STOCHASTIC DIFFERENTIAL EQUATIONS WITH
FEEDBACK IN THE DIFFERENTIALS
by
Philip Protter*
Departments of Statistics and Mathematics

Purdue University

Technical Report #81-48

Department of Statistics

October 1981

*Supported in part by NSF Grant #0464-50-13955,



STOCHASTIC DIFFERENTIAL EQUATIONS WITH
FEEDBACK IN THE DIFFERENTIALS
by
Philip Protter*
Departments of Statistics and Mathematics
Purdue University
ABSTRACT
Existence, unicity, and stability of solutions of stochastic differen-
tial equations of the type Z = M + FZ-Y + GZ-HZ are established. M and Y
are semimartingales with continuous paths. The novelty here is that instan-

taneous feedback in the driving term is allowed.

1. INTRODUCTION
The theory of stochastic differential equations with semimartingale
differentials is now well developed (see [3], [4], or [7]). It is always
assumed, however, that one is given a coefficient F, a driving term Y, and
an exogenous term M to yield an equation: Z = M + FZ-Y. We consider here
instead equations of the type:
(E) Z=M+ FZ-Y + GZ-HZ,
where H is a given operator on semimartingales. The solution is permitted
to feedback instantaneously into one of the differentials. In the deter-
ministic case this corresponds to certain types of singular equations.
We prove in Theorem 3.1 that a solution of (E) exists and is unique
under appropriate restrictions on G and H. We also show that equations
of the type (E) are stable in the semimartingale topology (Theorem 3.4).
The solutions here are strong solutions in the sense that they are

defined on the same space that M, Y, F, G, and H are defined on. The
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semimartingales are always assumed to have continuous paths. Related types

of equations with point process differentials are considered in [5].

2. PRELIMINARIES
We assume the reader is familiar with the semimartingale calculus and

its standard notations (cf [4], [7], or [8]). In particular, D-X denotes
t

é DSdXs.

(2.1) DEFINITION. For K > 0, an operator F is in Lip(K) if

T-

(1) X' = ¥ dmplies (FX)'™ = (F)T-

(1) (FX-FY)* < K(X-Y)* as processes where X§ = sup [Xs|.
s<t

We will be concerned here only with continuous semimartingales. For a
given continuous semimartingale X, let X = M+ A be its unique decomposition
into a local martinagle M and a process A with paths of bounded variation on

compacts.

(2.2) DEFINITION. For a continuous semimartingale X = M + A and p,

1 £ p g, define:
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As a consequence of the Burkholder, Davis, and Gundy inequalities we have

(2.3) Xl sC Xl ,» 1sp<e
aP p 4P _

for universal constants Cp. Dellacherie and Meyer [1, p.304] have shown

(2.4) C, < 4.

(LN
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Emery has shown the following:



(2.5) | |D-X]| < |Iof L 1IX]
ol gP 34

» 1 <p, qQ<o. See Meyer [9] for an exposition and ex-

where 1 + 1 <
p r = =

O

tension of (2l5).

(2.6) DEFINITION. An operator H mapping continuous semimartingales into

continuous semimartingales will be said to be in SC(K) if

[IHX-HY] | ;5 KXY

H Bi]
for any continuous semimartingales X and Y.
Emery [2] has developed a topology for semimartingales, which was in-
spired by a study 6f the stability of solutions of stochastic differential
equations. (Métivier and Pellaumail [7] independently developed the same

topology.) Here is a characterisation: continuous semimartingales (Xn)

converge to X in the semimartingale topology if for any subsequence (n') one
1

can extract a sub-subsequence (n") such that X" converges locally in ¥
(or P, p>1) to X. (By "converges Tocally" we mean that there exist
k
T
)|

stopping times Tk tending to » a.s. such that ||(Xn-X 1 tends to 0.)
H

3. THEOREMS AND PROOFS

Recall the equation:
(E) Z =M+ FZ-Y + GZ-HZ.
We consider only the case where M and Y (and hence Z) have continuous paths.
If one is willing to specify the operator H, one can handle jumps with a
modification of the usual techniques, taking care to avoid impossible re-

quirements on the jumps (such as AZ = 2AZ, etc.).

