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ROBUST REGRESSION DESIGNS WHEN THE DESIGN SPACE
- -CONSISTS OF FINTELY MANY POINTS |

1. Introduction l
Suppose we have a regression setting given by

(1.1) ”'Y(x;) = f(xi) te,, = T1,...50

where the {e } are uncorre]ated random var1ab1es w1th mean 0 and var1ance‘r
02. The X; are elements of a compact subset X of a Euc11dean space, and f

is a real valued funct1on on X from a class F . Without robustness con51der-
ations, F0 is typ1ca11y composed of linear combinations of specified functions
O’fl’ fK' The regression problem is concerned with making some inference
about the unknown coefficients of these specified fj and the associated optimal
design problem is to choose the xi's in an optimal manner for this inference
(see Kiefer (1974) and the references given there for results on optimal : ..
regression designs). However, as first discussed by Box and Draper (1959),
there are some dangers (e.g. in estimation, there may result a large bias
term) inherent in a strict formulation of F wh1ch ignores the p0551b111gy
that the true f may on1y be approx1mated by an e]ement of F 3 in other words,

the true f may be equal to an element f in the assumed mode] p]us a con-

‘tamination g, which is not in FG' Thus, instead of (1.1), we consider

Y(x;) = folx;) + g(x;) + e, i=1,....n

where xi‘s and ei's are as before, fo is in Fo’ and g is in another class G.
A careful description of some problems in this context is given by Kiefer
(1973) in the case where G is a finite dimensional space, which is a common

assumption made by most authors before then.




In this paper, we consider the case that F, = {ﬂ)l ﬁ)(X) = a + BX3

a,BER} and G = {g] |g(x)] <&, min [ (g(x) - o - gx)? du(x) =
a,B

/ QZ(X) du(x) ¥, with & > 0 and u(-) being the uniform probability
measure on X<R. When § = 0, this is exactly the ideal straight line
model. To allow the true mean function to be deviated_from the ideal
straighf line, we may sef § > 0. This & measures the‘amount of modele
vio]afibn by the sup-norm, a quantity that is extremeiy simple for the

designer to think of. The equality that min [ (g(x) - a - B(x)? du(x) =

fgz(x)-du(x) is merely to make the slope and the intercept of the ideal
-straight Tine identifiable. Hence our assumptions provide a natural model-
robust setting for guarding against possible departures from straight lines.

Since our purpose is to find good designs, the estimates will be restricted

to the least squares ones (denoted by a, 8). Consider the loss function

)2 2

W% (a=-a)c + Wy (8- 5)2 with W, and W, being specified non-negative num-

ers. Apparently, the design minimizing the maximum risk may depend on

02, 8, n; W], WZ and X. We shall focqs on the case that X =1 7%;3 - %ﬁ I
k=1, 2,...,N )} for a fixed natural number N (similar results may be obtained
for the case that X consists of any 2N or 2N + 1 points symmetrically distri-
buted on [ -1/2, 1/21). As usual, a design will be denoted by a probability

measure £ on X. Thus the number of observations to be made at point x = E%—

is n g(7§¢0. Approximate designs for which n E(TgTJ needs not to be an

integer will be considered here. In addition, since the problem is symmetric




about 0, we shall seek designs among

K

£( ZN) = g(-%ﬁié , for k = 1,...,N. -

designs by £ , we shall find an £ in =

E{we (o-3)2

max 1

(1.2)

those symmetric ones; i.e.,

Denoting the set of all symmetric -

minimizing

+wa(B-B)2 1.

geG, a,BER

2 ,
Put R(g: €5 wyanp) = w2( [ a(t)de(e))? + wd - 2o ([ t2ag(e))]

+ wgv(}'g(t)tds(t) /,ftzdi(t))z. A straightforward computatiqnhshqwg,,”

2

2 4.
5 }

that E{w$(a-&)2+-w (B-8) n

2
Since w? %T is a constant, minimizing (1.2) amounts to minimizing
(1.3) max R(g, E;w],wz)

geg, o ,BER

Mathematically, it is easier to consider two classes of contaminations:

