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ABSTRACT

In an earlier article Mathai (1980) has given compact
representations for the moments and cumulants of-the trace of
a noncentral Wishart matrix. He has also shown that
;(tr/}-ntrg)/(’&ntrgz)]/2 is asymptotically standard normal where
A is a noncentral Wishart matrix with n degrees of freedom and
covariance matrix £>0. In the present article explicit expres-
sions for the exact density of the trace are given in terms of
confluent hypergeometric functions and in terms of zonal
polynomials for the general case and as finite sums when the
sample size is odd. As a conseqdence of some of these repre-
sentations some summation formulae for zonal polynomials are also

given.

1. INTRODUCTION

Let x = tr A where A is a pxp noncentral Wishart matrix with

n degrees of freedom, noncentrality parameter Q and covariance




matrix £>0. Let Mx(t) denote the moment generating function
of x. In Mathai (1980) it is shown that
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where ) .,Ap are the eigen values of z, bjj’ J=1,...,p are

the diaéona] elements of Q'QQ where Q is an orthogonal matrix such
that Q'zQ = diag(A],...,Ap). The aim of the present paper is to
work out exact density of x and represent it in a number of
different ways which are all suitable for computational purposes.
One representation will be in terms of confluent hypergeometric
function of several variables, another in terms of zonal polyno-
mials and a third in terms of finite sums when the degrees of
freedom n is even. By using some of these representations a few
summation formulae for zonal polynomials will also be obtained.

From the structure in (1) it is evident that trA can also be
represented as a linear combination of independent noncentral
chisquared variables. Linear combinations of independent chi-
squared variables (central and noncentral) appear in a wide
variety of problems such as queueing problems with gamma type in-
puts, study of quadratic forms, geometric probabilities, see for
example Ruben (1962), study of regression residuals and certain
time series problems, see for example MacNeill (1978).

2. DENSITY WHEN THE SAMPLE SIZE IS 0DD
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Expanding the expression exp{ 2 bjj(1—2txj) ]} as a power
series one gets, 3=
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where k = (k +...+kp = k. Now Mx(t) of (1) can be
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written as
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where mj = kj +n/2 and mj is an integer when n is even or when
the sample size is odd. In this case we will represent

,gsl—ZtA.)—mj as a finite sum by a generalized partial fraction
%échnique. A convenient simplification, when the technique is
applied, is developed in Mathai and Rathie (1971). When mj's are
integers we write
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where the coefficients a;. are to be determined. Thus the density
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of x, denoted by f(x), is avajlable by inverting the moment gene-
rating function. Term by term inversion is valid in this case

],...,kp), k]+...+kp = k,
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fix) =e ™ 1 3 np,] k') zx) a.r-i__—{é__- J
k=0 x =1 7 j=1 r=1 J (ZAj) (r-1)!

and thus we have for x=(k

for x > 0 and f(x)=0 for x < 0. In order to compute the coeffi-
cients ajr we proceed as follows. If some Aj's are equal then we
combine the corresponding factors. Hence in the following dis-
cussion we assume that all the Aj's are distinct and nonzero. Now
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For details see Mathai and Rathie (1971). An outline of the
technique will be given here. Let
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where for example A(q) and B(q) denote the qth partial derivative
with respect to t of A(t) and B(t) respectively with A(O)=A(t)

and B(O)=B(t) and for example (2) =m!/(nl{m-n)!), 0!1=1. Let
A.(q) = 1im A(q) and B, = lim B(t).
J t1/(23) J t-1/(21)

Continuing the process in (3) and then evaluating the final
expression at t=1/(2kj) one has
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Hence the density is
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for x > 0 and f(x)=0 elsewhere where er is given in (3).
3. DENSITY IN THE GENERAL CASE

In this case we start with the moment generating function in
(2) where mj's are no longer integers. Consider the following
representations for the various factors.

-m,
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for ](]-A]/Ai)/(]—ZA]t)] <1, i=1,...,p. A sufficient condition

is

for the expansions is that t < min{1/(2x,),...,1/(2x )} and A
1 p ]
the smallest of the Aj's such that 1—A]/Ai < 1-2A]t, i-1,...,p.
Hence
P -m, _ . m-m P, > =
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where m=m]+...+mp and rErot.L e Term by term inversion is
possible in this case and the density corresponding to the moment
generating function (1-2A]t)-(m+r) is
Xm+r‘] e_X/(ZA]) /{<2A]) m+r F(m+r)}

m-1 e-x/(ZA])
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where (m)r= m(m+1)... (mr-1), (m)O = 1. The inverse correspond-

ing to (6) is the following:
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where ﬂz is a confluent hypergeometric function of p-1 variables.
This function and its properties are will-known in the theory of
]F] and the
series form is convergent for all values of the arguments. For a

Special Functions. This function behaves like a

definition see Mathai and Saxena (1978, p.163). Hence the
density of y = px, p > 0, in the general case is as follows:
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for y > 0 and g(y)=0 where k=(k +o.vk

],...,kp),k=k]
m. = ki tn/2, i=1,...,p, m= m]+...+mp and ﬂz is the confluent
hypergeometric function of p-1 variables.

When cne starts with px instead of x for p > 0 this will
make a change of Ai in @2 to pAi, i=1,...,p. This form is given
in (8). Now by choosing p one can make the convergence of @2
faster. In the central case the density of y=px reduces to the

following form.

(np/2)-1" -y/(201,) 0,(0/2,... ,n/2;np/2;

(o2 )™ (o2) w2, oo, )™= (or ) yr2)

/1(20)"P 25022 g2y, (9)

for y > 0 and g(y) = 0 elsewhere.

pg(y) =y



4. DENSITY IN ZONAL POLYNOMIAL%

In the central case the density has a simple representation
which will be given first followed by the general noncentral case.
In the central case one can write the moment generating function
in terms of a determinant as follows.