(3.1) THEOREM. Let M, Y be continuous semimartingales. Let FELjp(K]),

Ge Lip(K,), and H € zsc(K3) with [|HX]| _ < a for any continuous
i



semimartingale X. Lj_Kza < 1/c] (c1 < 4), then there exists a unigue non-

exploding solution of (E).

(3.2) COMMENTS. (i) One can trivially replace the condition ||HX]| L sa
H
with ||HX] | , S @, using the %Y norm of Meyer [9] for semimartingales,
H

which is a generalization of the BMO norm for martingales. The ¥* norm is
slightly weaker than the ¥ norm, but for most examples the ¥° norm is
simpler and suffices.

(i1) By considering the deterministic example M, = t, FZ = 2Z, and

t
HZ = 7, we get Z(t) = (1£v/1-4t ) /2, for t < 1/4; thus these equations are
closely related to singular ODE's, and one sees that some sort of condition
like K2a < 1/c1 is necessary.

We begin the proof of Theorem (3.1) with a lemma.

(3.3) LEMMA. Assume the hypotheses of Theorem (3.1). Suppose in addition

that:
(i) c]K]y + K3Y + c1K2a <1
(ii) Y]] .5
Hd

(ii1) [[6X]| _ s v for any continuous semimartingale X
S

(iv) ||M|| 1 < -
i

Then there exists a unique nonexploding solution of (E).

Proof: Set X~ = M, and set
AL I UV S UL
Since
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using the inequalities (2.5), we have

n+1 n—1||

[ X

A

n n
-] {c]K]y+c1K2a+K3Y}[|X -X

H H]

n ,n-1
Pl [ X=X

ﬂl
where r < 1. Since M and each X" is in HJ we have that (Xn) is a Cauchy
sequence in ﬁ1 . Let X be the Timit of X". One easily checks that X is

a solution of (E), and the uniqueness of limits in ﬁ1 is used to show X

is a unique solution. O

Proof of Theorem (3.1): To complete the proof of Theorem (3.1), it re-

mains only to remove the supplementary hypotheses (i) through (iv) of

Lemma (3.3).

Step 1: We remove hypothesis (iv): [[M]| 1 < - Given a continuous
H

semimartingale M, there exists a sequence of stopping times (Tk)k>] increas-

k

T €H

ing to = a.s. such that M 1 . Let Xk be the solution of

Tk
Z=M + FZ-Y + GZ-HL.

k on [O,Tk] by the uniqueness of $o1utions; hence we

can define a solution X of (E) on [0,=[by X = Xk on [O,Tk], each k > 1.

Then if ¢ > k, X* = X

Step 2: We remove hypothesis (iii) that ||GX|| _ g v for any continuous

8

semimartingale X. We define a new operator_G] by:

A

if |G|

A

v/2

GJt

\"4

| (sign 6, )r/2  if 63, | > ¥/2 .

1

Let Z' be the unique solution for (E) with G1 replacing G. Define



1

T = inf{t: lGZl[ > Y/2}.

Inductively assume T],...,Tn_] are defined. Define G" by:
n-1 n-1
6J - 67 if |ed-adT | < v/2
n, _
G = Tn—] Tn-]
Sign (GJ-GJ )y/2  if  |GJ-GJ | > v/2

Let 7" be the unique solution of:

Tn—] Tn-] Tn-]

n-1
" = (" FM-M 0+ FOYT )+ 2 (W2 (")

n-1
Define T' = inf{t: |6Z,-6Z; | 2 v/2}. Letting T =sup T = lim T, we
can define a unique solution Z on [0,T[. It remains to show T = « a.s.

k

But stopping M at a time R so that 'HMR o < m(k) < , we have
!
RAT m(k) -
[z I < <« where r = cKiy + ¢, K,a < 1. This implies
ﬁ] = I-r 1 22
||ZR(k)’\T|| 1 < = and hence lim 7, = ZT/\R(k) exists and is finite
H t4+4TAR(K) -

a.s. But on {T<«}, GZ must have an oscillatory discontinuity or an ex-

plosion which cannot happen. Thus T = « a.s.

Step 3: We remove hypothesis (ii) that ||Y]] . 5Y. Givenay > 0, since
H

Y is continuous there exists a sequence of stopping times (Tk) increasing

S , S o n n-1
to = a.s. such that ||Y"|] _ <y, where Y" = YT - ¥T | Define

H

| n-1
T oM, and HY by H™ = (Ko

M =M
Zn-]

-1
- M 7w

n-1 ].