6> = {g |g€G and g(x) = g(-x), x€X } and G = { gvl:QEG and g(x) =
- g(-x), x €X}. Respectively in Section 2 and Section 3, we shall find .

the designs minimizing

R(g, £ 5 wy.Wp)

(1.4) max

g€G, u,8¢R
(1.5) max R(g, €5 wy,¥y)
. a

gea®, a,8€R




Section 4 cdmbines the results of Sections 2 and 3 to yield the solu-

tion of minimizing (1.3). Denote the uniform measure on { i_—§~— s

y . .
+ -%N]E-.., i-—§%~ } by u; and the uniform measure on { * T%T } by T

Qualitatively the robust optimal design we obtain is either a mixture of

M1 and CN’ or a mixture of u.

Jo J=-1

and-cN, or a mixture of “j and ¢

with
J j,io , where j® is a fixed (depending only on N) integer defined by a
certain cubic polynomial P (see Section 3 for the definition). For
Targe N, j%~ (/6 - 2)N. Bickel and Herzberg (1979) and Bickel et al.
(1981)”0btaihed designs robust against the distributional dependence among
observations. Their designs look somewhat similar to ours. The theoretical
connection is however still unknown.

As an illustration of the results obtained, we 1ist the robust designs. :
for N = 7 in Section 5. Section 6 discusses what may happen when N tends
to =,

Let us briefly review some relevant papers before closing this section.
Huber (1975) considered essentially the same problem as ours with
X =1[-1/2, 1/2] and took L, - norm to measure the amount of model-violation.
However hfélformu1ationbleads to the restriction that the designs must be
absolutely continuous with respect to Lebesque measure, which means n6
implementable designs are considered. Although Huber mentioned that hi§
designs should be approximated by finite support designs, the crucial pro-
blem about the sense and manner of approximation have still not been dis-

cussed. Marcus and Sacks (1976) considered a different class of model-

violations. They topk G = [gl]g(x)[ 5_¢(x) } for a specified function




¢ with ¢(o) = 0 The designs they considered have finite supports and
they did not restrict to the least squares estimates. But the assumption
that ¢(0) = 0 means that there is no contamination at the point x = 0.
Pesotchinsky (1983) extended some of their results to linear regression
in RK, Li and Notz (1981) essentially used the same formulation as that
of our paper except that they took X to be the entire interval [ -1/2, 1/2].
The results they obtained were however rather different from what we have
here. They showed that the design putting masses equally on two points
1/2 and -1/2 is optimal for any values of 02, §s My Wy, and W,. Note that in
Li and Notz, designs with infinite support were not considered. In fact
there exist designs with infinte supports that are better than the two

k

point design. Li and Notz also considered the case that X < R".

To avoid triviality, we assume that N > 3.

2. Symmetric contaminations

In this section, we shall find an £ € = minimizing (1.4).
First, because any symmetric g contributes no bias for the estimation

. 2
of the slope, we havé R(g,£; WyW,) = w%(fg(t)dg(t 2 0 (ft dg(t))” 1

N ="

Let E(i) be the i-th smallest values in {g(—N): k=1,...,N} and define g*

by g*(gN) = g*(zﬁ) 5(k)’ k =1,...,N. It is clear that
(2.1) [t2de(t) < [tldex(t).
The least favorable contamination, say h, for £* can be constructed easily.

When N is even, h(;N) = h(zh) = § for k 3_%—+ 1, and h(ENJ h(ﬁﬂ) = -8

for k <. When h is odd, h(k5) = h(zE) = s for k > B ko) = n(zk) = -s

2N
N+1 kv _ kK _ _ N+1 :
for k < ——» and h(iﬁ) = h(- ?N) = 0 for k = —— Now taking h& to be the
: - - (ko
function in GN s Such that if g(t) = g(k) then hg(t) = h(ZN)’ we have




max w2(fg(t)ds(t))? > wl(fn (t)de(t))?
= w2(fn(t)dex(t))?
= max wf(fg(t)dg*(t))z-
9e6°

This together with (2.1) shows that to minimize (1.4), we need only to

mjnimize
2 .
(2.2) wf(fh(t)lds(t»z + w5 - S (ftPde(t)) ",
subject to | N
(2.3) 0 < £(g) < e <oz E(R).