J
where A

p ] )
1(1-2a,6)""% < [1-2tr| V2,
=] -

],...,Ap are the eigen values of Z. Expanding the determinant
in terms of zonal polynomials one has

[1-2t2] ™% = [1-g/n + £(1-2nt)/n] 2
=0 P2 T2 (020t 2 (g Y (1o 2t
=g P2 g T0/2 z(”Q%)KcK(L-n;']x1-2nt)(k+”p/2),
k=0 « )

(10)
where K=(k],...,kp), kg 3,..3ﬁp > 0, k]+...+kp=k and C is a zonal
polynomial of order k. For a discussion of the zonal polynomials
see James (1964). The notations are the following. (a)m=a(a+1)

p
... (atm-1), (a)0=1, (a)K = I (a—(i—])/Z)k . The series in (10)
i=1 i
is valid for a norm of the matrix (l-gg'])/(]-znt) is less than
unity and a sufficient condition is that t < 1/(2n) and
maxll—n/xil < 1-2nt. The validity of the expansion in (10) is
guarenteed due to the presence of n and term by term inversion is
possible. Hence the density function can be written as follows:

f(x)=nnp/zlgt'n/2 5ox (n/2) C (J'ﬂg-]) Xk-]+np/2e-x/(2n)
k=0 « oK
7 (20) P 2eenps2)y = (225102 b (np2)y ]

xo1tp/e -x/(2n) g(n/g)KCK(l/n —g'])(x/Z)k
k=0 «

/{k!(np/Z)k} (11)



for x > 0 and f(x)=0 elsewhere.

For the noncentral case, using the method of factoring
suggested by Pillai for deriving the joint distribution of the
characteristic roots of a noncentral Wishart matrix (See Davis
(1980), Eq.(6.2)) we can write '

t trA) (e tm/,Zzl n)) [ e Ltr(g-2t)A lAl (n-p-1)
A>0

E(e

- e’;f’A cr A ((ql-;']>e,z “q 1
Kyhi¢ 2 k!l!(%n)A (12)
Reader may refer to Davis (1980 for the definitions of Cg’A(X Y),
an invariant polynomial with two matrix arguments extending the
zonal polynomials, 8"’ A, f=k+%, and other symbols. Further,
Eq (5.8) of Davis (1980) has been used to obtain the form in (12).
Alternately, (12) may be derived from Eq (6.2)of that paper by
dediagonalization, noting the omission of the factor e-tr@ there.
Now consider the transformation B=(q-2t)A; then J(A;B)

= (q-2t)—p(p+])/2. After making the above transformation in (12)

and integrating w.r.t.B using (5.5) of Davis (1980) we get
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Hence term by term inversion, guaranteed in view of the conver-

gence factor g, gives
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for x > 0 and f(x) = 0 elsewhere, When 2 =0 (14) reduces to
(11) with q = -1,



5. SOME SUMMATION FORMULAE FOR ZONAL POLYNOMIALS

Since the density of x is unique one can get some interest-
ing summation formulae for zonal polynomials by comparing the
expressions in (9) and (11). These summation formulae also
establish a connection between certain zona] polynomials and
hypergeometric functions of many variables. Consider the case
p=1 1n (9).

Theorem 1. ¢/ (2n) 2(n/2), ¢ (L ) (x/2 ftitnps 2), )
k=0 « i

- e'X/(Z*])pz(n/z,...,n/2;np/2;(1/A]-1/A2)X/2’

...J]A]JMPM/@,X>O,O<niA1,O<A

< A,
J— ] ’

]
i=l,...,p, 02 is a confluent hypergeometric function of p-1 vari-

ables, A],...,Ap are the eigen values of the symmetric positive
definite matrix z.

One can always rewrite a multiple series as follows:

. z (.) .
2 b 0 r=0 r2+...+rp—r
Also theorem 1 is true for all x > 0. Hence by comparing the

coefficient of (x/2)k on both sides when n=A] we have
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for 0 < Ay <y, i=2,...,p, <=(kyse ko), kbeetko=k, kg 2

> kp >0, o > 0 and (a)K and CK are defined in (10).
In the central case when n is even the density of x is
available from (5) as follows:

f(x) =

- p n/
n/2 .
\] =

z

i =

(l-zxj) -

| (1), X" e (20, gy,
; |

(15)
for x > 0 and f(x)=0 elsewhere, where er is given in (4) with

1 r
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mj =n/2, j=1,...,p. Comparing this with (11) we have

Theorem 3. For n an even integer, 0 < p 5_A1, i=1,...,p, X > 0

P n/2
Doon (()TRZ b x(2ag) gy

3=1 r=1 Jr

= (r(nps2)y™1 x"1*OP/2 ~x/(2n) ] Z(”/Z)KCK(I“”§—5( %/ 20 K
k=0 «

/{k!(nD/Z)k},

where er is given in (4) with m. replaced by n/2 for all j, «,
(n/Z)K and CK are defined in (10).

Now comparing (15) with (9) for p=1 we have the following
Theroem 4. For n an even integer, A] the smallest of Ai > 0,
i=1,...,p and for x » g,

p n/2 ‘
:x (_])r+np/2 - e—x/(ZAj)

A ir /(r-1)1
J: r:

= (r(np/2)y~ " x1FOP/Z -x/(20)) P, (n/2,...,n/2;:np/2;
(]/A]-]/AZ)X/Z,...,(1/A]—]/Ap)x/2),

where 92 is a confluent hypergeometric function of p-1 variables
and cjr is as given in (4) with mj=n/2 for all j.

Thus by making comparisons of the various representations of
the density of x one can get a number of results of the types .
discussed above.
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