-A4) are satisfied one must identify, in using Theorem 3.2,

the &4 in a) and the design in b).

Example 1. We suppose that we may observe, for x €[a,b], a < b,
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Y(x) = 6, + 6. + ¢

0 1

where E(e) = 0, E(az) =1, and N and 6, are unknown. We wish to estimate

the value By + 84C using an estimator which guards against |e]| too large.

The estimator we employ is Speckman's minimax linear estimator with ® = B22

G
and Te = ?}, where o > 0 is a preassigned constant. Thus we shall be finding

the proper proportions of observations to be taken at points which we shall
determine in [a,b] in order to minimize the maximum mean square error over
the set {e: [e]I < a}. As we have seen above, we must prescribe an N in
order to proceed. Having done this we shall prove below that if azN > z4
then the optimal design takes all measurements at a and b, the optimal

proportions being respectively

(5.1) e(a) = 3 - gz 98; and £x(b) = 1 - £x(a),
2
- -1 _ (b-a) 1 = _ bta, -1
where z, = 2[(c-b)(b-a)] ', J = r—t L and 8, = [c - (59)] . If

uZN <z, then the optimal design turns out to place all of its mass at the
point b. This may seem counter-intuitive since 6, + 61 would not be Tinearly

estimable. But recall that the estimator we are utilizing is not unbiased.
1

We begin our demonstration with step a). In our present example H(K) = R' = &,
: ‘- % 2 2
L6 = (6, +6,Xx, —)€R". Since A ={6€R"; 8, + co, = 1} we seek 9, which
X 0 1 /M 0 1 1
minimizes
e2
sup [[L,8]1% = sup ((o, + o;x)% + —1)
a<x<b a<x<b o N
e2
_ 2 2 1
= max{(1-e])(c-a)) . (1—ei(c-b)) } .

a N



17

A graphical representation of the three functions f](t) = (1 - t(c-a))2

2 9
fz(t) = (1-t(c-b))2, and f3(t) = /a2 s helpful in solving this problem.

A rough sketch is given in Figure 1.

<

\ ymax(£1(4), 22 (8))43 (t)
\ \. ,’ y=f3(t) y=r;(t)

/e
4
. y=f it) /;’
¢ smaller .
| Ne* /)

-1

FIG.1

(@]

It is clear from this rough sketch that for aZN sufficiently large the
minimizing value of o will be 6] = [c - (259)]'], the point at which the
two parabolas intersect. Just how large azN must be is determined by the fact

that for a2N small the minimum will occur for © 6(0,51) minimizing

1
fz(e]) + f3(e]). This point is 30 =-——E:%——T—-and the minimum value is
(c-b) t—
N(!
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1/Na2 [(c-b)2 + —E_J-]' As Na2 is taken larger 3] will approach 5] and will

equal it for Na2 = 2[(c-b)(b-a)]']. For larger values of Na2 the minimum will
continue to occur at é] and the minimum value there will be Jé%. Now we seek
the designs via part b). There are two cases.

Case I, No? > zy. Since the supremum over x €[a,b] of IILx§1||2 occurs at a
and b only the support of any optimal design must be contained therein. We

seek therefore g* €[0,1] satisfying

g*(eO + g.a)(6, + 6,a) + (1 - g*)(e0 + 9 b)(é0 + 0.b)

1 0 1 1 1
%19 =2
t— = (60 + e]c)Je] for all % and 0;-
No
Writing 8, + 8, = (52)3, and 5, + 3.b = (2%22)5. we have (1-2e%)(222) = 525,
0 la 2 ' 0 1 2 71 2 1
The solution &* is giVen in (5.1) and it remains only to verify that
. - % -2
g*a(e0 + e]a) + (1—&;*)b(eO + e]b) + N§7 = cJe].

This 1is easily done and we proceed to case II.

