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SUMMARY

In many commonly-used experimental design situtations, where the
assumed model is contaminated by some small function, which is assumed to
be invariant under a suitable group of transformations, we first
demonstrate a "stochastic" minimax property for many commonly-used random-
ization procedures, which generalizes and unifies some results of C.F. Wu
(1980) on the same topic. The results we obtain do not rely on any special
analytic properties of the loss function and the estimators. Next, under
the loss function of the A-criterion, and restricting to the use of linear
estimators only, we search for the randomized strategy (i.e., randomized
design and estimator) which minimizes the maximal risk. The classical A-
optimal designs for the contaminationless models, after being randomized in
the obvious way, and the least squares estimators, are found to be optimal
in many, but not all set-ups (some counterexamples are provided). As a’
simple consequence of our general approach, some randomization procedures
generated by a group of very small order are shown to be as efficient as
the common-used one, which usually is generated by a group of very large

order.
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MINIMAX PROPERTY FOR RANDOMIZED DESIGNS — A UNIFIED APPROACH

1 Introduction

The role of randomization in the design of experiments has been
discussed in numerous papers (see the references given in [10]).
Recently this problem was re-examined by C. F. Wu (1980) from the
aspect of model-robustness (c.f. [7]) which is concerned with the case
when the true model departs from the assumed model by some small quan-
tity. Besides proposing a new measure for comparing designs in terms
of maximum squared bias, he was able to demonstrate a minimax property
for the balanced completely randomized design in the case where no
blocking is needed. In more complex design situations, fixing an
orthogonal design (e.g., a balanced block design or Latin square
design), he established that the complete randomization (in the
obvious way) ié minimax when the model is invariant under a suitable
. transformation group and when the loss function used is the A-criterion.
These results, among many other (Jeyey ideas, stimulated our further
investigation. (The reader was suggested to read his paper first for
more interpretations about the problems to be considered here.)

First, we observe that Wu's results rely heavily on being able
to get explicit expressions for the expected loss for the procedures
to be considered. Thus the role of randomization tends to be obscured
among the desirable properties of least squares estimators, ortho-
gonality of design, squared loss, uniform weights for all pairwise
contrasts, etc. As a particular consequence, the important question
about the minimax choice of a randomization procedure for a given
non-orthogonal design (even a BIBD) was left unsolved. Therefore, it

is our first aim to clarify the role of randomization in the aspect of



model-robustness for a fixed but arbitrary design by the aid of a rigorous
decision — theoretic treatment. We carefully distinguish the notion of
a randomization procedure from that of a randomized design. After
introducing the concept of G-uniform randomization (which is reduced to
the complete randomization when the group G involved is the group of all
permutations on the labels of the experimental units), we find that
(Bfor any design") G-uniform randomization is minimax, without assumptions
on ény special analytic properties of estimators and loss functions.
Thus the above special question, among many others, is solved. Furthermore,
treating the risk as a random variable generated by the randomization
procedure concerned, and recognizing that (since the loss function is
often an approximation) the.mean of the risk is sometimes misleading as
a criterion for choosing a reasonable randomization procedure, we base our
results on the stochastic ordering of the risks. For convenience, the
terminology, "stochastic*minimaxity: (or its obvious variations)ywi]l be
understood to emphasize the stochastic ordering nature of the criterion
concerned. Thus, in short, our results establish that the G~uniform
randomization is “stochastically*minimax. Above all, not only estimation
problems but also testing problems are solved simultaneously. The rigprous
development is given in Section 2.

In Section 3, for the estimation case, we consider the problem
of finding a minimax randomized strategy (i.e., design and estimator)
under the same model-violation consideration as in Section 2. Since a
stochastic minimax solution in the sense mentioned above does not exist,
we restrict ourselves to the commonly used A-criterion. The use of the

Teast squares estimators is not assumed. Instead, we only require the
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'estimators to be Tinear in the observations. It turns out that éomp]ete]y
randomizing an A-optimal design and restricting to the use of least
squares estimators is a minimax strategy for many (but not all) desigq
set-ups. Our set-up is so general that it covers the case where K-way
heterogeneity elimination is considered and interactions are assumed (K>1).
But, surprisingly, it does not cover the usual additive set-up where no
interactions are present for K>3. Counter-examples are provided.

Also, as a simple consequence, for many design problems, a randomi-
zation procedure uniformly generated by any doubly transitive group is
found to be of the same efficiency (in terms of squared loss) as that
generated by the group of all permutations. Moreover, for the block design
case with equal block sizes the result is even more interesting. The
common randomization practice is to randomize completely the units within
blocks and then to randomize completely the entire blocks. But we find
that the following randomization procedure, which is much simpler, is of
the same efficiency in our setting: ‘“uniformly randomizing the uﬁits
within blocks according to any doubly transitive groups of permutations
within blocks and then uniformly randomly rotating the entire blocks."

Details are discussed in the last part of Section 3. Section 4

is devoted to the proofs of the results in Section 3.



2 "Stochastic" Minimaxity

First, we shall give a very useful lemma. Some definitions are
.provided for clarity and the notations once given will be used through-
out this chapter.

Let F = {f|f is a real function on thg class of all probability
measures on R, such that f(pu]+(1-p)u2)_inwx{f(u]),f(uz)}, for any
probability measures My and My and any p such that 0<p<1}. For any
random variable X, we write f(X) to denote the number f(u), where
u is the probability measure for X. For any two random variables

X and Y, we write X st Y if X and Y have the same distribution.

Thus if X2y and fEF then f(X) = f(Y).

Let G be a group of permutations on {1,...,N} (N is a natural
number henceforth considered fixed). Denote the order of G by g. For
any permutation = and any X 1S RN, write X = (x],...,xN)t and
m(x) = (xﬂ(]),...,xﬂ(N))t. Define A = {x((1,....N)%)|r€6). Let P
be the set of all probability measures on A and let EO be the pro- ~
bability measure uniform on A (i.e., assigning equal masses to all
elements of A). Denote the random element generated by a probability
measure & € P by £ (thus each realization of £ belongs to A).

This convention is adopted throughout this paper , e.q., Vv generates

v and u generates u. The following lemma is fundamental.

-~

LEMMA 2.1 Let h be any real function on A. Then, for any

f €F, we have

Min Max f(h(m(£))) = f(h(£))) = Max f(h(x(c.))) .
EEP 1€EG - TEG



Proof. Forany n€G and £ €p, Jet ﬂ(w,i) be the probability
measure for h(m(£)). Observe that for any = € G, we have

T h(z',g) .

h(r,g ) =
0 ' €6

Q| —

-~

Thus we get f(ﬁ(w,go)) < Max f(h(n',£)), because f € F. Hence the

T ' EG

Temma follows obviously. O

Further discussions on this lemma, with many commonly-used f
in F, will be provided following the proof of Theorem 2.1 below.

Next, the interaction among designs, models, estimators and the
loss function under a permutation group will be demonstrated. Since
we shall develop a rigorous and general set-up to cover most design
problems where we allow contaminations to be present in the model and
therefore robustness is naturally to be considered, many definitions
are introduced in what follows. The reader may want to follow along
reading Ex. 1 Jjust below at the same time as the general development,
to aid in understanding.

Suppose T treatments are to be assigned to N wunits which may
or may not be blocked. A design is a function d from {1,...,N}
to {1,...,T} with the understanding that unit i receives treatment
d(i). Let D be the set of all designs. Most often, the probabiiity
structure of the observations (Y],...,YN)t = X depends not only

on the design used but also on the "true state" of nature which is

usually parametrized by the block



effects, treatment effects, unit effects (when contaminations are allowed),
etc., as we now describe more precisely below. Let S be a set, considered
to be the set of parameter values of all such parameters. Let Q be the set
of all probability measures on RN. A function M from DxS to Q is called

a model. Thus, under model M, the probability measure for X will be

M(d,S) if d is the design we use and S is the true value of the parameters
tharacterizing the "true state" of nature. Let A be the action space

(so A =P when we are estimating P parameters and A ={1,2} in the testing
hypothesis problems). A loss function L is a nonnegative function on S xA.
A (non-randomized) decision rule & is a function from RN to A. Without
further discussion, we assume measurability for all functions in appropriate
sense. A decision rule is said to be an estimator when A = RP. Let A

be the set of all 8. Any element in Q:xé is called a strategy. For

any permutation m, define m(d) to be the design such that w(d)(i) = d(w(i))
for =1, .0 HWrite m(Y) = (Y, qy.e.. Vo). For any meq, define
m(m) to be the probability measure for H(X) when Y has the probability
measure m. Obviously, for any real function f on RN, integrable under

m and w(m), we have
(1) E, fln(Y)) = En(m)f(z)

For any decision rule &, let w(6§) be the decision rule defined by
m(8)(y) = é(w'l(y)) for any yéERN. A group-invariant structure on the
model is one of the key assumptions in our study. Therefore, we introduce

the following definitions.

Definition - 2.1 For any group G of permutations on {1,...,N} and any

transformation group G* on S, a model M is said to be (G,G*)-invariant



if there is a homomorphism from G onto G* such that for any n€G, wé have
m(M(d,s)) = M(w(d),m*(s)) where 7* denotes the homomorphic image of .

To have a better understanding of how G* acts on S, we note that
the block effects and treatment effects in s are the same as those

in m°(¢) for all the cases we are interested in (c.f. the examples below).

“Definition 2.2 For any transformation group G* on S, a loss function
L is said to be G*-invariant if L(n*(s),a) = L(s,a) for any se€S, acA
and 7~ €G*,

Definition - 2.3 A choice of decision rules is a function ¢ from D
to é)and < is said to be G-invariant if f ana m commute for any n€G;
i.e., E(n(d)) = W(E(d)) for any deD. Denote the set of all choices

of decision rules by g and denote the set of all G-invariant choices of
decision rules by QG' We say a choice of estimators instead of a choice
of decision rules when A =RP.

A randomized design is a probability measure on D. Let D be the
set of all randomized designs. An element in UxC is called a randomized
strategy. Let G(d) = {n(d)|m€G}, for any d€D. Define ?G(d) = {glgep
and £ has support only on G(d)}. A randomization procedure generated by G
is a function ¢ from D to D such that ¢(d) € QG(d)" (The distinction
between a randomized design and a randomization procedure generated by G

is crucial.) For any d€D, the random element generated by ¢(d) is denoted

by Q(d). Let ¢. be the set of all randomization procedures ¢ generated by G.

~G
Write Pg to denote the set of all probability measures on G. The uniform

measure on G is denoted by Vo The following definition defines a very



useful randomization procedure which reduces to the usual notion of

complete randomization for an appropriate G.

Definition .2.4 The element 9 in 2> defined by letting ¢G(d)
be the probability measure for the random element vo(d) for any

d € 9, is called the G-uniform randomization (or, for convenience,
the randomization procedure wuniformly generated by G).

Under loss function L, model M and s €5, define the risk
r(d,s;L,s,M) of a (non-randomized) strategy (d,s) to be
EM(d,S)L(S’d(X))’ define the stochastic risk r(u,E;L,s,M) of a
randomized strategy (u,s) to be the probability measure of the random

variable r(u,é(E);L,s,M). We are ready to demonstrate the main

result in this section.

Theorem -.2.1 Assume that the model M is (G,G*)-invariant and the
loss function L is G-invariant. Then, for any G-invariant choice of

decision rules ¢ and any f € F, we have

),e{o(d_));L,s,M)

( 2) Min Maxf(r(?(do ¢ o

d€EP. SES

-~

= SM;XS f(r(?G(dO) ’E(?G(do));l"s 3M))

for all d0 € Q.

-~ PO

Proof. For any u € DG(d y we write r(E,E(E);L,s,M) = r{u,c(u);s)
0

for convenience. Define G*(so) = {n*(so)in*EEG*} for any s, € S.



It is clear that we only need to show that for any f € F and any

S5 €S, Min Max — f(r(y, c(u)ss))
UE?G(dO) sel ( O)

= segg§(52§r(?G(do),E(?G(do));S)) -

First, we have

(2')  r(n(d),e(n(d));m™(sy))

H

r(d,¢(d)ss,)

This is because

Pl (56)) = By gy (s L7 5D Elal)) (1)

~

= EM(ﬂ(d),n*(so))L(SO’S(ﬂ(d))(X))
(Definition 2.2)

= Eﬂ(M(d,SO))L(SO’S(W(d))(X))
(Definition 2.1)

-~

" By(d,s,) oM@ (=) (8y (1)

)

= EM(d,SO)L(SO’W(E(d))(ﬂ( ) ,
Definition 2.3)

!
(

" By(a,s )L (DN)

= r(das(d);so)

Next, in order to apply Lemma 2.1, we take h to be the function defined
by h(w(1,...,N)) = r(n(d ) ( (d ))isy) for any meG. Therefore, from

. (=l -
the above computation, we have r(nz(do),g(nz(do)),(ﬂ1 ) (SO)) =
h(nl(n2(1,...,N))) for any m,,7, € G. Hence for any VEP., we get



r(v(d,) e (v(d )); (n]]

Finally, noting that any

—+

¥ (s ) 2

0

|

h(my (2(15.-,M)))

probability measure in ?G(do) (P in

Lemma 2.1, respectively) can be derived from some probability mea-
sure in P. by the mapping which maps = in G to n(do)
(w(1,...,N), respectively) in G(do) (A, respectively), we have
Min Mg>(<. )f(r(u,C(u);S))
LED SELR™(s -
d (do) 0
=M Max flrne ()37 1) (s,)))
u s
Z (do) 1
= Min  tax Fr(v(d)),(u(d )5 (7 1)¥(s )
VEP. 7, €G ~ 0 ~~"0 0
~G 1
= Min Max f(h(ﬂ](v(l,...,N))))
\)EPG T, €EG -
~ 1
= Min Max f(h(ﬁ](i)))
EEP TT]EG -
= Max f(h(w](go))) (by Lemma 2.1)
™ €46 -
= Max f(h(ﬂ](vo(],...,N))))
™ €6 -
- =Ty
= Max £(r(v (d,),e (v, (d.)): (v 1)*(s)))
™ €6
= Max  f(r(os(d ),c(o(d ));s))
SEG*(S) G0 ’IIGY o
0
The Tast equality follows from Definition 2.4.‘ O

10



11

The above theorem demonstrates a minimax property, which we
shall call "stochastic" minimaxity because of the reasons to be given
berQ, for the G-uniform randomization ¢G.

