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I. INTRODUCTION

Consider the problem of estimating the mean vector & of a P
dimensional normal random vector X with covariance I_ where p is
three or more. Let the possible values of 6 be all of R® and

define the loss function for an estimator é of 6 to be

L(s,8) = |]6-0]|2,

the square of the Euclidean norm.

James and Stein [1] exhibited estimators which shrink to a
fixed vector (say zero) in the parameter space yet have the prop-
erty that they are minimax and dominate the maximum likelihood
estimator. Sclove, Morris and Radhakrishnan [3] noted that esti-
mators with this property exist which shrink to linear manifolds
when p is greater than or equal to the dimension of the linear
manifold plus three. One of the estimators they considered has

the form
B, = X+ (- (1-¢/5)"

where ¢ is in (0, 2(p-3)) and

1This research was supported by National Science Foundation
Grants MCS-78-02300 and MCS-81-01670.



X,/p and s = E X,-%)2.
j J J
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This estimator shrinks to the linear manifold which consists of
vectors whose components are all equal in RP. The dimension of
this manifold is one and the estimator is minimax if p is greater
than or equal to four, which is three plus the dimension of the
manifold.

A fixed vector or a linear manifold are special casesof a
closed convex polyhedron, which is the solution set for a finite
system of linear inequality constraints. Suppose that vague in-
equality information about 6 is present in the following form:
One suspects that the mean vector 6 satisfies the following

finite system of linear inequality constraints:

where Ai is a known p-dimensional vector and bi is a known scglar,
i=1,...,n. Let Q be the closed convex polyhedron which satis-
fies these constraints. (We will assume that the system is
solveable and that Q is not empty;) A class of estimators is
exhibited in Section 2 such that the estimators shrink X to Q in
the direction of P(X) the closest point of Q to X. Some of the
estimators dominate éO the maximum likelihood estimator and are
of course minimax. A dominating estimator is exhibited for any
estimator § which assumes the value X when X is not in Q.

The shrinkage estimator is robust in the following sense:
If & is actually in Q, then any estimator which shrinks X to Q by
the choice of a value in the interval (X,P(X)] has a smaller loss
than the estimator whose value is X when X is not in Q, no matter
what the distribution of X. For 6 not in Q, the estimators con-
sidered improve most in expected loss for values of 6 close to Q.
Thus one is rewarded most in using these estimators when the
vague inequality information that 6 is in Q is correct or’"nearly

correct'. The shrinkage is done under the following condition:



Shrink X to Q only if P(X) lies on a face of Q with dimension do
such that

pz_d0+33

i.e. the codimension of the face (p—do) is three or more.

Section 2 of the paper provides the exact statement of these
results in a theorem as well as the proof of the theorem. An
appendix follows with proofs of lemmas used in the proof of the

theoremn.
IT. A CLASS OF ESTIMATORS

In the theorem of this section dominating estimators ég are
given for any estimator-él(X) which assumes the value X when X is
not inside the convex closed polyhedron Q. If one completely
specifies the values of él by defining él(X) to be X for X iq Q,
then e1 is the maximum likelihood estimator 60. The estimators
that dominate 90 are also minimax estimators since 60 is minimax

with constant risk for all values of 9.

THEOREM.  Assume that the p-dimensional random vector X is
noumally distributed with mean vector 6 in RP and ddentity co-
variance matrix. Let Q be the closed convex polyhedron which 4s
the solution to a finite system of Linear Anequalities, L.e.

Q={r.in RP: Ay <,

by, i= 1,...,n}

where A, are known p-dimensional vectons and b, are known scalars.
Define él(X) Zo be any estimatorn of o satisfuying

él(X) = X for X not in Q.

Define P(X) Zo be the onthogonal projection of X to Q and Let d
be the codimension of the face of Q in whose relative interion
P(X) Lies. Define



él(x), for X 4in Q and for X not in Q but d < 2;

P(X)+g(||X-PX) || D) (X-P(X)), fox X not in Q and

d > 3,
where g 48 a neal-vakued differentiable function defined on non-
negative real values t, Aatisfying

a) g(t) < 1;
b) (1-g(t)) (2d-t(1-g(t))) > 4tg'(t) with strnict inequality
for a set of t values with positive Lebesgue measure;

c) 1lim t%(l-g(t))exp(-t/Z) = 0 and

to

1
lim t2 (1-g(t+c))exp(-t/2) = 0 for any c > 0.
t->0

Then ég doméinates él under squared erron Loss ||6-6| |2. 1t 48
assumed that Q {5 not empty.