£ will be said to be nondecreasing if (2.3) holds.

For any a > 0, define 5 = {&: [h(t)de(t) = a}. We first minimize

(2.2) subject to (2.3) over the class Eye This is equivalent to maximizing

N
(2.4) 2} (E0%do,
k=1 _
subject to (2.3) and
N
(2.5) 2. L (et = o

Thus by the knowledge of linear programming, we claim that the solution
vector (g(%ﬁ),...,g(gﬁ)) cannot take more than 2 distinct nonzero values as.
its coordinates. Note that besides (2.5) there is another 1inear constraint.

involved:




(2.6) 2 ¥ ek =1,

The above claim can also be verified directly by taking X; = g(%n) - g(%ﬁl),
i=1,...,N, rewriting (2.2) - (2.6) in terms of Xi and showing that at
most two xi's are nonzero. '

Next, the fol]owing Temma further reduces our considerat%on_tp £ with the
form PZy + (1-p)u1 where 0 < p < 1. Recall the definition ofiuj from Section

1.

Lemma 2.1. For ¢ of the form pu; + (1-p)uj where 1 > p > 0 and {i,j} # {1,N},

there exists a g' such that max R(g,&; wy,w,) > max R(g,g'; Wy sW,) .
ge6’ 9e6®

The proof of this Temma will be given in the Appendix. Write

SN = jtzdu](t). Now, by a simple computation, we get

) :
: s 2022, 2 ¢ 1 o))
(2.7) max R(g,peyt{1-puys wyswy) = wyp™s™ + wy - o= (7 p + Sy(1-p))"".

g6

Thus minimizing (2.7) over {0 < p < 11, we obtain the solution ¢ minimizingv

(1.4). This is stated in the following:

Proposition 2.1. Suppose p solves the equation

w 2
2,2 o~ 4] 1

225k -sy), -

W n62 4 TN 8T

(2.8) .2p((% - S p sN)2 = min{(

Then puy + (1-p)u1 minimizes (1.4) over ¢ € .

3. Antisymmetric Contaminations

In this section, we shall find the £ minimizing (1.5). All the proofs
of the lemmas will be given in the Appendix. For any g € G it is clear

that R(g,E; 2 (2 L fa(t)tde( 2 2.
9585 WyoMp) = wplo— - (Jtode(t)) +(fo(t)ede(t)/[t7de(t))7].  Thus we




9
may assume wy = 0 and W, = 1 without loss of generality. For convenience,

write R(g,&) = R(g,£; 0,1). We proceed to compute max R(g,£). Let
a
' geh

i= (11,.,.,1N) be a permutation of (1,2,...,N). Define h; by

( h ,  for j > j*
. (1) -0 i+ T i),  forj=g*
i, o d iSix J o goix J
'3 , 3>3 J<i
(3.1) h;(ZN) =4 . e
1 -1 ,  forj <%,
" -3 _ , v _
- _J
\ " M )
where j* is the un1que integer such that
(3.2) “ii, < - .
" J'Zj* e A
i i i
Take =, = {£: Elgy) < E(z0) < -0 < €l
Lemma 3,1, If £ € g then
o’ 1.2 -1, .2 2 2
(3.3)  max R(g,£) = 2 -(ftodg(t))™ +6°(fhy(t)tde(t)/ [t de(t))".
gEGa )

Unlike the case of Section 2, the nondecreasing £* (defined in Section
2) does not always improve £. This makes the problem of minimizing (1.5)

more difficult to solve. But some techniques used before will still be useful.

More precisely, for any a > 0, take &, _ = {¢: £ € :i and fh (t)tde(t) = al.