For any t € R and any probability measure on R, let
ft(i) = £((t,»)). Observe that a random varjable X is usually said
to be stochastically at least as large as another random variable Y
if ft(X) 3_ft(Y) for any t € R. It is clear that a maximal or
minimal element of a set of random variables in the sense of this
ordering may not exist even if the cardinality of the set is finite.
For example, in Lemma 2.1, we are unable to establish that
Min Max h(n(g)) st h(g_ ) simply becaﬁse of the non-existence of a
EEP nEG - ~0
maximal element for the class {h(n(g))ln%EG} (c.f. [6] for simple
properties of majorization theory). However, we observe that f. € F

t
for any t € R. Thus, by taking f to be f, in Lemma 2.1, the

t

result we obtain preserves the genuine spirit of stochastic minimaxity.
The "stochastic" minimaxity that Theorem 2.1 demonstrates is thereby
clear. Moreover, we may take f(£) to be the "median" of £ (or
any "duantile", all given a convenient definition if not unique) and
it is easy to check that f € F. Finally, by taking f to be the
mean functional of random variables, i.e., f(X) = EX, our "stochas-
tic"-minimaxity result is then described in terms of the commonly-used
sense of the risk of a randomized strategy in decision theory.

It will become clearer after studying the examples given below
that all the assumptions involved in Theorem . 2.1 arise quite naturally
and the notion of the randomization procedures generated by G is a

precise description of the commonly used notion of randomizations for

a fixed design if G is chosen appropriately. We note further that if the
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"expectation" in the definition of the risk of a strategy is replaced
by the "median" (or any "quantile", or the "mode", all given a con-
veniént definition if not unique), then the above theorem still holds.
The reason is that if we replace the "expectation" in ( 1) by
"median" (respectively, "quantile", "mode", etc.), then the equality

there still holds.

Example 1. No blocking.

Consider the following set-up:

( 4) ,YU=ad(U)+XU+EU’ U=],...,N,

where d s the design, oy is the i-th treatment effect (i=1,...,T),
X, is the u-th unit effect, and ¢ = (e],...,aN)t is the random

error vector.

When X, = 0 for all u's and eu's are assumed to be uncorrelated
and with mean 0 and common variances, this set-up reduces to the
classical model and, therefore, no randomization is needed. However,
most often contaminations are unavoidable. Thus we now consider the
following situation.

Let G be the set of all permutations on {1,...,N}, Tlet X
be a subset of RN invariant under any permutation in G and let E
be a subset of Q invariant under G, 1in the sense that m € E and
TE€ G implies n(m) € §. We assume that the unit effect
X = (x],...,xN)t € { and the random error ¢ has the probability

-~

measure m € E. For example, we may take X = {x[Hxﬂz;ik} (k>0),

i

X

-~

a = (a],...,aT)t. In terms of the notations we have introduced, we

N
{xllxillgk, i=1,...,N} or X {lexi =0, lxi[ <k}. Write
Z A gy =

I
take S = {(a,x,m)|c€ER, xEX and mEE},
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1]

M(d, (a,x,m))

-~ -~

the probability measure of Y defined by ( 4)
where € has the probability measure m, and

*

G = {w*ln* is a transformation on S such that 3 m€G for

which, for any (a,x,m)€S, 7 (a,x,m) = (a,m(x),m(m))}.

-~ -~ o~

Thus M is (G,6%)-invariant since the homomorphism required in Definition
~.2.1 is obviously identified.

We discuss the estimation problem first. Take A =RP. By definition,
a G*-invariant loss function L satisfies the condition that

L(ﬂ*((g,f,m)),a) = L((g,x,m),a) for any aesRP, i.e.,

-~

( 5) L{(e,m(

~

tx
~—
-
=
—_
3
~—
~
-
v
Nt
fl
—
—
—~
R
-
x
-
3
~—
-
21}
~—

Especially, if L is such that L((g,{‘,m'),a) = L((a,x,m),a) for any
gERT, >~<' and 56{(, m' and meg, and aeRP then L is G*-invariant.
In other words, if what we do estimate depends only on o and in no way on
X or m, then the loss function is G*-invariant. For example, we could
have L((g,f,m),a) = (A —a)t(Ag-a) for some p xT matrix A. When a
choice of estimators ¢ is G-invariaﬁt, the estimator E(d) used under

the design d and the estimator S(n(d)) used under w(d) have the relation
that S(d)(!) = g(n(d))(n(!)). This is a natural way of choosing estimators.
In particular, in the case of estimating p contrasts among ui's, when

we say that least squares estimators are used, we mean ¢(d) = the Teast
squares estimator under design d and it is clear that such a ¢ is
G-invariant. Moreover, we may want to use some other robust estimators
instead of least squares estimators, but still we may want the choice of

estimators G-invariant. For any d,€D, it is clear that G(dy) is the

class of designs which have the same replication numbers as those of the
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designs dg- Thus ¢(d0), the image of d, under ¢, a randomization procedure
generated by G, is simply a randomized design with the same replication
numbers as those of dy- And ¢G(d0) is the randomized design derived by
first completely randomizing the unit labels and then assigning treatments
according to do' In the case where the replication numbers of d0 are

the same for T treatments, ¢G(do) is usually called a balanced completely
randomized design.

The meaning of Theorem 2.1 in this case is now clear. It means
that after fixing the replication numbers the complete randomization is
"stochastically*minimax. Note that in this theorem only the randomization
procedures are compared and nothing is said about how to select suitable
replication numbers, which we shall discuss in Section . 3. In the case

vhere

( 6) E = {N(0,0*I )]0 €R)

~

we may want to estimate o2 also. Since m(m) =m fér all meE, from ( 5)
it is clear that if L depends only on a and o? then it is G-invariant.
Therefore the complete randomization is still "stochastically'minimax even
if we want to estimate o®. This fact is also noticed by Wu [1980] where
only the ordinary sense of risk is considered.

In problems of testing hypotheses, we take A ={1,2} and assume that
L take values in {O,]}. Then, similar results can be derived without

difficulties.
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Example ..2. Block design set-up.
B
Suppose the N = ) Nb units are arranged into b blocks with

b=1
sizes N]""’NB respectively. Consider the following set-up:

Yu = ad(u) + Bu + X, + £, s u=1,...,N,

where d is the design, a, is the i-th treatment effect, Xy is the u-th
effect, €y is the random error, and Bu :Bb when u 1is in the b-th block,

where Bb is called the b-th block effect. The set X of all possible

1

and the set E of all possible probability measures m which generate

tm

will be assumed invariant under the group of all permutations within

blocks. To write more precisely, in terms of our notations, we take

[ep)
1]

the set of all permutations within blocks,

T

S = {{ %?QQmHaeR ,B=(Bﬁ..q8QtERB,fegandmegh

M(d,(¢,B,x,m)) = the probability measure of Y defined
as above with e having the probability measure m,
and G* = {r*|7* is a transformation on S such that 3meG for which for

any (a,8,x,m), 7(a,8,x,m) = (a,8,7(x),m(m))}.

Thus M is (G,G*)-invariant.

It is simple to see that a loss function L is invariant if
L((a,8,m(x),m(m)),a) = L((a,8,x,m),a) for each n€G, (a,8,x,m) €S
and a€A (wheré A =RP, as before, if we are in an estimation problem).
Thus, when what we are interested in (estimating) depends only on a or B
and is in no way dependent on X or m, we would use an invariant L.

The meaning for a choice of estimator ¢ to be G-invariant is similar



to that in Example 1. For each dOEEQ, it is clear that G(do)vis the
class of designs which have the same replication number for each block

as that of d,. For any d_, ¢G(d0) has the usual sense of complete
randomization within blocks. So by Theorem 2.1 we demonstrate a
minimax property for the procedure of complete randomization within
blocks. The usual choices of X are the same as those given in Example 1,
except for some flexibility in consideration about the identifiability
of the parameters. But sometimes, we may want to take, for example,

X = {xlixyl <kg for ue& b-th block, b=1,...,B and u=1,...,N},

where kl"'°’kB are specified positive numbers.

Example 3. Block design set-up with equal block sizes.

Consider the design set-up as in the Example 2, with N) = ... =NB.
Let Gé be the group of all permutations on {1,...,B}. For any né € Gé,
let Ty be the permutation on {1,...,N} which maps the i-th unit in the
b-th block to the i-th unit in the m(b)-th block. Let G, be the group
of all such L Define G° to be the group generated by Gt and the groupg
of all permutations within blocks. Obviously, any Ty €6® can be
decomposed as Ty = Tgem for a unique nteEGt and m€G. Now consider the
case where X and E are invariant under G°. Then S and M are the same as
in Example 2, but 6% = {w;lﬂ; is a transformation on S such that
3 nOEEGO for which, for any (§’§=§’m)’ "S(S’ﬁ’f’m) = (g,nt(g),wo(f),m).
Clearly, M is now (GO,GO*)-invariant and a loss function L is invariant
if L((g,nt(g),ﬂ(i),n(m)),a) = L((g,g,f,m),a) for any 1€G®. Hence if
what we are interested in depends only on a and in né way on B8, x or m,

then an invariant L should be imposed. (Note that in Example = 2, an

16
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invariant L can depend on § also). For any doesg, Go(do) is the class

of designs which have the same set of replication numbers as that of dy-
Note that Go(do) is larger than the G(do) of Example 2 in general.

We have no difficulty in seeing that ¢G°(do) is simply the randomized
design derived by completely randomizing units within blocks and then
completely randomizing the entire blocks. This procedure is minimax in
the sense described by Theorem . 2.1. The commonly used X's suggested

in Example 1 are invariant under our 6% and also under the G in Example 2.
Thus for these 5'5, a confusion may arise about which procedure is
appropriate, since Theorem . 2.1 guarantees minimaxity for both procedures.
But this confusion is easily removed after realizing that the competing
classes of procedures are different. Thus the procedure presented in

this example is certainly the better for these X's.

Example 4. Two-way inhomogeneity.
The N =f1f2 units are now arranged in an flx fz array. Suppose the

i = sy PRy EX L Ly teys i=1,..., i=1s0..s
model is Y g ) 8] YJ x(],J) s(]’J), i=1, f, and j=1 f,

1J 1,J
where d is the design, o, is the i-th treatment effect, B, is the i-th
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effect, and sij's are random errors. Let G be the group generated by all

row permutations and column permutations. Let the set X of all possible x

column effect, Yj is the j-th row effect, X(1,3) is the (i,j)-th unit

and the set E of all possible distributions of errors be invariant under G.
Then one can construct S, M, G* without difffcu]ties. Also, one sees that
¢G(do) is derived by the usual procedure of randomizing the rows and
columns completely. Thus our theorem gives a minimax property for this

procedure.
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'3 A-Criterion

4 We now consider the problem of choosing a good randomized strategy.
The results in the above section suggest that we only have to find a
suitable non-randomized strategy to be G*-uniformly randomized. But

this may be misleading unless we have more assumptions about the set-up
with which we are concerned. More precisely, we have the following 1emma.“
-(For ease of developments, we defer the proofs for all the assertions made

in this section to the next section.)

Letma 3.1 Assume that the model M is (G,G*)—invariant and the loss
function L is G-invariant. Then we have

( 7) Min Max Er(u,c(u);L,s,M)

(n,c)eDxc s€6%(s,)

= Min Er(¢.(d),c(¢a(d))sL,s_,M)
CHILT -

for any Sp €S, and

( 8) Min Max Er{u,c(u);L,s,M)
(pxs)é?xg sES -

= Max Min Er(¢G(d),c(¢G(d));L,s,M) )
SES (d,g)engG ~ T

In fact, ( .7) and ( 8) hold if we replace the "E" by any convex
functional f (i.e., f(Z) < filli%fill , where Z is the random variable
which equals X or Y with probability % each). However, the mean functional
probably is the only interesting one which is convex. For the median

functional, which is not convex, ( .7) is in general not true. Because of

these facts, we are unable to discuss the'stochastic”ordering of the risk.