Case II. Nu2 < zg. In this case one may check that the unique maximum of

(1 - 8;(c-x))? over x €[a,b], where 8y = (c-b)y = (c-b)/[(c-b)? + —lﬁq

Na
occurs at x = b. Consider the measure which places all mass at b. Since

- )
(1 - e](c—b))2 + ——%—= y/N 2 it suffices to check that for all (60,91)' ¢R?
Na o
' = = 018 Y
(5.2) (eo + be1)(eO + e]b) t— = —-—2--(60 + e1c).
Na. Na

Since (eO + 6,

identity. Forve] the Teft hand side of (5.2) setting 8y = 0 and 6, = 1 1is
EYZ + (;'2) = Ncé as required. Let us conclude this example by giving
[0 [0 a

the explicit estimators corresponding to the two cases. Recall that for a

b) = (1 - gl(c-b)) = Y/Naz we have shown the 8, portion of the

just
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design in Ey (see (2.4)) the point 99 in the reproducing kernel Hilbert

space satisfies mg(e) =g, where 8 is any solution to Me = ¢ and
M=N{ m;mX deg(x) + Jg T*T, which in this example is just
o

1 - 1 10 0
N(z[x iz] E(X)W?[O 1]>.

The process of solution has provided us with 6 at no extra cost in time and

effort. Thus in the case No’ > zq we have N Mg = Jé%r so that
-~ _N B 2 .
eI = - In the case of No“™ < zq we similarly have
J6
1
= 0L2=6 . 1
011 = vl The reproducing kernel Hilbert space for this case is just R
o)
o, mE)s = (7 OVO(La)E + F o Y(a(1b)E) —y
x=a x=b : NJ J
and
2

<Y, m(éw)> = g7(1,b)3 ) Y(b)

Example 2. Suppose that we may observe Y(x) = 6(x) + e, where E(e) = 0,

E(ez) =1, and 6 is an unknown function in the Sobolev space wg[a,c] of all

real valued functions on [a,c] whose first derivative is absolutely continuous

and whose second derivative is in Lz[a,c]. We assume that based upon observations
taken in the interval [a,b], b €(a,c) fixed, we are to provide a good estimate

of 6(c). It is assumed that the function ¢ is nearly linear, in the sense

2

| c
that ||e"||§ =J (6"(s))%ds is small, say < a“, and that in order to guard
a

against such possible departures from linearity Speckman's estimator will be

employed with T = %DZ. What are the optimal experimental designs for this

problem?
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We proceed as in the last example. Given a value N we seek %9
satisfying condition a) of 5 and a design £* satisfying b). We state
the solution below. The proof that 8 and £* do indeed satisfy conditions
a) and b) is contained in Spruill (1981). The function 8 in wg[a,c] turns

out to be a spline with knots at X1(a2N) and Xy = b. Define

2
_ (b~ 1 1 -1
no = ( 22) b=z * 2! -

1

For uZN 5—”6 . X1(a2N) = a. For na] < aZN, x](azN) is the unique real solution

in [a,b] to the equation

(5.3) oN(b-x)%

24 2(c-b) = b-x"

The two knots are Tocated in [a,b] at the points at which eO achieves its

maximum absolute value. The exact formula for»eo is, setting n = (aZN)']s

2 2, -1 2 S
0g(x) = [s%(n) + nz"(n)]" [nz(n) } (-1)" ¢, (x) + [ h (s)h_(s)ds]
= a

i=1 %
X=X, X=X
where ¢X](X) = X, ¢X2(X) o
2
h (s) = (x-s), - 121 ¢xi(X)(x1-S)+,
2
C (c-b)“(c-x;)
s°(n) = [ hi(s)ds = ——ep— 1",
a atb
-5
and  z(n) = [¢, (c)| + [¢, (c)] = 2(——).
1 2 1
!¢X1(C)I .
. . * _ _C-
The optimal design £* places mass |¢x (C)|+|¢x o) c—b+c—x1 at Xy and
1 2
C-X ny o,
EfBiE:i_'at Xy = b. If both of these are rational of the form Tr-and Tr—then

1
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D

the corresponding estimator is <Y,06> where 6 = Y0;- We may determine y by

n[SZ(n) + nzz(n)]_1 and

Mé = 1 since we know [ LXL 8,de*(x) = M 8,

' - 2 2
NME = M. Thus 6 = [s (n&: 27(n)] 85 Again, for this scalar observation
1

problem, the reproducing kernel Hilbert space is R

and we have the

associated estimator

N8> = T B(xq)V(x) + T 8(x,)Y(x)

X=X-| X=X2

=zl oy - 1 v

X=X, X=Xq

1 C

+ N—-fa (z Y(x)h,(s))h_ (s)ds

_ o [s2(m)+ 28(n)]
Its maximum mean squared error over [[6"[[, < a, where a > 0, is nnN 0

where n = (Naz)']. Moreover, among all possible choices of N points the above

choice yields this smallest possible value of the mean square error.