First we minimize (3.3) subject to ¢ € Ei ot This is equ1va1ent to maximizing

ftzdg(t) =2 % (5—92 (5—0 subject to th; conditions that 2 X hs ( )e (5—)= a
Ly o B Sub 2N 2N T

Nk i in
2k21€(§ﬁJ =1, and 0 < &l5p) < ... < &l5p).
Thus as in Section 2 we obtain that the solution vector (g(%ﬁ),...,i(%ﬁ))
can not take more than 2 distinct nonzero values as its coordinates. But this

class of design measures is still too large. We need the following Temma to

focus the search of the solutions to a smaller class.
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Lemma 3.2. The design measure & minimizing (1.5) over £ € E is nondecreasing
and takes at most 2 distinct nonzero values as its probability masses.
Write h = hi for i = (1,2,...,N). By Lemmas 3.1 and 3.2, it suffices

to minimize
2
(3.4) o= (fifag(e)) ! + s2(n(t)tde(t)/ [t2de(t))®

over the class

(3.5) 0= gg=puy + (1phuyl 0cpetandlcd<d <N

The problem now Tooks relatively simple. But to directly carry out the minimi-
zation (i.e., to express (3.4) in terms of p,i and j and then to take der1vat1ves
etc.) is still not easy because of the complexity of h. We find that the o
following lemma helps simplifying the matter greatly. -

;_ j+1 N-135.
Take “3 to be the uniform design measure on {x SN oW * 2N }s

denote P(x) = X +3(N—1)x —6(N2+3N—2)X+N(N+1)(2N+1), let j° be the Targest

integer such that E(j“) > 0 and 1 i_joi N.

Lemma 3.3. For any j such that 1 < j < N, there exists a pair of nonnegative
.S, .45, =

numbers (rJ,sJ) such that rs SJ 1,

(3.6)  fteh(t)dn(t) = [t-h(t)d(r; cj_1+sch)(t);

B 2 ] . .0
(3.7) [t dnj(t) < ft d(r ryty- ]+sch)(t) , for j >3
and
(3.8)  [tPdn.(t) > [t%d(r +5,0) (1) for § <3°
J - "5 %5-1 N ? -

Take E] = {g = pgy* (1- p)u :0<p<1}and 52 = {g = puj+(1-p)r_.j_1

j= 2,...,‘0 and 0 < T-p < p* (N j+1)” ] . Clearly, alu 52 js a subclass of E

€ ot e T
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Using Lemma 3.3, we now demonstrate that the solution of minimizing (3.4)

0 ; .
over = can be found in E]U 52.

For any € = Pu; * (]"p)“j in 50, consider the following six different

cases:

(i) j=Nandi-=j°
(ii) j =Nandi > j°
(ii1) j =N and i < j°.

Giv) %<3 <.

(v) §<3%andi=j-I
(vi) J < Jo and i < j-1.

Cases (i) and (v) lead to the desired "¢ ¢ E]U Ez".

For case (ii), write
£ = p-(N-i)(N-i+])'1-n1+[p-(N—i+1)']+(1—p)]gN. Construct &'
= oo (N=1) (N-41) T ((Tmednsbelrs oy _yrsag) )+ Ipe (N-141) " T+(1-p) Tgy

where ¢ > 0, and ry and s; are defined in Lemma 3.3. Clearly, for a
suitably chosen e, £' is of the form p'ui_]+(1-p');N. Also, by (3.6) and

(3.7) of Lemma 3.3 and (3.4), &' is at least as good as &. Repeating the

above argument several times, we end up with an & of the case (i). This

settles Case (ii). For Case (iii) the argument is similar. But instead of

moving some masses from {% %N""" + gﬁl} to {z ?ﬁl’ * gNJ, we now use (3.6)
and (3.8) of Lemma 3.3 and move some masses from {i %Ny * EN& to
{+ %ﬁl3...,i ﬂ%%&. Repeating this argument several times, we may end up with

the Case (i) or the Case (v) as desired. For the Case (vi), moving some
masses from {+ %NJ to {z %ﬁli, we can reduce the bias [h(t)tde(t) (here note
that h(t)zglo for |t| < 3%/2N) and increase the design variance ftzdg(t). For
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the Case (iv), using argument similar to that in Case (ii), we may obtain an
g' of the form p'ui + (1—p')gN or ppi+(1-p)[p'u_0+(T-p')cN]. The former case
belongs to Cases (i) ~ (iii); for the latter case, the arguments similar to
those for the Case (vi) and the Case (iii) will then lead to the desired

result.