Therefore, the "risk" in this section is in its usual sense. Note that
the minimizers for what is on the right-hand side of the equality in ( 7)
may depend on So° Thus we cannot change the order of "Max" and "Min" on
the right-hand side of (‘ 8) without further assumptions. However, for
many (but not all) design set-ups, when we are restricted to the use of
linear estimators (not necessarily the least squares estimators) and the
conventional squared Toss functions are considered, there exist equalities
similar to ( 7) and ( 8) and, moreover, we not only find an explicit
expression for the last term in ( 8), but also are able to change the
order of the "Max" and "Min" there, and thus reduce the prob]em of finding
a minimax randomized strategy to the classical problem of finding an
optimal design. More precisely, we consider the following set-up which
generalizes the examples of the last section.

B _
Suppose T treatments are to be assigned to the 2: b units
b=1

which are classified into B b]ocks, where Nb is the size of the b-th block.

Within the block b, the N II f units are arranged according to

i=
n(b) factors so that when n(b)>2 they form an n(b)-dimensional hyper-

xf&?g), where fgb)

rectangle of size f(b)x is the number of levels of
1

the i-th factor in the b-th block, and when n(b)=1, the Nb =f§b) units are
assumed to be of the same level. To avoid trivialities, we assume fi

The u-th unit, when it falls in the block b, is now labeled by

(igb),...,igbl..,

write u =(i§b),... (%g)) to denote its label without ambiguity. We

i(?g)) where 1 < ig.b) <f(b). Thus for 1<u<N, we also

consider the following model:

(b)s o,

19
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] (b) , "2 (o)
Y = o +8 + B . + X +¢
- dlv) 32% (i%él "]gq) ’igik)) ’

where u =(i§b),...,i§?g)), d 1is the design, o, is the i-th treatment
effect, B(b) is the b-th block effect, Xy is the u-th unit effect, Eu-is
the random error for the u-th observation, and Bﬁ??ﬁ{_.,?g?z."iﬁ?L)) is
‘the interaction of all factors but the Jj-th factor in the b-th block
with levels ing..,isﬂl). Note that all the lower level interactions of
factors in the same block are implicit in this model. This model is
reduced to the set-up of Example 1 ( 2, 4, respectively) when B =]
and n(1) =1 (n(b)=1 for b=1,...,B; B=1 and n(1)=2, respectively).

We shall assume that x belongs to X and € has mean 0 and a probability
measure m€E, where X and § are both invariant under a group G to be
specified below.

For any b and j such that 1<b<B and 1<j<n(b), suppose GJ'.(b)
is a doubly transitive group on {1,...,f§b)}; i.e., for any kysk,sk, and
k“e{1,...,f§b)} such that k # k, and k #k_, there exists some neej'.(b)
such that mw(k,) =k, and =(k,) =k,. For any T € Gj(b), define a permutation

mon {1,...,N} by letting m(u) =u for u & the b-th block, and

w(w) = (2L Oy () )Y e o=, 8.

Let G;) be the group of all such n derived from any ©' in Gj(b) in the

above way. Then, we define
s b
= G.
( 9) s = JI T ¢

Suppose we are interested in estimating p contrasts among ai's,

using a squared loss function and restricted to the consideration of
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Tinear estimators only. Let §(b) be the vector of dimension

n(b) n(b)
é: r}l fgb) = q with the BE?%b) 2(b)

(b) y's as its components.
],...,1j,...,1n(L))

i
f% qy * B. Thus in terms of the notations in the last section,
we may take S = {(g,§,§,m)|g€ERT, §==(8(]),...,B(B),Bfl),...,BfB)fé RY,
X€ X and mezg}, A =RP,.and L((g,g,f,m),g) = (Ag —g)t(Ag -g) for some
‘p><T matrix A (where 3614). It is clear what the corresponding G* should

be to make our model (G,G*)-invariant.

Let A = {8]6 is a linear transformation from the vector space

RN to R}, Let go = {c|ceC and c(d) s for all d€D} and let
gg = gorﬁgG The results in this section will be established after we

derive an explicit form for Er(¢G(d),c(¢G(d));L,s,M), where ¢ € 2.
Since any element 5EEAO can be represented by a px N matrix, we use § to
denote a p* N matrix also.
. _ t = =
Write ay = (ad(])""’ad(N)) . Let B be EY under a=0 and x =0.

For any xefRN, we define X = 1 2: m{x), and for any symmetric matrix V

— 9 TeEG ~
we define V = _-n%;G m(V), whefe m(V) = (Vn(i)n(j)) for V =(Vij)’
Lemma . 3.2 For cegg, we have
( 10) Er(gg(d)sc(0g(d))5L,suM) = JAa - c(d)[(ay+B) X%
+ trace c(d)((x-%) (x-0) " +1)c(a)*

where s =(a,B8,%x,m), V is the covariance matrix of & which has probability
measure m, and -] is the Euclidean norm. We refer to the first term
on the right-hand side of the equation in ( 10) as the squared bias term

and the second term as the variance term.
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For any permutation group G', let G'(u) be the orbit of u under
G', i.e., 6'(u) ={u'|u' =m(u) for some €G'}. For any subset H of

{1,...,N}, define ]H to be the vector in RN whose i~-th coordinate is 1
4

-~ o~

if i€H and is O otherwise. Llet W = {VIVERN, Gb(u)=0 for any
J

be{l,...,B}, je{1,...,n(b)} and u € block b}. Notice that let_)(u)
is just the expectation of Y when all parameters (i.e., a, §,§) are set

~equal to zero except that B(t.’) A . (for the case n(b)>2)
(1]:---s1j>--~91n(b))

or B(b) (for the case n(b) =1) is set equal to 1.

Lemma 3.3 A necessary condition for MaxS Er(¢G(d),c(¢G(d));L,s,M)
s€ ~ ~ =

to be finite is that the column vectors of E(d)t belong to W and
c(d)ay = Ae for all aerl.

-~

Let D* be the class of designs for which Aa is estimable.

T

Let QE = {c[cecg and c(d) =Aa for all a€R’ and deg*}. Now, for each

a
~d
dEQ*, the expected risk in Lemma 3.2 is now simplified a little bit

since the squared bias term is reduced to Hc(d)il]2 only. The lemma below

will show that this term is 0 and also give an explicit expression for

the variance term.

The following notations are introduced for further development.

For each be{1,...,8), let AP = {y|yc{l,...,n(b)} and y #4} and

b and #y =k}. Write Gb =y G?, for any yEAb and G¢ = {1}

Tojey
where T is the identity permutation. Given xERN, define

Aﬁ = {ylvea

k
fY = (—-l%— . Zb w(x) if YeAi. Define x[b]ERN to be the projection
#GY T[EGY = -

of x€R” on the block b, (i.e., the u-th component of )f[b] is equal to

=

that of x or 0, depending on whether u falls in the b-th block or not).
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- ~ Y
Define %= 2, = (X!
efine X(b] = K[b] (note that it is clear that X[b] (5 )

and thus no ambiguity will arise in our definition).

[b]®

For any NxN matrix y (!u is the u-th column vector of V), let

V l J b i ' -~

lemma ~ 3.4 For any VEWN, §<§RN, and any symmetric NxN matrix V we

_ B
tot, . s 2
Cm vty = Dol * Kyl vy vy -
and
te : t
¢ 12) vy o= ég% Cp trace (V1Y b1¥0b) ’
where C, is defined by C, =1+ 2 IT (f 1)-]]

YEAb JEY J

Combining the above results, we establish the following theorem, in which

M is the covariance matrix for the probability measure m.

Theorem 3.1 Suppose that G is of the form (. 9),

~ 2 .
C08) M e O ey *2ppgl™ ¥ traceliipyy)d s the

same for b=1,...,B ,

and the maxima are achieved for each b by some (5*,m*) € fer. Then,

-~

( 14) Min Max  Er(u,c(u)sL,s M) = Max Er(gq( (d°),c%(66(d") )5L,5,M)
(uxc)EDxco SES SES ~

where c® is the choice of least squares estimators, i.e., c%(d)Y equals
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the least squares estimator for Ao when Aa is estimable under d, and
equals any linear estimators when Aa is not estimable under d, and d°
is the solution of the following problem:

( 14) Min  trace(c®(d)t c%(d))
deg* = -

Note that (do,go(go)) is an optimal strategy when no contamination
is allowed and the errors are homoscedastic and uncorrelated. Thus the
minimax solutions for our problem depend on the solutions of the correspond-
ing optimal design problems which have been studied in a wide literature
(e.g., [8],[91,[2]). Once we find an optimal design d°, we G-uniformly
randomize d® and use the least squares estimators. This will achieve the
best we can do according to our theorem. Now we assume that all main
contrasts among the treatment effects are of equal interest. Thus, each
main contrast among the treatment effects appear exactly once in some
coordinate, of Ag and P==(;>. Any d° minimizing ( 14) has been called
an A-optimal design in most literature. When B=1, it is clear that we
do not even have to worry about the existence of (5*,T*). Thus, for
the set-up of Example 1, an A-optimaT design, i.e., the balanced
completely randomized design, together with the least squares estimator,
is a minimax randomized strategy. For the two-way inhomogeneity set;up
of Example 4, G-uniformly randomizing a generalized Youden design
(Kiefer [1975]), which is A-optimal, and using the least squares estimators,
is a minimax randomized strategy. For the set-up of Example 2, n(b) =1
for each b, but B # 1, we need to show ( 13) holds and must show the

existence of (x*,m*) in order to apply Theorem 3.1. This is obviously

the case for the X's suggested in Example 3.1 when the errors are homosce-
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dastic and uncorrelated. However, there are cases where { 13) holds,
but (x*,m*) does not exist; e.g., for the case where Nb's are the same,

we may take, for a fixed positive number ko,

B
X = U {x||x, |<k_for all u in the b-th block and
T b=} SEW 0
x, =0 elsewhere}
and
E = {m|m is a probabability measure on RN with mean 0

. . 2
and covariance matrix o INXN for some o €R}.

In this case, the randomization within blocks only evidently is not
enough. We must look for some other group, larger than the one given
there, to do the randomization. One possible choice is the group given
in Example 3, which is not of the form ( 9). This motivates the
following consideration.

Assume that n{(1)=...=n(B) =n and f§]) = .= f§8) = fj
for je{1,...,n}. Let G; be a transitive group on {1,...,B} in the sense
that for any k ,k, € {1,...,B}, there exists some nEEG; such that ”(kl) =k, .
For any n'esGé, define a permutation m on {1,...,N} by n(igb),...,#:)) =
(if"l(b)z...,iar%b))). Let Gt be the group of all such . Now define
a group G° by

( 15) ,GO is the group of permutations generated by Gt
and the G defined by (. 9).

Note that G is a normal subgroup of 6% but 6° is not a direct
product of Gt and G because Gt and G do not commute. Thus the G° in

( 15) is not in the form of (. 9). HNow suppose X and E are invariant
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*
under GO. It is not hard to construct a suitable GO to make our model

*
(6°,6°7) invariant. We have the following analogue of Theorem ...3.1.

Theorem 3.2 For the G° defined by ( 15), we have

( .16) Min Max Er(y,c(u);L,s,M) = Max Er(@Go(do),go(QGo(do));L;S,M)
(uxc) €DxCO ses SES

where d° and c® are defined as in Theorenm 3.1,

Taking n=1, we solve the case in Example 3. Thus, for instance,
a Go—uniform1y randomized BIBD (if it exists) together with the least
squares estimator is a minimax randomized strategy (under restriction to
linear estimators).

There are some interesting consequences for the two theorems in
this section. Most often, as in the above examples, we take Gj(b)
(G; respectively) to be the group of all permutation on {1,...,f§b)}
({1,...,B} respectively) to construct the group G or G°. (We call any
minimax solution under this choice of G or ° a completely randomized
minimax strategy). However, we may take Gj(b) (G; respectively) to be
any doubly transitive group (transitive group, respectively). (Notice
that if the model is invariant under G then it is invariant under any
subgroup of G.) As a consequence, we can reduce tremendously the order of
the group G (or Go) to be used to randomize an A-optimal design
and still obtain a minimax randomized strategy with the same efficiency
as the completely randomized one. Evidently a cyclic group on {1,...,B}
is a transitive group with the smallest order. The construction of a

doubly transitive group on a set with n labels has been studied in the

literature of the group theory. For the case when n is a prime or a



prime power, simple ways of construction have appeared in Burnside [1911].
The case n=p, a prime, is particularly simple. The group {nj ”Zli =1,...
and j =1,...,P-1} (where m, is the permutation (1,2,...,n), meaning

wl(i) = i+1(mod p) as usual, and T, = (2,a+1,a2+1,...,ap'2-+1)

for any primitive root @ of p) is doubly transitive and has the order
only of p(p-1), which is the smallest one can have. It is natural to ask
Qﬁether 1t is possible to weaken the assumptions in Theorem 3.1 so that
it admits the case when Gé(b) 's are transitive only. But unfortunately,
this way may be impossible for most cases. For instance, in Example .1,

take N=4, Then for a cyclic group, ;;% is of the form and

abch
babc
cbab
bcba
thus (. .11), which is crucial in proving Theorem ~ 3.1, does not hold for
some Vv such that yt1= 0 (where 1=(111 I)t). Thus, the roles of
randomization within blocks and randomization between blocks are quite
different (this fact never seems to be mentioned in the existing litera-
tures). For the block design case, & clear interpretation, based on a
method of error decomposition, about why (" 11) and ( 12) hold, is

given in Cheng and Li [1980].

Remark 1. For the set-up with which Theorem 3.2 is concerned, it'is
important to notice that factors from different blocks are different.