Remark. The conditions given in c¢) assure that the usual

"integration by parts" analysis of the risk is legitimate,
Example. 1If we define a constant c¢ in (0, 2{(d-2)) and set
g(t) = 1-c/t,

then g satisfies the conditions of the theorem. It is a function

used by James and Stein (1).
IIT. OUTLINE OF THE PROOF BY PARTS

A. Because every vector's projection to Q lies in the relative in-
terior of some face of Q and there are a finite number of faces

of Q, it suffices to show the following: For each face J of Q
with codimension greater than or equal to three, the e*pected

value of
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is negative where the expectation is taken over all values of X
whose projection to Q lies in the relative interior of that face
J of Q. To exhibit this result, both the relative interior of
the-face of Q and the projection of X to the face are carefully
described. (The description is actually valid for faces with co-

dimension less than three.)

B. It is shown that the values of X over which the expected
value of V(X) is taken are those whose projections to a certain
pointed polyhedron S lie in the relative interior of a certain
face F of S. (The convex polyhedron Q is shown to be the sum of
a linear'subspace L and a pointed polyhedron S (i.e., one with
vertices) where S lies-in L' the orthogonal complement space of L.
A face J in Q may be written as the sum of L and a face F of S.
The codimension of J is equal to the codimension dF of F in L.
The vectors exterior to Q whose projections to Q lie in the rela-
tive interior of Jare those whose projections to S lie in the

relative interior of F.)

C. Assume that one of the vertices in the face F is the zero
vector and define N to be the linear subspace N generated by F
and define N' to be its orthogonal complement space in I1. (If
the assumption is not true, make a translation of the whole prob-
lem, replacing S by SF and F by FO which does have the zero vec-

tor for a vertex.)

D. A lemma shows that PS(X) is in FI if and only if PN(X) is in
FI and PNL(X) is in a certain face C of.Sp, the polar cone of"

S. See Figure 1. Because PS(X) in FI implies PS(X) equals PN(X),
we may replace PS(X) in V(X) by PN(X) to obtain V*(X) which is a
function of X only through PNL(X). Also, the lemma imglig; that
the expectation of V(X) over S such that PS(X) is in F~ is

equivalent to the expectation of V*(X) over X such that



Figure 1.

P (X) is in F' and Py (X) in C. This is clearly the pro-
duct of the probability that PN(X) is in FI and the expectation
of V*(X) taken over X such that le (X) is in C.

E. The face C may be written as the sum of a linear subspace M
in N' and a pointed cone Co in M', the orthogonal complement of
M in M. Thus we can evaluate V* over X such that PML(PNL(X)) is
in Cé.

F. It is possible to describe C0 as the union of simplicial
cones whose relative interiors are disjoint. (See Definition 7
in the appendix.) So the expectation of V*(X) is a sum of expec-
tations of V*(X) over X values in the relative interior of each
of these simplicial cones. The original conditions of the
theorem on the estimator may then be used to show that each ex-

pectation in the summand is negative.

IV. PROOF OF THE THEOREM

A. By Lemma 4 of the appendix, P(X) lies in the relative in-

terior of some face of Q. Let H be the finite collection of the



of faces of Q with codimension three or more. Define
h(t) = 1-g(t)

and note that if P(X) is in Jl, the relative interior of a face

J in H, then

A 2

8,(X) = X=h(][X-P(X) |]%) (X-P(X)).
Write the risk difference as

. . . 2 A 2
R0, 0,)-R(6,6,) = E[]]6,00-1] “1 - E[[[8,-0]|7]
= I B[ PO0)[200-0 (x-P)IRC| [x-P) | D)

JinH J
s lx-peo [ Ieroo 1129,

I't suffices to show that each expectation in the sum is nonnega-
tive. LetJ be a fixed face in H and consider its corresponding

expectation in the sum that forms the risk difference.