1.2

We now restrict our attention to 5 Us“, The design variances

and the correspondence between

i—

jtzdg(t) in this class run from SN to
designs and design variances is one to one. Moreover, as the design variance
increases the bias fh(t) t de(t) decreases. Thus each design in this class

should be optimal for some (s,8). To actually find the optimal design for a

given (0,8), we need to compute (3.4) for ¢ € E]UEZ. This is done in the
following.
LI » 1
Let Vj = Z )/4N"(N-j+1) and Bj = j(3-1)/4N(N-j+1). For EE€E,
k>J
02 2 -2 2 .
max R(g,z) = o Xt -(1-4v o) -[2(1-28.0)-x(2V'0—B_0)] , where x is
ge6 J J N
defi 2 1 -1 2 i}
efined as (ft°dg(t))” ' = (z-p+(1—p)v_o) . For g€ 5%, max R(g,£) =
J QEGQ
2 2 -2,-2 -1 j-1
2 xro” (avy- (-0 ) 222y Shx I (v 18,00,
where x is defined to be.(ftzdg(t ) = [(J ])2p+vj(]-p)]']. These two/
functions are quadratic in x and can be rewritten as
2
2 2,22 o 2.2 2.2.2
Q(x) = STFGHIXT + (- -2 FJHJGJ)x+<s F{65
for x ¢ [V 311]’ i=2,...,i%%, where
Foo= [aV.-(&0277 T 6. = 4B +2(3-1)/N, H, = (G-1N(2V,+(§-1)N"TB.) for
J J N N J > J J
j-= 2,...,j0; and F_ = (1-4v )-], G 2(1-2B ), = -8B L,V = 13 and
LY .0 o -0 07 4
J J J J
veo—] = V.O
J
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Lemma_3.4. Q(x) is convex for x € [V;], V;]].

s0

= - —.l 2 - - '] 2 TR . o
Let Tj (G=H.V, )FjHj and Rj (G,-H,V, )FjHj for j = 2,...,3 s.

J J -
standard techniques and Lemma 3.4, the minimizer of Q(x) over

X € [V;},V;1] = [4,5&]] (hence the £ minimizing (1.5)), can be derived

directly. This is stated in the following

Proposition 3.1, The’design & which minimizes (1.5) is described below:

(i) If R, <-2 5 < T, for some j such that 2 < j g_jo, then
-3 T s J Lo
- Viea 11202
= J a-(-1)N "
£ = (——5—5)g; 4 * ( AT
Vo-(3-1)8 I Ty Lg-naed
J J
= 0e20202 00202 2,3,
where o = 2§ FjHj/(Zé FjGjHj,G /n);
(1) If T, < o*/2ns” < Ry» for some j such that 2 < § < §, then
£ = llj_‘l; !
(111) If T < o*/2n6® < R_, then
J . B
£5 1 43
J
. 2 2
(iv) 1If R, <0o"/2n8" < T_, then

1 -1 1 -1
g£=(a-V Mz -V ) gy + (F-a)lgz-Vv ) 'u
jo 4 jo N 4 4 :jo j

where o = 26%F H_/(26°F2H_6_-o%/n),
i W
(v) 1f-2 5> T_, then
2ns

By




14

4. Robust designs

In this section we shall find the ¢ minimizing (1.3).