Theorem 3.2 does not cover the case where only one block is available
(with n>2) but we are allowed to make B replications on the same block

(residual effects from replicating are not assumed), since we now have

1)

s...,'li,...,l

(8)

8(1(§l..,1(31. i(B)) for all possible indices, and there is no suitable
g

the restrictions on the parameter space that B( M M (1), = - =
i )

27
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GO* to méke the model (GO,GO*)—invariant. Another reason why Theorem

3.2 is not applicable here is that the W for which Lemma 3.3 holds
in the replication case is larger than the one defined there above
Lemma 3.3, and Lemma 3.4 does not seem to hold for such a large W.
Besides, even for an ordinary uncontaminated model, the literatures on
optimal designs still did not solve the design problems where replications

are concerned and n=>2.

Remark 2. Except for the cases demonstrated in the examples of the last
section, there is still no optimal solution for ( 14) available, even
for the A-criterion case. In the following discussion, we assume B =1
and n(1) >3. Cheng [1978b, 1980] showed that any Youden hyperrectangle
is A-optimal for the uncontaminated additive model which assumes only

the main factor effects are present. But not every Youden hyperrectangle
is equally good when higher order interactions are existent (for some of
them, some treatment contrasts are not even estimable). Thus, for the
interactiod model, one might provide a new class of designs which possess
more properties of balance than the Youden hyperrectangles in order to
achieve A-optimality. However, no solution is found up to the present.
On the other hand, we may want to reduce our model so that only the main
effects are present and thus, hopefully, might use Cheng's results to
conclude that G-uniformly randomizing any Youden hyperrectangle is a
minimax randomized strategy. But, unfortunately, this is not true in
general. The model is (G,G*)-invariant for an obvious G*. However, the
W for the reduced additive model is too large to work in Lemma 3.3.4.

The following example shows that for the reduced model, G-uniformly
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randomizing one Youden hyperrectangle is better than G-uniformly randomiz-
ing another Youden hyperrectangle. (Thus there is no general theorem
analogous to Theorem 3.1 or Theorem . 3.2 in the reduced model.)

Take T=2, B=1, n(1) =3, and f§1)= fg1)= fgl) = 2. Thus each unit u is
labeled by (i,j,k) where 1,j,k=10or 2. Let Z, ={(1,1,1),(2,2,1),(1,1,2),.
(2,2,2)} and Z,=1(1,1,1),(2,2,1),(1,2,2),(2,1,2)}. Consider the designs
d) and d,, where d]'({1}) = Z, and d]*({1}) = Z,. It is clear that both
designs are Youden hypercubes. Thus both are A-optimal for the uncon-
taminated model. Although d, is intuitively better than d, (since it
possesses better symmetry properties), it is not necessarily so. This

is demonstrated by the following consideration. First, let

1= (1,...,1)t e R® and X be in R® such that X, =1 for uesz and 0
(1)._.G'2(‘1)=G'(1)

otherwise. Let X ={x,1-x}. Suppose €=0. Take G; X

the group of all permutations on {1,2}. Now X is invariant under G.
Suppose we are interested in estimating the main treatment contrast.

For d , any linear estimator has the maximal mean squared error either +w
or 1, while for dz, the méxima] mean squared error is 0 for some obvious
Tinear estimators. We further observe that for any m €G, we get either
m(d,) = d, or m(d,) = the design derived from d, by exchanging the
Tabels of the two treatments, and similarly for dz. So randomization
does not change the minimax mean squared error here. Thus, G-uniformly
randomizing d2 provides a randomized strategy better than G-uniformly
randomizing d1 does in this case, regardless of the fact that both of them
are A-optimal. However, the following example demonstrates that d s
better than d, in some cases.

Define X to be the vector in R® such that xu =1, for
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ue {(1,1,1),(2,2,1)}, -1, for u € {(1,1,2),(2,2,2)}, and 0 otherwise.
Define x' to be the vector in R® such that x! =1, for u€{(1,2,1),(2,1,1)3,
-1, for ue {(1,2,2),(2,1,2)}, and O otherwise. Take §=={5,—§,5',-5'}

and €=0. The group G is the same as before. Clearly, X is invariant
under G. Again, we are interested in estimating the main treatment

contrast. Now d, is better than d,, since for d,, the minimax mean squared

10
“error is 0, but it is 1 for dz. Thus we conclude that G-uniformly
randomizing d, provides a randomized strategy better than G-uniformly
randomizing d, does for this case. (But for the interaction model, d,

is useless since the main treatment contrast will not be estimable under
d1°) This investigation shows that minimax randomized strategies for the
additive model with contamination depend on what 5 is, under three-

or more-way heterogeneity elimination set-ups. This phenomenon does not

happen when n(1) <2, as is proved by Theorem  3.1.

4 Proofs

We prove the assertions claimed in the last section. We omit the

L and M below when it causes no ambiguity.

Proof of Lemma .3.1 We have

Max Er(u,c(u);s)
seG*(sO) D

= Max  Er(u,c(p);n™(s,))
TE G T

> L5 Er(u,c(u)sm™(s )

g e 0




Thus (

= gL e (u) 7
9 r€6 -
- u(d) -« +
deD 9 ree6
cieg

(c1))ss) (by (*2))

r(n{d),m(c(d))ss,)

u(d) Er(?G( )s Cd(¢G(d)) )

(where cy is any element in C. such that cd( ) =E(d))

> Min Er(?G(d

(d,c) €DxCq

)ac¢g(d))ss )

0

.7) is proved since the other direction is obvious. Also, ( 8)

follows from ( 7).

Proof of Lemma 3.2 We have

1

"

Er(9g(d).c(9g(d))3s)

g
(

H

+

i

E

+

(v,

1
g TER

]

2 r(n M) ,c(n (d))ss)

8 1es

L3 rdac(d)sn*(s))

TEG
by Definition 2.3 and ( 2'))

> {[lAa - c(d) (g +B +u(x))]°

trace E(d)n(V)c(d)t

~ -~

I - (@) gy 5 + 4, (x)I
)t

t <<y

trace E(d) E(d

is the uniform measure on G, as before)
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= iAo - c(d) (g +B+ X)I° + trace ¢(d) (x-X) (x-7) ¢
t y t
E(d) + trace E(d)y c(d)” . O
Proof of Lemma 3.3 Suppose Max Er(¢G(d),c(¢G(d));s) < w
se S ~ ~ -

First, take s =(g,9,9,m). By Lemma .3.2, we have
EF(QG(d),S(@G(d));S) = [ Ax 'S(d)gdﬂz + trace E(d)y g(d)t

> 8 - c(d)ey)?

Thus it is clear that Ax = S(d)gd for all aeERT. Next, for any be{l,...,B},

J€ {1,...,n(b)} and u € the b-th block, we want to show g(d)]G b(u) =0
J

When n(b) =1, we have j=1, G1b(u) = the b-th block. Then, taking

s =(0,8,0,m) where B“ﬂ €R and all the other coordinates of B are 0, and
2

-~

applying Lemma 3.2, we get Max Er(¢G(d),c(¢G(d));s) > (B(b))
SES - -

”2. Hence it is clear that c(d)1 = 0. When n(b)=>2,

T 6 (u)

Gjb(u) = {u'|u' 1s in the b-th block 4nd has the same level for each

factor as u except for the j-th factor}. Thus, taking s =(0,8,0,m)

EURNEIS

where B(?eb) .(b) (b € R and all the other coordinates of B are 0,
(11,...,1j,...,1n b)) =

and using similar arguments, we get c(d)]7 5, = 0. O
- Gj (u)
From now on, for any permutation m on {1,...,N}, write 7 to denote
its corresponding permutation matrix. Thus w(x) =nx, and let Pb be the

projection matrix such that be = f[b]'

Proof of Lemma 3.4 We show ( 11) holds first, by establishing a

sequence of lemmas, as follows.
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Lemma 4.1 For vEMW, we have

—_— . B —_—
' t
M i‘i‘t! = b{% YIb] i‘[bﬁfb] Yib]

Proof. It is clear that Pb commutes with any permutation matrix on

RN induced from any permutation in G. Thus, we have X[b]i([Eb] =P mPE

-~

- Therefore, by the definition of W, it suffices to show that for any u,

and u in different blocks bO and b, the (uo,u)—th cell of ggf is equal

b

5 for any 1<j<n(b). Since

to the (UO,TT(U))-th cell, where 1€6
mxxtrt = 'ﬂ’(l Z T thn.t)nt 1 Z " xxtant - xxt » by comparing
Tt S U= 9 nieg - v~ ~

the (uo,u)—th cells of the matrices on both ends of the above equalities,

we get the desired result. 0

By the above lemma, in order to prove Lemma . 3.4, we may assume

that B =1 without loss of generality. We delete the block label b from

all our notations for simplicity (e.g., Gj =G§), A=Ab, X =§[b]’ n(b) =n,

etc.).

~

Lemma 4.2 ¥ x,x'€ RN and reA, we have x+x'" = x" +x'".

Proof. This is obvious, since each permutation is a linear mapping. O

- | oot

Lemma 4.3 YYEA and je{1,...,n}, we have X = X if jévy,
= _gY if jevy.

Proof. Straightforward. U
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Lemma 4.4 For any yeA, we have §+>~<Y = 0.

Proof.  We shall prove this lemma by mathematical induction on the

cardinality of y. When Y €A, we take vy ={1} without loss of generality.

Then,
-{1}. —{1} —{1} —{1}
D D D I D D A S
YEA T leyen = leyer ~ leyen ~
Tgyen ~ - T€yeEN ™ 1¢€yep =
- _%{1}

The first equality holds by Lemma 4.2, and the third by Lemma 4.3,
Thus the case when the cardinality of Yy is 1 is proved.

Suppose for any YeAk our lemma holds. Given some YEAk and
Je{l,...,n} -y, we now show our lemma holds for yu{j}. By Lemma 4.3,

autr FU
we have X = X = -X = =X . Note that the second

-~

equality follows by our induction hypothesis. The proof is thus complete. O

Lerma 4.5 For any veW, We have vt xxty = vt (x+%) (x+3)tv .

~ .~ -~ e -~

Proof. By the same reasons as in the proof of Lemma 4.2, we have

t taxty + vixzty, Thus, it suffices

~—

x+i)(x+§)tv = vlxxty + v

~ A

xXtv +y

to show that visX = 0 for all w€G, since this implies

vt ggtg = % > virixtaty = 0 and, similarly, v xity =0 = vExxty.
€6 T 7T T T ot T T

Since it is clear that W is invariant under any n€G, we need only to

show that vEx¥ = 0 for all VEW and any YEA. When vy ={j}, it is quite



easy to see that i{‘]}is some linear combination of ]G-(u) 's and thus
. - ~
!t AL 0 by the definition of W. When y = {jluy' where j¢Y' and
- t -y tj_Tr{J'} .
Y'€A, by Lemma 4.3 we have VXD o= vox = 0. The last equality

is seen to hold if one views X! as X and applies the result for

the case y ={j} which we have just established. 0O

By Lemma 4.5 and Lemma 4.4, in order to establish ( 11), we

need only consider the case where X' =0 for all Y€EA and show that
\~/t >~<)~<t! = cl}x]l2||v|]2 where ¢ =1+ > [l (*f. -])']. Thus, fixing a
R YeA jey

u=(1‘1,...,in), where ijE{],...,fj}, and letting v~v=(w1,...,wN)' be the

u-th column of F, we shall establish the following equality for veW:

(.-.17) RIS Y

(3
t<

For any yeA, define Uy = G (u) - é) GY'{j}(u). (Recall that
JEY .
G*(u) is the orbit of u under G' and similarly for GY_{‘]}(U).) Evidently,

( 18) 1 = o oy = L,
oy geu )y
and
( .19) UYn Uy. = ¢ for any vy #y'
The following lemma is crucial for us to get { 11).
Lerma - 4.6 For any YEAk and any u',u"e Uy, we have Wyt = W and this

| B
. k 12 H -1
constant is equal to (-1) " ) (f]. -1) '. Moreover, we have
JEY

w, = |12,

35
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Assuming the validity of the above lemma, we proceed to establish

2
X -
write A,z (DX LB ST (e o7 sy (19) and Lemma 4.,
Y TR
v-+ﬂx“2 "V, Hence it suffices to show that

we have wtv = zi: A ]5
~ T yeh Y Yy

ISY v = (-1)k v, for any v € Ak. We shall prove this by mathematical
induction. When y ={j}, by the definition of W, we have 0 = 1§j(u) v =
IUY + vy Thus our assertion is true for k=1. Suppose it is true for
YEAk. For jévy, by ( .18) we have

Moot " gy et 1y 0-liy s 0y
The second equality is due to the fact vVEW and the last equality holds
because of our induction hypothesis. Hence ( 17) is now established and
so is ( 11).
Next, we shall establish (. 12). Since V is symmetric, let VI/2
_ be any square root of Y. Let e, be the u-th column vector of V%. Hence

by ( 11) we have

N N — B N
ty t t t t ~ 2
ViVly = vt e ety = Svteetyv = Y 3 ¢ e +e I
~ -~ = sy iu U~ - Susu I b2l 0o b'<ulb] =u[b]

t
[b17[b]
Thus, it suffices to show that trace Y[b] = 5E%ng[b] + gu[b]” . Let L

. _ ~ N
be the NxN matrix such that Lyx = 5[b]l+f[b] for any x€R". Now, we

have
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N N
~ 2 _ ~ ~ t
2leyre] *Rupnl” = trece 2leyrny 8y (6 *Eyge]
N
t,t  _ t
trace o Lb e, 8y Lb = trace Lb VLb

- t _ * t _
= trace y[b] Lb = trace Lb(y[b])[b] = ![b] .