Remark. If the model is 6(x) = a + Bx, 6(c) is to be estimated, best linear
unbiased estimators are used, and observations are allowed only in [a,b] then

c-b at a and —==2

the usual theory shows the optimal design to place <bfe-a obfe-a

at b. Our optimal designs coincide for azN small. In any case our designs
are the usual optimal ones on the shorter interval [x],b]. Huber (1975)
employed somewhat different assumptions and arrived at similar conclusions.
Huber assumed that observations were available on x ¢ [0,»), 6(-1) was to

be estimated by a minimax linear estimator, and the contamination was

sup  |6"(x)| < e. The same results obviously hold if the interval is
-1 <x<to
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(-»,0] and 6(1) is to be estimated by replacing his 1/y with -1/y as the
location of the left-most point of support in the optimal design. In this
context, the right-most point is 0. As Huber points out, his optimal designs
also assign weights corresponding to those of the usual optimal designs on

[—%3 0] to extrapolate to 1. An examination of our arguments reveals that

our results continue to be valid if a = -=» by setting ﬁl'= 0. We shall compare
0

the two optimal designs at Naz values. In Huber's notation n = N, 52 = az,

and we take 02 = 1. Since the class of contaminants assumed by Huber
||6"[] < o is smaller than our class ||e"||2 < o on the unit interval one

might conjecture that the allowable contamination o' in ||-|| model to place

the left point Xq = il-at the Teft-point x = i;-of Huber's using o should be
1

smaller. This is indeed the case for large N as we now demonstrate. Using

: 2
: S o : ' ' 12 y1(]+2y])
his equation (6.22) and our equation (5.3) we see that 1 = 5 - .
8 Y (1+2v) (v/1+y)

v
As Nuz > o 8 and § both become large and we have —%—+-(2/3)]/3. Thus
X 1/3

<~ (2/3) and o' is roughly (2/3)a for large equal sample sizes N.

In the next example we require the notion of a band limited function.
The reader is referred to Slepian and Pollack (1961) for details. Denote

the space of Lebesgue measurable complex valued functions f: R] > ¢

2 > L2, called the

1012, weR!

satisfying [|f|P < » by LP. There is an isometry F: L

Fourier-Plancherel transform, which satisfies for all fel

FA)W) = [ f(t)e "Edn(t),

1
where m is Lebesgue measure normalized by (27) * (see Rudin 1966)). If
a > 0 then the space ﬁa of band Timited functions is that subset of L2 whose
Fourier-Plancherel transforms vanish off of the interval [-a,a]. We denote

this set by B, We have, defining the operators Ba by Baf = fI[—a,a]’
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2

B, = (fel?: f= (F

BaF)f}.

The operators F']BaF are easily verified to be bounded and linear and Ba

are closed subspaces of Lz. For f EL2 denote by fﬁ the projection of f
a

onto @a.

Before relating the precise assumptions pertaining to Example 3 we offer
some interpretive comments. We have available for "observation" real
stationary generalized stochastic processes Y - 6 = W', where 6 6L2 is real

valued and W' is "white noise". We wish to estimate the unknown value of
t(6) = [ u(t)e(t)dt .where u is a fixed real-valued function. We shall

assume that the process Y can be filtered yielding a band limited version

Y= F!

« BXFe t ey for any X e(O,xo] of our choosing. The process £y is

stationary with spectral density (relative to normalized Lebesgue measure
m) fX(A) = I[-x,x](x)‘ The mean function 6 is thought to be in BXO but in
the process of estimation we wish to guard against the possibility that
||e-eﬁ|| could be as large as o. What is the best choice of values

{X1""’XN} if we employ Speckman's estimator based upon

{Y(x],t),...,Y(xN,t): t € (-0, +o)}7?