First, suppose wy = 0. It is easy to see that max R(g,%; O?W]) =

ge6

max R(g,&; O,W]) because any g can be written a sum of a symmetric

ge6?

function gy and an antisymmetric function g, and the.bias fg(t) tdg(t)
f92 Jtde(t). Thus Proposition 3.1 is applicable. '

Theorem 4.1. When Wy = 0, the £ minimizing (1.3) is equal to the £ of
Proposition 3.1.
Next, we turn to the case Wy # 0. The designs of the form

Puy + (1-P)u] are reasonable candidates because of Proposition 2.1. 1In

2
. 2 /1
fact, R(g, puy + (T-pluys wyaw,) = %‘ PZ( ] AP

1

9(§9+9(- EQ) Wit n Wy (4 p+SN

(1-p))~"

+ %3- w2 -( (%)-9(- %))292(4 pSy (1-p))” 2 The maximum over g€ G occurs

2
when g(%) g(- %J = 6§ or g(%) = ~g(- ?’ = 8. The former occurs when

(4.1) wo/uy < 20z p+(1-p)Sy,).

This is the case where the symmetric contamination dominates the antisymmetric

one; i.e., max R(gspy#(1-p)uys wyaw,) = max R(g,pzy+(1-p)uy). Now, we
€6 : :

9 ge6®

obtain the following

2 W W
o, L2 1 -2 2 1 .
Theorem 4.2. 1If 7 2(2w] Sy) (7 -Sy)™° and wy <70 then & = prye(l

minimizes (1.3), where p solves the equation (2.8).

-P)u]




15

Proof. By Proposition 2.1 and the above argument, if p solves (2.8) and

(4.1) holds, then ¢ = ch+(1—P)u minimizes (1.3). On the other hand, it is

1
straightforward to see that (2.8) and (4.1) imply the sufficient conditions

in this theorem. 0

In a similar spirit, we shall derive the conditions under which the
antisymmetric contaminations dominate the symmetric ones. This is suggested:

by the folloﬁing lemma whose proof was given in Li (1981).

Lemma 4.1. For any ¢ ¢ é‘UEZ,
max R(g,g; wy.Wpy) = max R(gsE3 wyaWy).
geG S a
geG” UG
It remains to actually compute max R(g,&; w],wz)'and max R(g,&; w],wz) for
gEGs gEGa

£ € E]U=2. This involves only straightforward calculation. It turns out that

the equality max R(g,&3 w1,w2) max R(g,£; wl,wz) holds
geG geGa

(1) forges (i, £= peyt(1-pu s if
J

w . 2
(6.2) 23 2(N-3%1)7 T Li-14p(N-23%2) J-F ()
¥ % nsc

and

. 2. )
(i1) for g€ & (1.e.7 £ = Pty +(1- ”J)’ if
1

=

p)
2 R 2
(4.3) *;'Z,Z(N-J+1) (3-1-pN)- "FSH; (———)

=

Now, by Proposition 3.1, we have

2 w
Theorem 4.3. If the choices of —9§ and Wg are such that the assumptions of
né 1 ,
Proposition 3.1 hold and either (4.2) or (4.3) is satisfied, then the design &

in Proposition 3.1 minimizes (1.3).
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5. An. illustration

=

In the following example, we take N = 7.

IS

First, consider the case that 0 < 5_%3 Theorem 4.2 is applicable

=

1
- el L2 1.
here, with SN = S7 = 0.1020. The design space X is {# Tas & -t 2}, ¥

puts masses equally on %Z-and - %Z; My puts masses uniformly on

i, it ] o’ W2 .

{z ot g ot ?}' Denote —% = A and o E . The following table lists
ns 1
~the solutions according to different values of A and w.
Table 1
W 2 .