Hence ( 12) is established. Finally, it is clear that !tg =0 since 2

is some linear combination of 1 b
~G_P(u)

thus complete. | J O

s. The proof of Lemma 3.4 is

Proof of Lenmna 4.6 Since each 63 is doubly transitive, we see that

for any u' and u"EEU{j} (which implies that u #u") there exists a m such

that 7mu=u and mu' = mu". Now, since xxt = nxxt‘nt, by comparing

~

their (u,u')-th cells, we get We = W Similar argument leads to the

conclusion that Wou' T W for any u' and u"€ UY’ due to the existence

u

of some m for which m(u) =u and w(u') =u". We now compute the constant

for each UY' L

t are the same due to the

HZ

First, the diagonal elements of xx

transitity of G. Hence they are equal to %—Hx since

trace xxt = L 2{: trace m(x)n(x)t = + :E: ”x”2 = ||x|[2 .
~~ 9 ;€6 = 9 5e6 - ~

Next, let Z = 36(5) (recall that Yo is the uniform distribution on G).

Clearly, we have EZZt = x t and thus Wyt T EZUZU|. By the assumption

~ o~

that x93 =0, we get zi: Zy(y) = 0. Thus, -ZZ = j{:: Zyly -
- -ne(“j _ U'EU{J'}

After taking expectation on both sides, we obtain
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W, = |§ j Wyr = (F5=Twye. Thus w, = -(fj—j)']wu = -(fj—l)'] 'N']Ilzll2
w€Uiyy

as desired.
Next, supposing our lemma is true for some YEEAk, we shall show
S U [ . . . _ S
that it is also true for y U {j} with j ¢Yy. For any u'e UYLJ{J}’ it is

easy to find a nJGEGY and a nzesz such that m, (u)e UY and w,m (u)=u'.

Now, xH} =g implies that 2{: Zo(n (u)) = O and thus we obtain
- TrEGJ' 1

Z, 7 = - E : Z 17 . Taking the expectations on both
u nl(u) TTEGJ-\{I} u T[(T]'l(u)) g p

sides and noticing that mm (u) € Uyugyy forany me Gj\{I}, we get

wwl(u) = -(fju])wu.. Thus

= (5 _1\"] = (£ 11, 2 -1/ 4k 1y

R A A B L o N P LI ) iilY (£,-1)
- + -
C ARG L | BRI
ieyu{j}

as desired. O
Proof of Theorem .. 3.1 First, by Lemma 3.2, Lemma ..3.3 and Lemma

3.4, for deD” and c€C, we have
A (et Lt
trace ¢(d) (x-x)(x-x)" c(d)
3 t
t
gg; Ch trace(@[bj) trace c(d) Pbe g(d)

( 20) Er(9g(d)sc(¢g(d));ss)

+

where Pb is a projection as before.

By an argument similar to the proof of Lemma 4.5, we have

-~ o~

21 eld) (=R (=0 ) = c(d) xxt c(a)t
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Thus, by ( .20), ( 21) and ( .11), we have, for d €D* and cfEQG,

B

(. 22) Er(pg(d),c(¢g(d))ss) = :Z: Cb(uf[b] +g[b]”2 + trace(M[b]))
b=1

t t
trace g(d) Pbe E(d)

Next, from the proof of Lemma - 3.1, it is clear that after

replacing C with QO and C

Co with Q

8 in { 8), the equality there still

holds. Thus we have

Min Max Er(u,c(p);s) = Max Min o Er(¢G(d),c(¢G(d));s)
(H,c)eDxC® ses  ~ - seS (d,c)eDcd - AL
B
. o -~ 2
> Max Min EEJ eyl xphy #xpnall T + trace(Mr, )
ses (dc)eptxeg b1 D ~b] =[Pl ~[b]

B

: “x 2
> Min c (I xFrn + X5 1]
(d’C)EQ*ng b;'] b -.[b] ~[b]

trace c(d) Pbe c(d

+ trace(@Eb])) - trace E(d) Pbe c(d)t

= K- Min trace c(d)c(d)t = k trace co(do)co(do)t .
(d,c)e D™y R R

where k is the common value in ( 13).
On the other hand, by { 11), and our assumption about the existence

of (x*,m*), we have, for any s€S,

oo

EY‘(?G(dO) E (¢G Z Cb [b]+x[b]” trace C(d) Pb b € (d)t ( )
b=1

= K- trace S(d)g(d)t




Lo

Hence Max Er(¢G(d°),c°(¢G(do));S) < K - trace c(d)c(d)t . =
ses - ~ =6 ==

Proof of Theorem 3.2  Let g* be the order of G*. Define

1

-% 1 Z N =% 1
= — m(x) for V¥ x€R" and V¥ = L Z m(V)  for any
9* regr - =~ ~ 9* reg* -

symmetric NxN matrix V. By treating (x-X*)(x-x*) as V we get the
*
definition for (x-x*)(x-¥*)% . It is clear that if we substitute 6*

-~

for G in Lemma .3.2 and Lemma .3.3, the results still hold (note that
the definition of W is not changed). Thus we have, for deD* and

*
¢€Cgs

(23) Er(gge(d)sc(deald))ss) =[c(d)x*]? + trace c(d) ((x-%*) (x-x%)"

*
+ %) c(d)t = Ilg(d)i*ll2 + trace g(d)(§—§*)(x—§*)t<+y c(d)t
Write V = (x-f(*)(x-i*)t + M. We claim that for any vVeEN,
( 24) vExF = 0
and
( .25) yt \Z*g = )\-!ty for a constant A which depends on V.

First, note that if veW, then mwvel¥ for all nth. Second,

since it is clear that G* = Gt-G and g*= 94°9 (where 94 is the order |
of Gt), we have X = 1 Z m(x) and V* = 1 Z w(V).  Then
- 9¢ m€Gy T - 9¢ 1TEGt -

(" 24) follows easily from Lemma 3.3.4 since
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Vi e L3 wtex = LD 7wtk = LD 0 =0

gt TI'EGt T gt 'ﬂ'EGt gt 'ITEGt
Similarly, by ( 12) we have
iy o= L Z i vty = L Z (ntv) ¥V (nty)
R 9t n€6y ~ T 7 9 neGy ~ V-
- L2 2
= — c, trace | (7 v)real
9¢ TEGt b=1 b [b] [b]

B
- L Z cb' trace(y[bj) : Z Il(lr_ll_/)[b]nz

It b=1 TEGt

B
o 1 R
= 2 ¢ trecelipyy) (g EZG,C MENONL

= zf: cy trace(V [b] (8 Hv”z)

v|2

-~

B
(%‘ gi% <y traCE(y[by)-ﬂyHZ =

where the sixth equality is due to the transitivity of Gé. Thus ( 25)
holds. Now from ( 23), (. 24) and ( 25) we conclude that for d €D* and

c € CE,

(. .26) Er(og«(d),c(dpe(d))ss) = A(s) trace g(d)g(d)t » where

A(s) is some positive number.

The rest of the proof will be similar to the proof of Theorem 3.1.

Replacing C with go and Co, with CG* in ( 8), we have



L2

Min Max Er(u,c(p);s) = Max 1in Er(ge*(d),g(QG*(d);S)
(b,c) €DxCO s€S T s€S (d,s)eDxC

> Max Min Er(e.(d),c(d ., (d));s) = Max Min
s€S (d,s)eDfxcy 06 seS (d,s)eD*xCt
, , t
A(s) trace c(d)c(d)t = (Max A(s)) - trace ¢°(¢%)c%(d%)
- - s ES - -

= Max Er(¢G*(do),co(¢G*(do));5)-
seS - .

The last equality is by ( 26). The proof is thus complete. 0
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MINIMAXITY FOR RANDOMIZED DESIGNS:
SOME GENERAL RESULTS*

By KEr-Cuau L1

Purdue University

In many design settings where model violations are present, a “stochastic”
minimaxity for many standard randomization procedures is demonstrated.
This result requires no special analytic properties of the loss function and
estimators. Next, under the squared loss and with the restriction to the use of
linear estimators, a recipe for finding a randomized strategy is given. As a
special case, randomizing an A-optimal design in the standard manner and
using the least squares estimates yields a minimax strategy in most cases.
These results generalize some aspects of Wu (1981).

1. Introduction. The role of randomization in the design of experiments has been
discussed in numerous papers (see the references given in Wu, 1981). As it was summarized
by Wu, the most popular of the arguments favoring the use of randomization are the
following: it provides a solid basis for statistical inference; it ensures impartiality; it is a
source of robustness against model inadequacies. Most of the literature has been addressed
to the first and the second arguments.

While the third argument on the model robustness aspect of randomization has already
been well accepted, Wu (1981) seems to be the first work devoted to giving it a formal
definition and rigorous justification. For some basic design setups in comparative experi-
ments where T treatments are to be assigned to N experiment units, Wu argued that since
the experimenter’s information about the model is never perfect, there is always the
possibility that the “true” model deviates from the assumed model. Thus if G is the
collection of all possible “true” models, he defined the concept of model-robustness with
respect to G in terms of minimizing the maximum possible mean squared error of the
corresponding best linear unbiased estimator (for the assumed model) over G. For the use
of the model-robustness notion in other contexts, see, for example, Box and Draper (1959)
and Huber (1975). Some randomized designs, including the balanced completely random-
ized design (coined by Wu), the randomized complete block design and the randomized
Latin square design, were shown to be model-robust with respect to any G which possesses
an appropriate invariance property in each setting. Furthermore, Wu compared some
randomized designs in terms of maximum squared bias. In this paper, we shall discuss only
the minimax results. Basically we adopt Wu's general framework on the model-violation
consideration; i.e., G will be invariant in an appropriate sense. But we shall extend the
results to quite general design settings after a careful study of Wu’s ideas.

This paper is composed of two parts. The first part (Section 2) discusses the minimaxity
of some commonly-used randomization procedures. The results obtained here are the
generalization of Wu'’s Proposition 1, Theorem 4, and the minimaxity for the randomized
complete block design and BIB designs. In these results, the competing class of designs
was restricted to those having the same treatment replication numbers of each block (the
block design case) and for each row and each column (Latin squares case). We shall make
the same restriction in this section. For example, in the block design case, the block- -
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treatment incidence matrix is fixed (but arbitrary). (The optimum choice of a block-
treatment incidence matrix will be considered in Section 3). However, it is easier to convey
these results in terms of a rigorously—deﬁned notion of randomization procedures. Our
definition is based on the observation that when applying any randomization procedure
(in the usual sense, for example, the complete randomization) to a non-randomized design,
the possible realized designs are those with the same treatment replication numbers as
those for the original design. Thus by comparing different randomization procedures only,
we avoid the more complicated problem of choosing an optimal non-randomized design to
be randomized. Roughly speaking, if the class of all possible true models is invariant under
a group H, then the randomization procedure (H-uniform randomization, to be defined
later) generated by the uniform probability measure on H is minimax in the sense that for
any fixed non-randomized design d and estimator 8, the maximum risk of applying a
randomization procedure to d and using the corresponding permuted version of the
estimator 8 is minimized when H-uniform randomization is used. We do not require any
special analytic property of & thus non-linear estimators (which are sometimes proposed
for guarding against distribution violations) are allowed. The loss function could be
arbitrary, athough some invariant properties should be satisfied to ensure that we are not
estimating any feature of the nuisance parameters such as unit effects, etc.

An important observation leading to our broadened results is that to prove Wu's
Proposition 1, no explicit expression of the risk functions is needed. The basic idea is the
standard concept that “syitable invariance” implies “minimaxity”, due to the Hunt-Stein
Theorem (see Lehmann, 1971). However, the result of Blackwel and Girshick (1954),
which shows the minimaxity of simple random sampling, is more relevant. This is because
unlike the cases where the Hunt-Stein Theorem usually applies, what our group actually
transforms are the nuisance parameters (unit effects, etc.), not the parameters of interest!
Furthermore, there is one special feature about the manner of evaluating the randomized
decision rules which makes our results different from any earlier results. Recall that in the
standard decision theory, after defining the risk for a non-randomized rule, the risk for a
randomized rule is defined to be the mean of the risks of its possible realized rules.
However, it is quite obvious that instead of the means, several other jocation measures
such as medians, quantiles, etc., may also be used to assess a randomized rule provided
that the possible mathematical difficulties can be removed. In other words, ideally we
should compare the randomized rules according to the stochastic orderings of their random
(due to randomization) risks. Our minimaxity results in Section 2 are established under
such considerations. Therefore, they provide a very sound basis for using randomization
procedures in guarding-against model-violations.

The second part of this paper concerns the choice of a randomized design under the
same model-violation considerations as in Section 2 but without any restriction to the
competing class. However, we do require that the estimators be linear (but not necessarily
the least squares) and the loss function be the squared one. Furthermore, we evaluate the
performance of a randomized rule by defining its risk in the standard way; ie., by
considering the mean risk only. These restrictions seem to be unavoidable for obtaining
useful results since the usual work on optimal experimental designs (which assumed no
model-violations) is based on these assumptions. Among the three commonly-used design
criteria, (4, D, and E criteria), our results are most closely related to the A-criterion. In
the block design (the two-way heterogeneity design, respectively) settings, we show that
the randomized strategy (ie., design and estimator) which first chooses an A-optimal
design and then randomizes it in the standard way, i.€., randomizes completely the blocks
and the units within each block (rows and columns, respectively), and uses the usual least
squares estimators, is minimax.