Example 3. For each finite collection of points {X1""’XN}’ xj E(O,xo]
for all j, we may observe the uncorrelated stochastic processes

{Y(xi,t): t €(-w, +=), i =1,...,N} where

Y(x,t)

mx(e)(t) + SX(t) te('ma ﬂ'°°):

ey is a zero mean stationary process with spectral density fx(x) = I[-x X](x),

0 eL2 is unknown, and m, = F‘]BXF_ Setting Te = 6 L where 8 = BX , find the

B 0
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optimal design using Speckman's estimator with ||Te|| < a for estimating

40
t(8) = [ u(s)e(s)ds, where u EL] N L2 is real valued and continuous.

-0

We shall prove that the optimal design places all mass at Xgs regardless
of the function u and give the resulting best minimax linear estimator. One
should note that in this problem the error process depends upon the design

variable x. Our methods still apply if we replace Ilmx(e)lli by [Imx(e)|[i

in theorem 3.2.
One can easily show that H(KX) and LZ[-x,x] are isometrically isomorphic

where the isometry y satisfies

WK (0100 = e T )

Tp (2

and that H(K,) = F'1B L% = F_]BXFLZ. Therefore m (6) €H(K ) for all x €(0,x

0]'
Fixing N we seek 6 satisfying

=12 1 -112
sup  [[m B[], +—% [[TE]]; =
X kX NGZ 2

0<x§x0
(5.4)
{6:23f9)=]} oizzxo |lmxe||ix + ﬁif ||T9||2-
We claim that
(5.5) ;. ugHol U

T 2.0 2L 2°
| Jugl 1282 ] U]
In order to see this introduce
. L 1
by = on ugll [legll + [1uil] |1e21] > 13

Then Ay = {6: (u,8) = 1} C 8y SO that
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. 2 1 2
inflsup [[me]|” + — [{Te||"]
Ay X Na

< inf[sup ||mxe||2 + —l§'l|T9!|2]-
AO X Now

We show that 6 EA] minimizes the left-most quantity in (5.6). However §

is also in By showing that it also minimizes the right hand side. Since

X
[Imol1z = 1B, Fell5 =/ [Fo(t)|%dn(t) we have
X -X
18, Fo-= 6
X

0 F:

2 2 -1 12 -
sup ||me||, = ||B, Fe||5 = ||F B, Fo}]5. We also have F
0<XEX0 X KX Xq 2 XQ ;2

1

since F BX F can be shown to be the.orthogonal projection onto 8. Thus the

0
probiem for o EA1 becomes minimize A2 + n82 subject to aA + bB > 1, where

2)_]. The solution, using calculus methods,

2
is Ao = a/2vy, BO = b/2ny, and y = %—-+ %ﬁn Choosing & as in (5.5) we see that

a=|lul]l,b= ||u£[|, and n = (Na

indeed these norm conditions are met. Obviously 6 EAO n A proving the claim
in (5.4) that & is the minimizer.

Let ¢* place all mass at x = x,. We now verify

0"
= 1 - 2 21,4 124-1
(5.7) m¥ m, 6+ —= T*T6 = ([fug|["™ + Na"|]ug[[") "u
070 No
by taking the inner product with an arbitrary 6 on both sides. Working with

the left hand side we have

(35 85) + (Na?)7' (32, 02)
L L
2 2 2
[ ugl 12 + N[ [ |

as required. Therefore £* is optimal.

~ - 2 2 - - ~ -
By (5.7) 8 = N1 (| gl [® + Na®| [u]1%) B = N1 (u + o?u and mxo(e) = Ny
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The corresponding estimator is N']<Y(x0), Ug>- If we can identify the linear

operations which yield uﬁ(-) in terms of KX(-,t) then we know that the same

operations on Y(xo) yield <Y(x0), Ug>- We claim that

+

uﬁ(-) = u(t)KX(-,t)dm(t). To see this consider approximating sums.

f_w u(t)K, (c,t)dm(t) = IAtl;T+0 ) u(tnj)Kx(T,tnj)Am(t
LR
vim FBL(T u(t. e ™ m(t
IAth""*O X nj

ng

e

B, Fu(t) = ug(x).

. N o
The minimax linear estimator of (u,6) is therefore %— Y Yj(xo,t)u(t)dm(t).
j=1 -=
| Y.
This estimator has a maximum mean square error of —— to [Iuﬁll over

o with ||eg]] < a.

If u Eﬁ& where 0 < Xy < Xg then one can verify that any design whose
1

support is contained in [X1’X0] will be optimal.
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