; 2 (- - Optimal
Range of W;-(: w) Range of n62 (z2) designs p
0.2041 ~ 0.5000 §11.42w-2.331 ~ 0.8448-w—2 v 2
0.0000 ~ 0.2041 0.000 ~ 0.8448+”2| PE7+{1-P)u; |P(0.1480p+0.1020)"=0.07398u A
0.0000 ~ 0.5000 [0.8448-w™ > n + 5y —

Note that p(0.1480p + 0.1020)2 is an increasing function of p. Thus we

see that for a fixed @, as A increases, p also increases. This simply says that
if the sampling variances tend to ddminate the model violations then we tend to
use the classical two-points design ts On the other hand, if the amount of the
model violation turns out more serious than the sampling variances then we tend
to use the uniform design My The above table illustrates how to actually .__
achieve optimality by a suitable mixture of %7 and Hy

W2

Next, we turn to the case that W—'i'%' Theorem 4.3 is applicable now.
1

The value of jo here turns out to be 3. 'Table 2 provides the optimal-designs

found by this theorem.



Table 2

2 | W,
Range of-—gﬁ-(sx) == > this value

ns 1

Optimal

designs Values of p

.0000 ~.01514 A“][.01749(.1108-A)-]—.]583] pu2+(1-p)c] .09972(.1108-A)-]-.04511

.01514 ~,03528 - 1.655 Ho

1 1

.03528 ~.1090 A-1[.2564(.5544-A)— -.4356] pu3+(1-p)c2 .5229(.5544-2)"

-.1739

.1090 ~.3224 1.286

M3

.3224 ~2.072 A-][2.975(4.221-x)-]-.3486] vpc7+(]—p)u3 4.784(4.221-A)-]

-1.227

2.072 ~n + w .5000

t7

6. Asymptotics

Let ¢ denote the measure to which the ¢ minimizing (1.3) tends, as N ~ §.f

Denote the uniform probability measure on {t: x 5_|t] 5'%} by My First it is

1/2
clear that as N > » and j/2N + x, we have S, - f tzdt = l—‘, Hs = U,
N 10 12 i M
3. 2 30 1 2
N7py(3) = 2(2x-1)(2x+ax-1), 55 » (VE -2)/2, Vy > 17 (T+2x +4x )

2
(for j f_jo), Bj > x2(1-2x)-] (for j g_jo), and Tj - Rj > 0.

Let ¢ be the design which puts masses equally on points %-and - %. Then

the following is an asymptotic version of Theorem 4.2.

Theorem 6.1. If —QE-> 9 ,Yz__ §—and Yg <q then = + (1-p) where.
neorem o. 1. naz z W] ? W] 9 £, pg p Hg s p
is a nonnegative number solving
W 2
p(2p+1)? = min{12-(8)2 . 2, 9.
" n62

Similarly, we obtain the following asymptotic version of Theorem 4.3.
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2
Theorem 6.2. Let A = 9—7. There are three cases:

né

(i) Ifas ng and 25 ), then g, = ¢.

"y
w
(ii) If Z;F- <A< gﬁ: and Wg-z_%~-[2+(¢3l2)p]-k"l, where
1 ,

= —Z—(M_ - _{_6— th = ]..
2y 2 e e T P (P gy

2

(iii) If a < ZiE and 2 > liZiiﬁé_., where x solves the equation
o - 9 Wy = 6x L . ,
\ 24x3(1+4x°)

i (1-2x)3(1+4x)(1+2x+4x2)’

then ¢_ = My
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Appendi x

Proof of Lemma 2.1. Consider the case that N is even only. (Theﬂcase

that N is odd can be established similarly).

=

(i) Suppose that j > i > 5 +1. Then it is clear that R(h,&; Wy W) Z_R(h,;N;
w],wz).
(i) Suppose that j > i > 1 and i < %: Choose € > 0 small enough so that

¢! o= (]'p)“j+(p’€)“i+ £ ( )-(N-i+1)" ] Ntoe (—--1+1)(N-1‘+])-]z;1._1 is non-decreasing.