These results extend Wu's Theorem 1 and Theorem 3 which justified randomization as
well as balance from the model-robustness viewpoint for the no-blocking setup. We also
justify the use of least squares estimators in the appropriate randomization procedures. In
using A-optimal designs, we assume (by the loss function) that all treatments are of equal
interest. Recently, there have been considerable research interests on designs for comparing
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test treatments to a control treatment, Bechhofer and Tamhane (1981). In such cases, the
loss function should reflect the relative importance of the control and the test treatments,
In general, if the loss function is of the form (La —a)’ (La — a) where L is a p X T matrix
and a is p X 1 vector estimating La, which was referred to as a linear criterion or L-
criterion (see Kiefer, 1974, Karlin and Studden, 1966, or Fedorov, 1972), then our results
show that to obtain the minimax randomized strategy one only has to first search for the
corresponding optimal designs for the “assumed” (or ideal) model. After finding an optimal
one, then we should randomize it in the standard way and use the standard least squares
estimates. Having seen such results for the one-way and two-way settings, one is easily led
to the conclusion that similar results should hold for the k-way settings. Unfortunately,
this is true only when the complicated model which assumes the existence of all higher
order (up to k-1) interactions among the units is considered. For the usual additivity
model, the minimax randomized design may depend on the actual form of the class G of
possible models if 2 = 3.

Furthermore, our counter-example shows that for certain invariant class G, randomizing
the most symmetric design may sometimes be inferior to randomizing a less symmetric
design. This example illustrates the need for rigorous justification in applying randomiza-
tion in various settings. Like elsewhere, a careless application of Hunt-Stein’s idea or any
related concepts may incur misleading conclusions. But the crucial issue involved here is
not the compactness of the transformation group on the class G (permutation groups are
always finite and hence compact). The issue is how the group works. Usually, the
transformation group used here can be naturally decomposed into some basic subgroups.
(For example, in two-way heterogeneity settings, the transformation group involved is the
product of a row permutation group and a column permutation group). The relation
between the orbits of these subgroups and the block effects, row, column effects, or higher
order interaction effects turns out to be a very important consideration in obtaining the
results. (Such a consideration was implicit in Cheng and Li, 1980). If the orbits of the
subgroups correspond to block or interaction effects then our minimax results hold. (For
example, the orbits of the row permutation group correspond to the column effects and
the orbits of the column permutation group correspond to the row effects). However, for
the £ = 3 way settings, the orbits of each subgroup which permute the levels of one factor
will correspond to (£-1)-interaction effects among factors which are not assumed in the
usual additivity models. This explains why we need a complicated model to ensure
minimaxity. Also, as a simple consequence, we obtain other randomization procedures
which are generated by groups of very small orders and are of the same efficiency as the
commonly-used ones when the squared loss function is assumed. Section 4 is devoted to
the proofs.

2. Minimax randomization procedures under general loss functions. Suppose
T treatments are to be assigned to N experimental units. A (non-randomized) design is a
function d from {1, --- , N} to (L, - .., T} with the uth unit receiving treatment d(u). Let
D be the class of all designs. In this paper, instead of defining a randomized design as a
probability measure on D, we shall conveniently treat it as a random element with the
nonrandomized designs as possible realizations. Denote the ith treatment effect by a; and
let @ = (e, -+-, ar)’. We now first present a simple example to illustrate the general
results we shall obtain. This example was already considered by Wu.

ExamMpLE 1. No blocking. Suppose the vield (or response) y, of the uth unit satisfies
the following additivity assumption:

(2-1) Yu = Aot () + gu + Eu,y u= 11 Y N!

where g, is the uth unit effect and e, is the random error with mean 0. In the ideal case we
would assume g, = 0 (or a constant) and the random errors are homogeneous and
uncorrelated. But this certainly is not a good situation for justifying the use of randomi-
zation. In fact, there is always the possibility that the “true” model deviates from the ideal
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one. Let G be the set of all possible g = (g1, ---, &))" Let & be the set of all possible
probability measures of € = (e1, « -+, &) ' To reflect the vagueness of the experimenter’s
knowledge, we require that G and & are invariant under the group H of all permutations
on{l,---,N}hie,gEG=mg€E Gand { € &= 7t € &for all 7w € H, where 7g = (&= ys

-, 8-uw)  and 7(£) is the probability measure of 7¢ when § is the probability measure
of e. We denote the triple (a, g, £) by s, let S be the set of all possible s, and write 7s =
(a, 7g, 7§). Thus we have

(2.2) sES=qgs€E Sforallwe€ H.

Now we shall define the concept of a randomization procedure rigorously. Recall that
when applying any randomization procedure (e.g., the complete randomization) to a given
non-randomized design d, the possible realized designs will have the same replication
numbers as those for the original design d. Since it is clear to see that H(d) = {ad|7 € H}
is the class of designs with the same replication numbers as d, we define a randomization
procedure to be a a function ® on D such that ®(d) is a random element with possible
realizations in H(d) for any d € D. In particular, the complete randomization is a function
which maps d € D to hd, where h is the random permutation generated by the uniform
distribution on H. Thus we denote the complete randomization by h. We shall demonstrate
a minimax property for h, after discussing the problem of choice of estimators and loss
functions and the problem of evaluating a randomized strategy.

The loss function % considered in this section does not need any special analytic
property. We only require “to be invariant in the following sense:

2.3)  ZLuls), a) = L(s, a) for any 7 € H, s€ Sand any a in the action space &/.

This invariance requirement amounts to claiming that what we estimate depends only
on a and in no way on g or £. For instance, we may take #(s, a) = (La — a)'(La — a)
where L is a p X T matrix and a € o = R”.

The choice of estimators should also be invariant under H in the following sense.
Suppose for design d, an estimator 8, which is a function mapping y = (y1, -++,¥yn) toan
element in .¢7, is used. Then we require that for design =d, the estimator #8(y) = S(r (y)
should also be used. This is a reasonable restriction, similar to that imposed by Blackwell
and Girshick (1954) in justifying simple random sampling, because when there is no model-
violation, the distribution of #7'(y) under design 7d is the same as the distribution of y
under design d. Thus when a randomization procedure ¢ is applied to design d for which
estimator § is used, the realized strategy (i.e., design and estimator) is determined and will
be denoted by (d, §).

Now we discuss the problem of evaluating a randomized strategy. As usual, the risk of
a non-randomized design and estimator (d, &) under s € S is defined by r(d, & s) =
E #(s, 8(y)). But we do not assess a randomized strategy merely by its expected risks.
Instead, we consider the class #of real functions fon the class of all probability measures
of R such that f(pu + (1 — p)e) = max{ flg), flu2)} forany 0 =< p < 1and any probability
measures p; and g on R. We also write f (X) = f(u) if X is a random variable with the
probability measure . This broad class Zincludes the mean, median or any quantile (all
given a convenient definition if not unique) functionals of random variables. The following
result is what we shall prove:

Under (2.1)-(2.3), the complete randomization h is minimax in the sense that it

minimizes maxfies(r(¢(d, 8); s)) over all randomization procedures ¢, for any fes

and any design d and estimator 8. ’

The above statement follows from Theorem 2.1 below. We call this a “stochastic”
minimax property for h for the following reasons.

For any ¢ € R and any random variable X, define f.(X) = P(X > t). Observe that for two
random variable X and Y, X is usually said to be stochastically at least as large as Y if
(X)) = fi(Y) forany L € R. Also, it is clear that # contains any f. Therefore the minimax
result preserves the genuine spirit of stochastic ordering. When taking f to be the mean
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functional, our “stochastic” minimaxity result is then reduced to a form with the standard
sense of risks for randomized strategies. This standard sense of minimaxity was already
explored by Wu with the use of the squared loss that reflects the experimenter’s equal
interests among all treatment effects (i.e., A-criterion) and the use of the least squares
estimates. But Wu further justified balance for treatment replication numbers. We shall
take up the same task in Section 3 for more complicated designs.

Now, we shall generalize the above notions and results to other design settings such as
block design or higher-way heterogeneity settings. This extension requires only an abstrac-
tion of the framework of Example 1.

Let S be a set of possible “true states” of nature, and H be a permutation group on {1,
-+, N}. Assume that for any » € H and s € S, ws is well-defined and (2.2) holds.
(Implicitly, = will transform only the nuisance parameter part of s such as unit effects,
etc.) Replace the model assumption (2.1) by the following:

(24) forre H,d€ Dands €S, the vield y under #s and design #d has a probability
measure equal to that of 7z where z is the yield under s and design d.

The loss function should satisfy (2.3). The definition of randomization procedures is the
same as before and we take @y to be the class of all randomization procedures. We also
require the choice of estimators to be invariant under H. The randomization procedure h
will be referred to as the H-uniform randomization. We have the following.

THEOREM 2.1. Under (2.2)-(2.4), the H-uniform randomization h is minimax in the
sense that it minimizes max.esf(r(p(d, 8); s)) over all randomization procedures ¢ €
@y for any f € F d € D and estimator §.

The proof of this theorem will be given in Section 4. We now present two examples to
ilustrate the application. These examples were already treated by Wu, but our theorem
strengthens his results.

ExampLE 2. Block design setup. Suppose the N = Y81 Ny units are arranged into
b blocks with sizes Ny, ..., Ny respectively. Consider the model:

(25) yu=ad(u,+,8b+gu+eu, u:]_’...,N’

where d is the design, g, is the uth unit effect, ¢, is the random error, B, is the bth block
effect with unit « in block 4. Take H to be the group of all permutations within blocks.
The class G of all possible g and the class & of all possible error distributions £ are assumed
to be invariant under H. Now take s = (a, B, g & where B = (81, ---, Bz)". Observe that
78 = (a, B, ng, 7£); (2.2) and (2.4) are satisfied; (2.3) amounts to claiming that what we
estimate depends only on « or 8 but not on g or & for any design d, H(d) is the class of
designs possessing the same treatment replication numbers for each block as those of d: h
is the procedure of complete randomization within blocks, Applying Theorem 2.1, we
obtain a stochastic minimax property for h.

When the block sizes are equal, i.e., N; =-..= Ng, we may consider a larger group H
generated by all permutations within blocks and all block permutations. Observe that if
7 = m - 7y Where 7, is a permutation within blocks and 72 is a block permutation, then
78 = (a, mf, ng, 7£); (2.3) claims that what we are interested in depends only on a and not
on 3, g, or & the H-uniform randomization h is the procedure of completely randomizing
the blocks and the units within each block. Thus if the model is invariant under H, then
h will be a minimax randomization procedure.

ExampLE 3. Two-way heterogeneity setup. The N = ¢, £z units are now arranged in an
46 X £, array. Suppose the model is

(2.6) Yo=aap+Bitritgitesi=1- 4, j=1,.-.,6,
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where fi is the ith row effect and 1y is the Jjth column effect, gi; is the (@, j)th unit effect and
&; is the random error. Take H to be the group generated by all row permutations and
column permutations. Let s = (a, B, X5 & ¢) and 75 = (a, m B, T2 TEs af) where ™ =
-7 and mi, 7z are 1oW and column permutations respectively. The H-uniform randomi-
zation h is the procedure of completely randomizing the rows and the columns. Thus our
theorem gives a minimaxity for this procedure. It is interesting to note that under the
squared loss S (e — s~ (b — &)Y (A-criterion) and by using the least squares estimates
{&}, Wu showed that randomly permuting the rows (or the columns) of a Latin square is
of the same efficiency as that of permuting both the rows and the columns and treatment
numbers. This greatly simplifies the Fisher-Yates “yecipe’” of randomization procedure for
Latin squares. However, if not for the Latin square with the A-criterion, the mean
functional, and the least squares estimator, permuting the rows (or the columns) only will
typically be inferior to permuting both rows and columns. Thus, the latter is necessary in
general cases.

3. Minimax randomized designs under the squared loss. In Section 2, we justify
several commonly-used randomization procedures from the viewpoint of robustness against
model-violations. However, to which designs should these procedures be actually applied
and what estimators should be used are still not solved. By the knowledge of the classical
optimal designs, We would expect the solution to be dependent on the criterion used. Thus
to successfully attack these problems, in this section we shall merely focus on the situation
where the loss function is a squared one and the mean functional is used to assess
randomized strategies. Moreover, wWe shall only consider the linear estimators (but not
necessarily the least squares ones). These restrictions are necessary because we need
explicit expressions for the risks of randomized strategies. Confining to these and under
the H-invariant considerations of Section 2, we ghall obtain some general results which
reduce the problem of finding a minimax strategy to the classical problem of finding an
optimal design under an ideal model. For the cases where the classical optimal design
theory has provided a solution, say d®, our results then provide a minimax strategy
h(d®, 8%, where h is the H-uniform randomization procedure and 8° is the (weighted) least
squares estimators; in other words, H-uniformly randomizing a classical optimal design
(for suitable criterion) and using the (weighted) Jeast squares estimators is a minimax
randomized strategy when the class of possible true models is H invariant. Specifically, we
consider the following setting.