Inductively suppose

is the (unique) solution on [0,T Then let Z" be the solution of:
n-1
= (HT W g,

Tn—]

n-1
T = (Zn']) . thus we can set Z = 7"

We know Z" exists and clearly (Zn)



on [0,7"], and we have a solution on [0,x[. This completes the proof of

Theorem (3.1). in!

We now wish to consider the question of the stability of equations of
this type. The natural framework is the semimartingale topology developed
by Emery [2] and independently by Métivier and Pellaumail [7]. See also
[1]. Under appropriate hypotheses on Mn,Fn,Yn,Gn, and Hn, we want solu-

tions 2" of (En) below to converge to a solution Z of (E).

n _
(En) L =M

IR S AR Ly AR A

n
n;-ls Ms (Y )n__>_]’

Let (F), 75 F be in Lib(Ky), (") 1, 6 in Lip(Ky), (H")

(3.4) THEOREM. Lg;_(Mn) Y be continuous semimartingales.

nx1’ Hin S¢ (K3)

with | [H"X]| ||HX]] _ < a for any continuous semimartingale X. Assume

00’

K2a < 1/01. Assume M M, Yo Y, ggg_HnZ + HZ in the semimartingale topol-

ology, where Z is a solution of (E). Assume further that 7 > Fz and

6"z » 6z locally in 8] . Then Z" > 7 in the semimartingale topology, where

7" is the solution of (En).

Proof: By considering a subsequence if necessary and by stopping at a stop-
ping time, we may assume without Toss of generality:

(1) M M, Y > ¥, H'Z > HZ in 3

(i) F'Z - FZ, 6"Z » GZ in g !.

Let us make three temborary additional hypotheses:
(i11) (Yl sy

H
(iv) |le"z]] _ s

8

(v) [IFZ"]
s

<

A

C<eo,allnzTl.



where C]K]y + YK3 + C1K2a = r < 1. Then one easily sees that under (i)

through (v):

H]

[1Z-2"] 1 5 aln) + r||z-2"|]
H
where a(n) >0 as n-+=and r < 1.
To remove hypothesis (iv), we note that we are assuming 6"0 = 0 and

d‘ELip(Kz). Set

T = inf{t: |Zt| ERUY
. P
n . ™
T = infit: [Z-Z, | 2 v/Ky} -
Define Gn(k) by:
k k-1
Gn(k)J GnJT ) GnJT :
k k-1
then [16"z)] s kl1202" )
S s
<Y
Thus if Zn<k) solves, on [O,Tk], the equation:

Zn(k) _ (Zn(k—1))Tk_1 L (Mn)T

k-1
k-1
. FnZn(k).{Yn_(Yn)T )

¢ () n(k), gynzn(k)_agn(k)y T

k)

we have that Zn(k) > Z( in h] , using the inductive hypothesis that

1) L 2 (k1) 5 41 Since the sequence (TX) was defined in terms of

k .
Z, we have T increases to « a.s.



To remove hypothesis (iii) that [|Y|| _ <y, we proceed as in Step 3
' H

of the proof of Theorem (3.1). Let (Tk) be stopping times increasing to «

| kK k-1
a.s. such that YKV =y o yT “ang v <yl pefine
i

k k-1

- (Mn)T , and Yn(k), Hn(k), analogously. Then let Zn(k)

Mn(k) - (Mn)T

solve:

Tk—]

(k) _ (Zn(k-1)) + (k) pngn(k) yn(k)

+ Gnzn(k)Hn(k)Zn(k)

s

n(k-1) , ,(k-1) (k) . 7(k)

and inductively Z locally in hJ gives that pak

locally in ﬂ1 .
Finally, the removal of hypothesis (v) follows exactly as in the

stability theory without instantaneous feedback. The reader can find the

details in Protter [10, pp. 343-4], so we do not bother to recopy them

here. .

(3.5). COMMENTS. (i) It is clear from the proofs that these theorems
hold as well for systems of equations.

(i1) By using a localisation technique of Lenglart [6] (see Emery
[3, pp. 291-2] for details) one can obtain the same results for Fn,F,Gn,G,

Hn,H all Lipschitz with random, finite-valued Lipschitz constants.
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