B. Stoer and Witzgall [4] noted a thoerem of Motzkin [2] shows
that a closed convex polyhedron Q can be decomposed into the sum
of a linear subspace L and a pointed polyhedron S in L', the
orthogonal complement space of L. (See Lemma 6 in the appendix.)

The projection of X to Q may be written as

P(X) = P (X) + Pg(Pa (X))

where PL and Pry and Pg are the projections to L, L' and S

respectively. Setting

Y = ﬂ}(h, and n = 5}(9,
we have that

X-P(X) = Y—PS(Y)

and



(X-0) “(X-P(X)) = (¥-n) *(¥-P (V).

By Lemma 6 of the appendix, P(X) lies in jl if and only if PS(Y)
lies in the relative interior of some face F of S with codimen-

sion dF in Lt equal to the codimension of J.

The expectation corresponding to s in the sum for the risk differ-

ence is

() E[QG-0 (-pg ()R (] [¥-Pg (1) ] |P)
2 2 2
TP [ [ Y-PM [T (P (1))]
F

To prove the theorem it suffices to show that each of these

expectations (*) is negative.

C. Let Vl"
them belong to F, define VF to be the vertex with lowest subscript

..,Vh be the vertices of S. Since one or more of

in F. Define a new polyhedron SF_by subtracting VF from each vec-
tor in S. The set FO formed by subtracting VF from each vector
in F is a face in the pointed polyhedron SF and the codimension
of FO is equal to that of F. Observe that one of the vertices of
FO is the zero vector. (Note that now and in the future comments
the vectors are all restricted to lie in L' and we speak of the
codimension with respect to that space.) Note that PS(Y) lies in
the relative interior of F if and only if (PS(Y)—VF) lies in the
relative interior of Fo. See, too, that (PS(Y)-VF) is PSF(Y-VF).

Define
Z = Y—VF and p = n—VF.

Thus we can rewrite (*) as



(**) E[2((z-Pg_(2))*(o-Pg (D))
F F
- Nz-pg_ @115 2P @15
F F

2 2 12
+ ho(]]z-pg @ [[D)]z-pg @11 (P @N)].
S S IS
F F F F
0
D. Let N be the linear subspace in L' generated by FO and let N*
be its orthogonal complement space in I'. Then according to

Lemma 9, P, (Z) is in Fr if and only if P.(Z) is in FL and P, (Z)
Sg 0 N 0 I\
is in C where .

= P
C=NnN SF

and SE is the polar cone of SF' The Remark accompanying Lemma 9

implies that C has dimension dF equal to the codimension of FO

and C is a face of Sg. According to Lemma 8, PS (Z) is PN(Z) if
F

P, (Z) is in FI. Noting that P, (Z) is (Z-P (2)), we may re-
SF 0 Nt SF

write (**) as

-E[2(( [P &) 1%~ P 0P @)1 (] [P ()]

- hz(IIPNLcZ)IIZ)IIPNL(Z)IIZ)IC(PNL(Z))IFIcPN(Z))J.
0

(We have used the fact thét PN(Z) and PNL(Z) are orthogonal as
well as the fact that PN(p) and PNL(Z) are orthogonal.) Let
pL’PLl’PNl and PN be the symmetric idempotent projection matrices
to the linear subspaces L,L%,N', and N respectively. Then PN(Z)
is normally distributed with mean PN(PLLG—VF) and covariance
pNPL*pN' Also PN(Z) is indépendent of PNL(Z) which is.normally
distributed with mean le(PD@-VF) and covariance PNLPLLPNL' Be-

cause PN(Z) is independent of PNL(Z), the last expectation is
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equal to the product of the probability that PN(Z) is in Fé and

the expectation
E[2(Pya (0) Py (23) Py (2)0([ [Py (2)] ]2

<20 [P @112 @ 1D 1Py (221,

Because dF is positive the probability is positive and to show
that (**) is negative it suffices to show that the last expecta-
tion is negative.