Suppose T treatments are to be assigned to the N="Y%51Ns units which are classified
into B blocks, where N, is the bth block size. Within block b, the N, = [T ¢ @ ynits are
arranged according to n(b) factors so that when n(b) = 9 they form an n(b)-dimensional
hyper-rectangle of size X + - XE @ where ¢ ® js the number of levels of the ith factor
in block b, and when n(b) = 1, the No = { ynits are assumed to be of the same level. To
avoid trivialities, we assume ¢ = 2. The uth unit, when it falls in block b, is now labeled

by G, - AR i®,), where 1 = i < ¢, Assume that

3.1 Yo = Gdw t Bs + 23‘31) ((lfzm,...,;;w,,..,i;';g,) + gu t Euy
where B is the bth block effect and
(&)
B, .- ip---ish

is the interaction effect of all but the jth factor in block b at levels i,
ey 10, 0 i®), respectively. Note that all the lower level interactions of factors in
the same block are implicit in this model. The set G of all possible g and the set & of all
possible error distributions are assumed to be invariant under a group H to be specified
below.

For any bandJ suchthat1=06= Band1=j=n(b), take H® tobe a doubly transitive
group on {1, <= £; ie., for any ki, ke, ks, R4 € {1, -+ ¢} such that k1 # ke and k3 #
k4, there exists some o' € G® such that a'(ky) = ks and 7' (Re) = k.. Forany 7’ € H®,
define a permutation gon {1, -+ N } by letting a(u) = u for u & block b, and w(u) =
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hd (b (b (b (b = (b, - (b} b
(I 7 (i), i, ..., i) when u= (;{ e i8). Let H 3} be the group of all

such = derived from =’ & H{® 1t is clear that an element in H? permutes the levels of
factor 7 in block b and any two H commute. Let H be the group generated by all 2, ie.,

3.2) H =T 1% Hy.

Note that (3.1) is reduced to (2.1) ((2.5); (2.6), respectively) when B = 1 and n(l) =1
(nb)=1for1=p < B; B =1 and n{1) = 2, respectively). It is also clear that the H’s
considered in these examples are of the form (3.2).

We are interested in estimating p contrasts among the treatment effects and want to
use a squared loss function and linear estimators only. More explicitly, take s = (a, B, g,
§) where 8 is the vector of block and interaction effects, and define '

(3.3) #L(s, a) = (La— a)'(La — a),

where L is a p X T matrix with zero row sums, and a € & = R”. Also denote a linea.
estimator by a p X N matrix § and arandomized strategy by (d, 8); and recall the definition
of the risk function r. We shall find a minimax randomized strategy that achieves

(3.4) min(d_a)maxgesEr(d, d; s).

To make risks finite, we assume that & contains only the probability measure £ with
finite second moments, Since only linear estimators are considered, the rigks depends on
the covariance matrix V of £ Thus hereafter we replace £ by V and let ° be the set of all
possible Vs,

The minimax solution of (3.4) is related to the following classical optimal design
problem. Set g, = 0 in (3.1). Assume that ¢,’s are uncorrelated, with means 0 and known
{up to a constant) variances o} where b is the label of the block containing unit u. Under
such an ideal model and the squared loss (3.3), it is clear that no randomization is
necessary. Also, the best linear unbiased estimator (b.Lu.e.) is the weighted least squares
one. Using the b.lu.e., we reduce the problem to finding a design which minimizes

trace[(L, 0){X" diag(o3*) X} (L, 0)],

where X is the usual design matrix, diag(o?) is the inverse of the covariance matrix of
&.'s, 0 is the zero matrix, and A~ denotes any generalized inverse of A. These were called
the L- or linear criteria in the optimal design literature. Denote any optimum design under
this criterion by d°. For the case where the ¢}’s are equal and L is chosen so that (3.3)
becomes (s, a) = M=t (e — & = a; + a;)° the linear criterion is often called the A-

(Cheng, 1978a), Generalized Youden designs (G. Y. D.) (Kiefer, 1975). When there exists
a control treatment (say, the first treatment is a control), one may want to use an L for
which the loss function (3.3) becomes L(s,a) =3, (a; — a; — a; + a;)% Several balanced
treatment incomplete block designs are found to be optimal under this criterion (Notz,
1981).

The following is a recipe for finding a minimax solution of (3.4): (i) suitably define the
o’s by some feature of G and 75 (ii) find an L-optimal design g% (iii) H-uniformly
randomize d° and use the b.lu.e. §°. ]

In short, h(d°, 8°) is minimax. To define o, we need some notation. The cardinal
number of a set (or a group) A is denoted by #A. For each b € (1, ..., B}, let A® =
rlrc {0, .-, n(b)}} and define H: = [liey H} for y € A®, For g€ € R define g7 =
(—1D* 3 ,cns mg/#H, where £ = #v. Now let g, be the projection of g € R" on block 5,
-e., the uth coordinate of gr») equals that of g or 0, depending on whether falls in block
b or not. Then define i1 =Y ent 8- For a N X N matrix V with the uth column vector
Vi, let Vi be the N X N matrix with the uth column vector Vue; and define Vi) =
(V1)) ). Finally, define

(3.5) ol =, max i vyeex »{ || Bs1))? + trace Vier), b=1,..., B,
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where || - || is the Euclidean norm and
1 -
Cp = N Seat [Ley (29 — D7
b

(the product over an empty set is 1).

THEOREM 3.1. Suppose (3.1)-(3.5) hold. If there exists a (g°, V®) € G X ¥V which
simultaneously achieves all the maxima of (3.5), then h(d®, 8°) is a randomized strategy

which achieves (3.4).

Now we apply this theorem to the settings of the three examples of Section 3. For the
settings of Examples 1 and 3, we only have one block; i.e., B = 1. This greatly simplifies
the matter. We do not have to verify the existence of (g°, V°) and the b.Lu.e. is the least
squares estimate. Thus in Example 1, a minimax randomized strategy is to completely
randomize an L-optimal design and to use the least squares estimator. In particular, when
the A-criterion is assumed, the balanced completely randomized design together with the
least squares estimator is a minimax strategy. This slightly strengthens Wu’s Theorem 1
and Theorem 3 which justified balance as well as randomization but the use of the least
squares estimator was assumed. For Example 3, completely randomizing the rows and the
columns of a G.Y.D. (whenever existent) together with the use of the least squares
estimator is a minimax strategy. In general, when k-way setting is assumed and all higher
order interactions are present so that (3.1) holds with B = 1, the minimax randomized
strategy can be found in a similar way. However, for £ = 3 if the setting does not include
the interaction effects, then Theorem 3.1 does not apply. This is demonstrated in the

following example.

ExaMpPLE 4. Suppose 8 experimental units are classified by 3 factors. Each factor has
2 levels (high and low). Thus each unit can be labeled by (i, j, k) where i, j, k = 1 or 2.
Suppose there are only two treatments. Instead of (3.1), we consider the following simpler
additivity assumption:
(3.6) Yu = Qagy + B + By + Bar + gu + eu,

where B, is the first factor’s ith level effect, and By, B3 are defined similarly. This model
is valid when the interaction effects are known to be negligible. The class G of all possible
unit effects and the class 7 of all possible covariance matrices for the random errors are
again assumed to be invariant under the group H of all the permutations of the factor
levels. Since (3.6) is not of the form (3.1), Theorem 3.1 does not apply. In fact, for the A-
criterion, the associated classical design problem (i.e., finding an A-optimal design for
model (3.6) when g. = 0 and the &,’s are uncorrelated with a common variance) has the

following two solutions d; and d,:

d: |A|B B|lA dy {A|B Al B
Bl A Al B B|A B|A

where 4 and B denote the treatment labels; for each design, units in the first and the
second squares are those with the third factor at low level and high level, respectively. If
the conclusion of Theorem 3.1 were true, then we would expect that randomly permuting
the factor levels for d; and d» (and using least squares estimators) would yield the same
maximum risks for any H-invariant G and ¥ because they should be both minimax.

However, the following two special G’s disprove this assertion:
(i)G1={<1 ’10),(0(1)’ )}
1
0

0 01 1
. 1 01 0
(i) GZ:{( 0 110 )( 1

bt | O | D

O] [ ]|

=IO |~
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Both Gy and G are H-invariant. To simplify the computation, assume that the random
errors vanish. Consider the case G = G,. It is easy to find that the maximum mean squared
error for the strategy of H-uniformly randomizing d,(respectively ds) and using the least
squares estimator is equal to 0 (respectively 1). Thus d; performs better than dy when G
= Gi. However, similar observation leads to the opposite conclusion (i.e., ds is better than
d;) when G = G.,. Intuitively, di should always be more desirable than ds since it possesses
better symmetry properties. However, the above discussion shows that this intuition may
sometimes be misleading. This also demonstrates the importance of Wu'’s rigorous treat-
ment on the justification of the role of randomization from the model-robustness viewpoint
although it seems to have been well accepted.

For the k-way (£ = 3) settings without interaction effects, Cheng (1978b, 1980) showed
that the Youden hyperrectangles (Y.H.R.) are A-optimal. (The two designs d;, ds in
Example 4 are both Y.H.R’s). However, due to the above consideration, H-uniformly
randomizing a Y.H.R. does not necessarily provide a minimax strategy. Moreover, the
actual minimax strategy may depend on the actual form of G. This then creates many
difficulties in finding a solution and we have no satisfactory answer yet.

We turn to the block design settings of Example 2. The H here contains all permutations
within each block. It is clear that

1
g1 = gy — _Z\—/; . (Zueblockb gu> 15

where 1 is the vector of ones, ¢, = 1/(Ny — 1), and with V = {(v,,) € ¥;

~ 1
trace V[b] = Zueblockb Ve — I_V—‘ Eu.u‘Ehlockb Uuy' .
- b

Thus for any specified G, it is not hard to actually compute ¢%. But the conclusion of
Theorem 3.1 may or may not be true, depending on whether the ¢3’s are achieved by a
common (g° V°) or not. If we take, for instance,

G=Gi={g:lgl=k),G=G,= {g:8.] =k for each u},
or
G = Gs = {g|for each b, Y ueviocks g =0 and |&«| = &y for u € block b},

where % and the %,’s are constants, then the 63’s can be achieved by a g°. Thus a minimax
solution can be found by the general recipe given before. In particular, consider the case
where block sizes are equal, ¥ contains only the identity matrix, and A-criterion is desired.
If the o%’s are equal (for instance G = Gy, G = Gy, or G = G, with equal k,'s), then
randomizing the units within each block of an A-optimal block design (e.g. a B.B.D.) is
minimax. Note that in such cases we do not need to randomize the blocks. However, if we
take, for instance,

G=Gi=U}-: (g||g.| < & for u € block b and &u = 0 elsewhere},

then for different blocks their o2’s are achieved by different g’s. For such a case, only
randomizing the units within each block is not minimax. The common sense suggests that
one should randomize both the blocks and the units within each block. But to justify this,
we need to consider a larger transformation group H® which contains both the original
group H and a group H, that permutes the blocks. This enlarged group H* cannot be
represented as the form of (3.2) because H, and H do not commute. Therefore we need a
different theorem to handle this case. The following development is mostly motivated by
this consideration.

Suppose that Ny = Ny = ... = Ng, n(1) =n(2) = ... = n(B) =n, and £ = /= ...
=¢8P =1¢,7=1,2, -, n. Take a transitive group H: on {1, ---, B}; i.e, for any %, ks
€ (1, - --, B}, there exists some 7' & H such that #'(k,) = k.. For any #’ € H_, define a
permutation 7 on {1, .- -, N} by n(i{?, ..., i{¥) = (j=@» . - 17Oy clearly, « is a block



234 KER-CHAU LI

permutation. Let H, be the group of all such #’s. Now define H® to be a group generated
by the H of (3.2) and H,. Denote the H-uniform randomization by h°.

THEOREM 3.2. Suppose (3.1) and (3.3) hold. If G and ¥ are invariant under H®, then
h%d®, 8°) achieves (3.4) where d° is an L-optimal design (defined before) with a5 = - ..
= 0%, and 8° is the least squares estimator.

Applying this theorem to the block design setups of Example 2 with equal block sizes,
we see that applying the standard randomization procedure to an A-optimal design and
using the least squares estimator is minimax. Moreover, it suggests a simpler randomization
procedure; i.e., instead of completely randomly permuting the blocks we may just randomly
rotate the blocks. This is because we may take H_ to be a cyclic group. This simplified
procedure is not only easier to implement but also enjoys at least as many robustness
properties as the standard one when the squared loss is concerned. To see this, we simply
observe that if a (G, ¥') is invariant under the group of all block permutations and the
permutations within each block, then it is also invariant under a smaller group that
contains only a cyclic group of block permutations and any permutations within each
block. Similar argument also applies to the cases covered by Theorem 3.1 and we conclude
that randomization procedure generated by a doubly transitive group is as good as the
complete randomization. But in general a doubly transitive group with a simple form and
a small order is not easy to obtain. For some particularly simple cases (e.g., a product of
two cyclic groups may sometimes be doubly transitive), see Burnside (1911).

4. Proofs. To save space, some of the proofs are only outlined. For details, see Li
(1981). -

ProoF oF THEOREM 2.1. It is clear that we need only to show that for any f € % and
So € S,
(4.1) mingmax,exf(r{¢p(d, 8); 750)) = max.cu f(rh(d, 8§); 7%)).