Now it is clear that R(h,&; W]’Wz) > R(h,g'; w],wz).
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(117) Suppose that N > J i%” and i = 1. Then R(h,&; wy.wp) > R(h,puy+(1-pleys
W] :WZ).
(iv) Suppose that %zj >1and i = 1. This is similar to (ii). n

Proof of Lemma 3.1. First, we see that if gFE 6 s such that g(gﬂﬁ < 9(%%)

for some k' and k" with g(%ﬁ) > g(é&) then there exists a g* € G  such that

kl 1
g*(5x) 2 g*(%,q

that if g is an extreme point of 6%  then #{kﬂg i% 8§, k >0} <1, proves

) and [tg(t)de(t) < ftg*(t) dg(t). This, together with the fact

the desired result. ]

Proof of Lemma 3.2. We need only to consider the class of £ such that

g(ZN) takes at most two distinct values. Let i = (1],...,1N) be the permutation

f (1,2,...,N) such that E(ij/ZN) g_g(ik/ZN) for any j < k and if g(ij/ZN) =
£(1 /2N) and j < k, then 1j < ik‘ Suppose £ is not nondecreasing., Let j be
the largest number such that 1 # J. It is clear that g(ij/ZN) > g(j/eN). .-
Recall j* from (3.1). A

(1) Suppose g(ij*/ZN) = g(ij/ZN). Then h.(j/2N) = -6 < 0. Let k be the
(1j/2N). Then k < j and

I e

smallest positive integer such that g(k/2N)
k-hi(k/ZN) 3_j-hi(j/2N). Now construct &' from ¢ by removing a little bit
of %asses from ttebpoints.{ik/ZN} to {#j/2N} so that ¢' is'still in 51. It
is clear that j'th Yde' (t) < [t h t)dg(t) and jt dg'(t) » ft dg(t). Thus
by (3.3) we see that g' improves ¢.
(ii) Suppose g(ij*/ZN) = g(j/2N). In this case, 1 # N and h (1 /2N) = 6>0. First

suppose ij = 1. Choose A > 0 small enough so that ¢' = g- Ay t Ap] isstill a

1

probability measure in E;. Then, it is clear that ftzdg'(t) > ftzdg(t) and

fh (t)tde'(t) < fh (t)tde(t). Thus &' improves &£. Next, suppose ij > 1,

Let s be a nonnegat1ve number such that s < 1 and f[tldc (t) =
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f]tld(sc]+(1-s)cN)(t). Choose A small enough so that ¢' = g-Ag; *
J

A(sc]+(1-s)cN) is a probability measure and hi is still least favorable

for ¢'. It is then clear that ¢' improves &.

Proof of Lemma 3.3. Let j be the j* in (3.1) when i = (1,2,...,N). Some

computation leads to j° 5_3. Consider the following two cases.

(1) §>3. Takerj = (W1-3)/2(N-(3p) (3-1)) and 55 = T-r,. By the fact
that D(%N) < 1, it can be verified, after straightforward computation, that
(3.6) and (3.7) hold.

(1) 5 < 3. Take rj = ((N-3)N- 2(3-103)/ (Nej-1) (N-3) and s; = 1-rj. Then

1 z_rj > 0 and (3.6) holds. Now, some computations lead to
ftzdn~(t) - ftzd(r-c' +s.ry)(t) = p.(J)/24N2(N-j).
J 373-1 73N "N

Analyzing the cubic po]ynomial‘pN(x) carefully, we obtain (3.7) and (3.8).

Proof of Lemma 3.4. Since Q is continuous, it suffices to show that

Tim Q'(x) > Tim Q'(x). This is equivalent to showing that

-1 -1
x+VJ_] xrvj_]
H. H. H.
-1,2 2 . 2 J 32

(6. 4 -~ FLN)FS H. . < (G. - )FH.. Since F5(G, - w1—)¢ =

-1 Vi 3-15-1 =2 Vi 33 3TV

2 Hi-1,2 | -1 :
Fj_](Gj_] - Vl——) (because of continuity of Q(x) at x = Vj-])’ we need only

3= ; |
to verify that FJ.Hj 3_Fj_]Hj_]. This can be done by expressing FjHj |
explicitly in terms of N and j. It can also be shown that FH, Z-F-OH.O'
: . J J

Thus the proof is complete. S ' » v N
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