E. Because C is a face of SE, it is also a polyhedral cone. . By
Lemma 4, PNL(Z) in C implies that PNL(Z) is in the relative in-
terior of some face of C. But PNL(Z) is in the relative interior
of those faces with dimension less than d only for a set of
Lebesgue measure zero in the d d1men51ona1 space N-. So assume
that PNL(Z) is in C the only face of C with dimension dF'
Define M to be the 11neality space of C in N* with dimension
(dp-r) and let M' be its orthogonal complement space in N*. Then

the pointed cone

=MncC
has dimension r. By Lemma 6, PNL(Z) is in C if and only if
Ml(le(Z)) is in C0

Define U to be P (P,n (2)) and p,, to be P (P l(p)) and W to be
N U N

Ml(le(Z)) and Py to be le(le(p)) Applylng the orthogonality
of PM and pML’ the last expectation is

(***) BL2( oM)W + (o, =0) Sdn(] Ju] | 2+] ] 1%)

e n? Ul 12 (Wl B ] ul? IIWIIZ))ICI(W)J.
0.

Let PM and PMl be the symmetric idempotent projection matrices to



the linear subspaces M and M' respectively. Then U is normally
distributed and its mean is;yU and its covariance ZU is
PMPNLPLLPN*PM' Note that U is independent of W which is normally
distributed with mean p . and covariance Ly equal to
PMLPNLPL*PNLPML' ' Using the independence of U and W, a standard

integration by parts argument implies that

(++**)  E[2(U-p) Uh(][U]}? + |[W]]P)1 ()]
c
0

- B2 00 Cprmnc| 0] P+ w] 1)
0

s 20t ([ u] 2] ] 1D ] vl 15T

Next we will evaluate

Crxx%) B[00 W] o] |+ 1221 ;0.

0
F. Let Cl""’Cn be a simplicial decomposition of CO’ i.e.
0
the Ci are simplicial cones of dimension r whose union is Co and

whose relative interiors are disjoint. (See Definition 7 and

remark in the appendix.) Note that except for a set of Lebesgue
. . s s I . .

measure zero in M', any vector in Cé is in Ci the relative inter-

ior of Ci for some i. Thus I I(W) may be replaced by
’ C
0

R
i=1 C;
i

in the last expectation since the Ci'are disjoint. Then the last

expectation is the sum of the expectations

B[200-0,) W h(| 0]+ ]| 5T {001, 3 = 1,.mg.
i
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i i . ; .
Let Al,...,A; be the r linearly independent vectors which

generate Ci and which form the columns of.tpe matrix.Ai. By
Lemma 5, W is in Ci if and only if.W is A'a' where a* is a vector
of positive components. Because A;, j=1,...,r, are independent
vectors in the r dimensional space M', it is always true that W
has a representation in the form Aiai, fori=1,...,n,. Thus W

0
is in C; if and only if

T = rabytaly el ty

is a vector of positive components. Now T is normally distribu=- .

ted with mean t equal to [(Al)tAl]'l(Al)tpw and covariance

i)tAi]-l(Ai)tPNfPNLPLLPNLPMLAit(Ai)tAi]_l-

= [(A
Because the columns of A' are contained in M' which is contained
in N* which is contained in L*, we have that A is PLLPNLPMLAI;
Thus ¢ is [(AY)%al]7!

expectation is

since PLL is idempotent. Thus the last‘

T
E[2( T I

T 5 nerts e u] |2 ).
j=1 @) "]

(0,
By Lemma 10, this equals

T
E[2( I I

T T, TG h(rts i [ ul|Hezn ot i Ul |
j=

o,
th'lT}].
Using the definition of T, this may be written as
2 2 2 2 2
E[21 ;00 (eh (U] [+ Hw]]™+2h ([ [ul [T+ ] {w] [ ] {w[|D)].
C.

1

Summing the last expectation over i = 1,...,n0, we may represent

(*****) as



(21 5 (0 G| U 2+ W) [Pye2nrcful 12 W] 12 w50,
-0

Incorporating the final representations for (****) and (*rxwx)

we may write (***) as

ELC-240C) U] 2] I 1%-anr (] Jul 12 0] 2 o] 1 2] ] 1)

2 2 2 2 2
WO WD ATl W 9)1 o],
C
0
Recalling that h(t) is (1-g(t)) and assumptions a) and b) of the
theorem, the integrand is negative for a set of values with posi-

tive Lebesgue measure. Thus the expectation (**%*)is negative as

was to be shown.
V. APPENDIX

Definitions. Every closed convex polyhedron Q in RP is

described by a finite system of linear inequalities

Q={rin RP: Ay <b,i=1,...,n)
where Ai is a vector and bi is a scalar, i = 1,...,n. A linear
inequality in the description is defined to be a nonsingublar in-
equality if at least one vector in the polyhedron satisfies it

strictly, i.e. if there is a vector Y_ in Q such that

0

t
AjYg < by
then

t
{A;Y < b}

is a nonsingular inequality for Q.