Observe that for any 7 € H, r(nd, w8; wse) = r{d, 8; $o); this is due to the invariance
properties of the model (2.4), the estimator and the loss function (2.3). Define a real
function ! on H by I(%) = r(ad, 78; so). Then,

r(¢(d, 8); mso) = r(n ' (d, 8); s0) = Um"'¢).
We may write (4.1) as min,max.cxf({(7¢)) = max.exf(I(7h)); equivalently,
{4.2) min,e ,maxenf(l{mp)) = max.en f(I{mpo)),

where i is the uniform distribution on H, .# is the class of all probability measures on H,
and I(mp) is the distribution of [(7¢)) when ¢ has probability measure p.
Obviously, for any p,

1 1
—#?I‘_IZWEH 7 = o and #—IIZﬂGH ap) = Huo).

Hence for any p € # and f € % f(l(p0)) < max.enf(l(mp)) by the definition of &
Therefore (4.2) holds since mpy = po for any 7 € H.O

Proor oF THEOREM 3.1. To proceed, a sequence of lemmas will be presented first.
LeMMma 4.1. Under (3.1)-(3.3), we have
(4.3) min 4 5;max.esEr(d, §; s) =2 max,esmin,s Er(h{d, §); s).

Roughly speaking, this lemma suggests that in order to find a randomized strategy
achieving (3.4) we may first choose a suitable non-randomized strategy (d, 8); then we
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apply the H-uniform randomization on the design d, and use the estimator accordingly.
We now proceed to evaluate Er(h(d, 8); s). Write Y = (i, --+, yv)" and ay = (aaqy, + -
aa)’; let 28 be EY under o = 0 andg=0(x depends only
8 = Y.en ng/#H; for any symmetric matrix V, define

’

on #); for any g€ RY define

- 1
V= i Y-en (V) where (V) = (Vaviyamy) for V= (vy).

LEmMMA 4.2, For any (d, 8),

Er(h(d, 8); s) = | La — 8(ay + B + &)|° + traces((g — g)g~8) + V)5,
where s = (q, B, g V).

To avoid having an infinite maximum risk, it is necessary for the estimator to satisfy an
unbiasedness condition when g = 0. This will be made explicit by the notion of orbits. The
orbit of an element x under a group K is the set {#(u) |m€ K) and is denoted by K (u). For
any subset A C {1, ..., N}, define 1,4 to be the vector in B" with the jth coordinate equal
to 1 or 0 depending on whether ; € A or not. Thus for nb) =2 1=s/< n(b) and u =
(B, « o) fuy), 1,:, 1s the expectation of Y when B

0oy ie) = 1 and all other parameter
values are 0. Similarly, for n{b) = 1, 1y, is the expectation of Y when 8, = 1 and all other
parameter values are 0. Let

W= {alae R", a’l, =0, u € block b, b=1,...,Bandj= 1, -, n(b)}.

LemMMa 43, A necessary condition for max.esEr(h(d, 8); s) to be finite is that each
column vector of 8’ belongs to W and dad= La forall a € RT.

Let U be the class of any non-randomized strategies (d, §) such that § satisfies the
necessary condition in Lemma 4.3, Without loss of generality, we may restrict the

randomized strategies to have supports on U. The following lemma will be used to simplify
Er(h(d, 8), s). Recall some notations from Section 3.

LEmMMA 44. For anyae W, g€ R", ang any symmetric N X N matrix V, we have

{4.4) a’'g =0,

(4.5) 2(g-8(g-gra=-agga,
(4.6) a'ge a =Y, o | I* - aw?,
and

(4.7) a'Va=Y2 ¢, trace Visy - [l agy ||

We now combine these lemmas to complete the proof of Theorem 3.1.
First, by Lemmas 4.2, 4.3 and 4.4, we obtain

(4.8) Er(h(d, 8); s) = Y8, e(]| & || + trace Vi) - trace 8(8)’

where &) is a p X N, matrix with each row vector equal to the ¢
corresponding row vector of § on the block b.

Next, by Lemma 4.1, (4.8) and the assumptions of Theorem 3.1, we have

omponent of the -

mingsmaxesEr(d, 8; s) = max.esming,s Erth(d, §); s)
Z MaX,esMiNy ey Yo ol ]l 8o1]|® + trace Vis) - trace (841674}
= I’ﬂin(d‘s)eu Zf:l Cb(” é'?[,] ”2 + trace V?b]) . trace(B[b]é"[b,)

= Ml gev Zl[;;i U% trace(sfbls{b])-
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above minimum is achieved by (d° §%). On

236

efinition of (@, 5%), we see that the
ysES,

By the d
Er(h(d®, 8°); 5) = Th-1 05 trace(8{xdth)-
and Theorem 3.1 is proved.

the other hand, for an
(h(d® 8°); 8) = min@smaxsesEr(d, 8; )

Therefore, maxsesET

1t remains to establish Lemmas 41-44.
has probability measure .,

PROOF OF LEMMA 4.1. Foranys* € S and any (4, 8), ifd
1
d,8;9 = max.,enEr(d, 8; a7 's*) Z_#_I—IE"EH Er(d, 8;77's%)

maxsesEr{
= Yo pld) - Seen rind, 78, s*)/#H
).

Er(h(d, 8); s¥) = min, Erth(d,d); s*

= Z(d.&) P(d) °
s*) for any s* € S. Hence

It follows that min,sMaxses Er@d, 8;8) = ming,s) Er(h(d, 8);

the lemma holds. ]
2. By (3.1), (3.3), we have

Proor OF LEMMA 4.
Er(h(d, 8);s) = Er(d, 8;h7's) .
= E[||La — 8- (aa ¥ A +h'g |’ + trace{(Sh™'(V)8'}]

-1g) ||? + trace(d Cov(h'g)8’

—|La—?8-(las+ B+ Eh
+ B+ §) | + trace(8(g — g) (g — 88

} + trace(6V8)
1+ trace(®V38).0

~=|La—38-(ad
e proof becomes straightforward. 0

PrOOF OF LEMMA 43. Inview of Lemma 4.2, th

ProoF OF LEMMA 4.4. Observe that
4.9) qg =g forany 7 € H.
tion in H? and we see that g is a constant for any coordinate in
e see that (4.4) holds. '

Take 7 to be any permuta
H}(u) where & € block b. By the definition of W, w
Next, to verify (4.5), it suffices to showa'gga=0= a’'gga. Now,
R 1 ey s 1 —
a'gga=_g S.ena TE(TE)'a = @—IZ,eHa g
t equality is due t0 (4.4). A similar

(rg)a =0,

ond equality holds by (4.9) and the las

e proof of (4.5).

where the sec
lemmas to prove (4.6) and (4.7).

argument completes th

Next, we need some
W, a'gg’a = Li-1 AngHB B

oving (4.6) without any loss of
fter (e.g., Hi = 4

= is

LeMMA 4.5. Foranya =]

This lemma suggests that we may assume B=1linpr
generality. Thus we delete the block label b from all the notations hereal
g = gu, n(d) =1, H® = H,, etc.)

LEMMA 4.6. Fory A, (g) =0

ranya € W, a’EEa = a’é—ga.
blish (4.6), we may assume g’ =0fory
!/N. Thus, fixing &

1emma 4.7. Fo
erv(fj -1

In view of Lemma 46 and Lemma 4.7, to esta
a=clgllal® wherec=1

- & and show that a'gg
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€ [1, ---, N}, denoting the uth column ofgg’ by w = (w,, ---, wy)’ and writing a =
(@i, -« -, an)’, it suffices to show that

(4.10) wa=c| g|%..
To proceed, define U, = H,(u) — Uje, H,— (1) for y # <. Evidently,

(4.11 lyuy = Yweu, Liw) — 1y,
and
(4.12) UNU,=@ for any y#vy'

The following lemma is crucial to get (4.10).

LEMMA 4.8. For any u', u” € U,, we have w, = w,. This constant equals
N g1 ey (45— 1)7', where k = #y. In particular, we have w, = N7 | gl

Write A, = (-1)*N" | g |2 [Le, (¢ — 1), By (4.12) and Lemma 4.8, we get w'a =
Zy=ah,1ua + N7'|| g(%a,. Hence it suffices to show that 1y;a = (~1)*a,, where % = #y.
This will be proved by mathematical induction. When Y = {J}, by the definition of W, 0
=1ywa = 1v,a + aa,. Thus our assertion is true for £ = 1. Suppose it is true for #Hy=k.
For j & vy, by (4.11) and the induction hypothesis we have

Tvoma =Yuey, Viw a — 1ya =0 - Iha = (-1)*q,.
Therefore (4.10) is established and so is (4.6).

Turning now to (4.7), let V2 be any square root of V. Denote the uth column vector
of V2 by e,. By (4.6), we have

aVa=a' Y e.cha=YY, aeoin = -1 Yol co || Bugn]|? - apAe.

Thus, it suffices to show that trace Vi = Ta=1 || 8us1 ]| % Let A, be the N x N matrix such
that A,g = g, for any g. Now we have

St [l a2 = trace B, €uiqs) = trace YN, Ase LA’ = trace A, VA',
= trace V{,)A} = trace A4(V},) = trace Vi

Hence (4.7) is established. The proof of Lemma 4.4 is complete. ]

PrOOF oF LEMMA 4.5. An argument similar to that used in proving (4.4) leads to the
conclusion that for any u, u’ in different blocks b, b’, the (i, u’)th cell of g8’ equals the
(u, m(u'))th cell, for anyr€H!, j=1,.. s n(b’). In view of this and by the definition of
W, Lemma 4.5 follows. 0

PRrOOF OF LEMMA 4.6. This can be verified by using mathematical induction and
observing the following two facts:

(4.13) (8 +g) =gl +g forany g,geR",
(4.14) (gy)(j) = gyu(j) if J &€y,
= —g7 if jey.O
PROOF OF LEMMA 4.7. Write g=8+Y g and compare both sides of the equation
to be established in Lemma 4.7, It suffices to show that a'ng’ = 0 for any 7 € H, any
y# @ and any a € W. Since W is invariant under H, we may only show a’g” = ¢ for any

a € W. Now, this assertion can be verified by using mathematical induction, (4.14), and
the definition of W.[I
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PrOOF OF LEMMA 4.8. Since each H; is doubly transitive, it is clear that for any ' and
u” € Uy (which implies u # u’ and u 5 1”) there exists a 7 such that 7y = u,mu =u”.
Now, since gg’' = wgg'n, we get w., = w,~ by comparing the (1, u’)th cells of these two
matrices. Thus the first statement is proved for #y = 1. For general vy, the proof is similar.
We now compute the constant for each U, by mathematical induction.

First, the diagonal elements of gg’ are the same due to the transitivity of the group
[T)-1 H;. This constant is easily verified to be N™' || g ||% by considering the trace of gg’.
Hence we have shown w, = N7 | g%

Next,letz=(zy, - - -, 2,)’ = hg. Clearly, Ezz’ =gg’ and w. = Ez,z,. By the assumption
that g = 0, it follows that Y.cx 2, = 0. Thus —z2 = Yueuv,, Zuzw. Taking
the expectations on both sides, we obtain —w, = Zu'ev(,-, wy = (4 — 1)w,.. Hence w, =
—(4—=1""- N7'. | gl? as desired.

Next, suppose that our lemma is true for some y. We shall find the desired constant for
yU {j} where j &€ y. For any 1’ € U, , there exist some 7, € H, and some m; € H; such
that m(u) € U, and mym(u) = u’. Now, g = 0 implies YreH, Zm = 0 and thus we get
ZuZmw) = —YweH(5) ZuZmm (s, Where F is the identity permutation. Observe that (1)
€ U,y for any 7 € H; ~ { £} and take the expectations on both sides of the last equality.
It follows that wyw = —(¢; — 1)w... Hence

we === D)7 wo = DN g Tliewin (46— 17

where the last equality is due to the induction hypothesis. The proof for Lemma 4.8 is now
complete. [}

Proor oF THEOREM 3.2. Define

0

1 1
g =;}Fzﬂeﬁﬂ 7g and V° =m2neﬂo (V).

By arguments similar to those in the proof of Lemimnas 4.1-4.3, we see that
(4.15) Er(h’® (d, 8); s) = || 6g° |2 + trace[8 {(g — g°)(g — g°) + V} %],

for (d, 8) such that the maximum risk is finite. Write M = (g — g°)g—g°) + V. We claim
that for any a € W,

(4.16) a'g’=0
and
4.17) aM’a=2Aja|’

for a constant A depending on M but not on a.
First, observe that

1
g= . YreH, TE.

Then (4.16) follows easily from (4.4). Next,

1 _
a’M’a = ZH Yecn, 8’7Mnr'a (where = is treated as a matrix)
1 .
T #H Teett. L1 Co trace M) - || (7 'a)p |2 (by (4.7))
- 1
= Zb8=1 ¢» trace My, - (;—E Swetr || a1y |f 2)

= Y1 s trace My - (B~ a 1%
= (B™ Y81 cotrace M) - afi?=A- |a]?
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where the fourth equality is due to the transitivity of H.. Thus (4.17) holds. From
(4.15)-(4.17), we get

Er(h’d, §); s) = A(s)trace(88’),

where A(s) is some positive constant depeﬁding on s. The rest of the proof is similar to that
of Theorem 3.1.
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