13
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A nelative interfor point of the polyhedron Q is a point of
the polyhedron Q which strictly satisfies every nonsingular

inequaltiy.

LEMMA 1. Suppose there 448 a vector P(X) 4in the convex set K
which i85 the onthogonal pnojection of the vecton X £o XK. Then
gon all Y 4in K,

(X-PCO)Y T (Y-P(X)) < 0.
Proog. Suppose that (X-P(X))t(Y-P(X)) is positive for some Y
in K and define
M = max{][x-PC0 ||, ||y-Pe0)]]%3.

Then, by the Cauchy-Schwartz inequality and the definition of M,

o = (X-P(X))) T (Y-P(X))/M.
Thus Y* is a member of K where
Y* = oY+ (1-p)P(X).

Note that

XY+ ]2 = | (-P(0)-p (Y-P (X)) ] |2

it

Hx-P)[12 + 02| Y=-P(X) | [%-20 (X-P(X)) E(Y-P (X))

[H]

[1x-PO 12 + o2(]|Y-P(X) | [2-2M.

The term multiplying p2 is negative by the definition of M. This
implies that Y* is closer to X than P(X), a contradiction to the
definition of P(X). Thus, the original supposition leads to a

contradiction.

LEMMA 2. Let zeno be contained in the convex set K which 4
contained in the convex set Q. Assume that P(X) the profection
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04 the vectorn X to Q Lies in the nelative interion of K. Then

(x-Pcx) tp(x) = 0.

Proog. We assume that P(X) is not zero. The following lemma

(3.2.9, page 90) is given in Stoer and Witzgall [4]:

LEMMA. [Llet K be a convex set. 1§ X 48 a vector in the rela-
tive interion of K, then for each vector Y in the Linear manifold
generated by K there exists a positive scalar e such that the
vectons (X+e(Y-X)) and (X-e(Y-X)) are 4in K.]

Because P(X) is a relative interior point of K and becausg
zero is in K, the LEMMA cited above implies that the line segment
[0,(1+e)P(X)] is in K where e is a positive constant.

Let Y be the projection of X to the linear subspace spanned

by the vector P(X):

Y

B P(X)

where

e /Py |2

B
We know that B is greater than or equal to one since zero in Q
implies

(X-P(X) *(0-P(X)) < 0,
by Lemma 1. Because 8 P(X) and (X-BP(X)) are orthogonal, so are
(B-1)P(X) and (X-8 P(X)); thus

2 2 2
[x-Pe0 | (% = |[x-2r0 []% + (a-1%][PC0) | |2

If B is not one, then g P(X) is closer to X than P(X). If B8 P(X)
is in Q, then this is a contradiction to the definition of P(X).

Assume that g P(X) is not in Q. Then

[1X-PX) [ [ = || (X-(1+e)P(X))+e P(X) ] |2

|1%- (1+e)PX) | |2 + ezllp(X)]|2 .
+-2(X-(1+e)P(X)) P(X)e.
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The last term in the above equality may be written as
2(X-8P(X)+ (8-1-€)P (X)) P (X) e

= 2(g-1-e)e| [P(X) | |2

since the orthogonality of g P(X) and (X-8 P(X)) implies the or-
thogonality of ¢ P(X) and (X-8 P(X)). Thus

HX-POO[]? = |[%=+e)P0) | |2 [(6-1) % (8-1-) %] | [PC0) | | 2.

Since B is greater than or equal to one and B P(X) is not in Q

we have
B > l+e.

This implies along with the last equality that (1+¢)P(X) is closer
to X than P(X), which is a contradiction to the definition of
P(X). So B equals one. The definition of g implies the conclu-

sion of the lemma.

LEMMA 3. Let F be a convex set containing zero. Assume that
F 48 contatined in the convex set Q and that P(X) the projection
0f the vector X to Q Lies 4in the nelative interion of F. Then
(X-P(X)) 4s the profection of X Zo the polar cone Q® of Q. Fur-
thermone, P(X) is also the projection of X to QPP the polar cone
of the polarn cone of Q.

Proof. We make use of a lemma (2.7.5, page 51) of Stoer and
Witzgall [4]:

LEMMA: [Llet C in R" be a cone. I§ X 4n R" admits an on-
thogonal decomposition X = Y+Z with Y in C, Z 4n c? and Ytz =0,
then Y and Z are the profections of X into C and CP.]

Since P(X) is in Q, we have P(X) in Qpp which contains Q. By
Lemma 2, P(X) and (X-P(X)) are orthogonal. Using the LEMMA cited
above it only remains to show that (X-P(X)) is in Qp.
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Because Lemma 1 implies that for any Y in Q,
t
(X-P(X)) "(Y-P(X)) < O,

we have that for any Y in Q,

(X-P))*Y < 0 |
since P(X) and (X-P(X)) are orthogonal. Thus (X-P(X)) is in Qp.

LEMMA 4. Any point in a closed convex polyhedron 48 a hela-
Live internion point of some face of the polyhedron.

Proog. Suppose that the point X is in the closed convex
polyhedron Q. Suppose X is not a relative interior point of Q.
(Since Q is a face of itself, then X would be a relative interior
point of a face if X were a relative interior point of Q.) Then
the set IQ is nonempty where

t

Q= 1{Z: AiZ 5-bi’ i=1,...,n} and
IQ = {1i: A§X=bi and {AEZ 5-bi} is a nonsingular inequality
- for Q}.
Note I is contained in {1,...,n}. Then X is in the face F of Q

Q

where F is the intersection of Q and the hyperplanes of the form
;ALY = b}
and i is in IQ. Because the inequalities are nonsingular for Q,
F is a proper face of Q. If X is a relative interior point of F,
we are done. Suppose X is not a relative interior point of F
(which is also a closed convex polyhedron). Then the set IF is
nonempty where
F={2: DiZ<cg, i=1,..,n and

I, = [i: DX=c. and {DF
itri

1Z 5-Ci} is a nonsingular inequality

for F].

We can conclude X is also in a proper face G of F which is a
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proper face of Q distinct from F. If X is not a relative inter-
ior point of G, we can continue in the same fashion to find
another proper face of Q which contains X. Because Q has a

finite number of faces, the process must end.

LEMMA 5. Let C be a polyhedral cone generated by d inde-
pendent vectons A which form the columns of a matnix A. The
vecton X Lies in the nelative intenion C' of C if and only if the
components of the vector

a = (Ata)~1atx
are positive and X 45 Aa.

" Proof. Note that X is in CI if and only if X has the form
AB where the components of the vector B are positive. Suppose X
is in CI, i.e. X is AB where the components of g8 are positive.
Then A(AtA)-lAtX is A(AtA)'lAtAB which equals AR which is X. So
X equals Aa. Now (AtA) 1atx equals ata) " 1atag which equals B, a
vector with positive components. Suppose the components of a are

positive and X is Aa. Then X is in CI.
LEMMA 6. Fox p-dimensional vectons Ay and scalars b.s define
Q Zo be a closed convex polyhedron given by

Q= {Xin RP: AlX <b., i=1,...,n}

Define the Linear subspace (called the Lineality space of Q)
L= (Xin RP: A}X=0, i =1,...,n}
and Let It be its onthogonal complLement space. Define the point-
ed polyhedron S by g
S=QnN L*.

Then the codimension of a face F. 0f Q 4 equal to the codimen-
sion An It of the face

* =
FI FI ns



of S. Furthermore the vector X lies in the relative interior of
FI if and only if PDL(Xj lies in the relative interior of F¥*,
where P/, is the projection to L*.

Remark. FI is L @ F*, the direct sum of L and F’I‘.

Prnoog. A theorem of Motzkin [2] cited in Stoer and Witzgall
[4] shows that Q is L @®S. For I a subset of {1,...,n}, define
the face FI to be
ty_ ..
Fo= Q0N {X: A[X=b,, for i in I}.

‘The definition of Ff implies that

F* = {X in S: A'X=b., for i in I}.
I i 1

It is clear that Ff is a face of S when we write

$={Xinl': AX<b,i=1,...,n}h

(Proof of Remark: Clearly FI is contained in
(P (F)) & PDL(Fi)). It suffices to show that P (F;) is L and

3 *
I and pLL(FI) is FI. Assume that

F; is nonempty. Let Xd be in F,. “Then for any X in L, and each

(L @PL_,_ (Fi)) is contained in F
iinlI,
AY(X+P L (X)) < b
i I+ %0 — 1

since AFX is zero and AFP l(X') is AFX . The same sort of rea-
1 i L 0 10

soning shows that for each i not in I,
AY(X+P. (X)) < b
i o’ — "it

Thus (X+PLL(X6)) is in FI for any X in L and any X0 in FI. This
implies PL(FI) is L and (L'&)PLL(Fi)) is contained in FI. -
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Now we show that PLL(Fi) is (F{NS): Let Z be in Fi. Then

for each 1 in I,

t
= Ay (P (2)+P11 (2))

t
=0 + Aile(Z)‘
Also, for each i not in I,

b, < A

t
i—-"1

t
Z=0+ AiPLL(Z)'
Thus pLL(zj is in (FNS) which implies that PLL(Fi) is in (F/0S).
Since (FIﬂS) is contained in FI and is also contained in L*, we
have that (FIﬂS) is contained in PLL(FI)' Thus pLL(Fi) is
(FIﬂS). gq.e.d. Remark.)

Returning to the proof of the lemma, we note that by defini-
tion the dimension of FI is the dimension of the linear manifold

generated by FI. Since FI is (L GBF;) by the Remark, the dimen-

sion of FI is the dimension of L plus the dimension of F;. The

codimension of Fq is defined to be_p minus the dimension of’FI.
This must be the dimension of L' minus the dimension of Ff, i.e.

the codimension of Ff in L[*.

The inequalities which describe FI are

{X: AXX <b,, fori=1,...,n; -A%X < -b, for j in I}.
i -~ i ] = 3

The possible nonsingular inequalities of FI are of the form

AFX < b.
iT - "i

where i is not in I.
The inequalities which describe FI are the same inequalities

which describe Ff plus the restriction that the vectors of Ff lie



in I*. So the possible nonsingular inequalities for F; are also

those of FI where the vectors are constrained to lie in L. But
for i not in I

b, > Atx
1 1

AL (P (0+P 1 (X))

t .
AP ().

Thus an inequality is nonsingular for FI if and only if it is a
nonsingular inequality for Ff. Thus a vector X is in the rela-
tive interior of FI if and only if PLL(X) is in the relative in-

terior of F;.

Definition 7. (Simplicial decomposition of a pointed cone).
Define a simplicial cone of dimension d to be the pointed cone
generated by d linearly independent vectors. A simplicial decom-
position of a pointed cone of dimension d is the description of
the pointed cone as the union of a finite number of simpliéial
cones of dimension d whose relative interiors are pairwise dis-
joint. |

Remark. A simplicial decomposition exists for any pointed
cone. (To see this, note that a pointed cone is generated by a
finite number of vectors. Consider a hyperplane which passes
through the interior of the cone and bisects it in' such a fashion
that the intersection of the cone and hyperplane is a pointed
polyhedron whose vertices are among the generators of the cone.
The pointed polyhedron would be a face of the polytope with ver-
tex at zero created by the bisection. A simplicial decompoéi-
tion of the polyhedron exists and generates a simplicial decompo-

sition for the cone.)

LEMMA 8. Let F be a convex set containing zero and suppose
that F is contained in the convex set K. Let N be the Linean
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subspace generated by F. 1§ P (X) 44 the projection of the vee-

Zorn X to K and P (X) Lies in the nelative interion Fl of F, Zthen
PK(X) equals PN(X),the projection of X Zo N.

Proog§. Because F is contained in K and PK(X) lies in F, we
have that PK(X) equals PF(X) the projection of X to F. Because
zero is in F, the linear manifold generated by F is also the
linear subspace generated by F. Clearly PN(X) lies in N. By
the LEMMA of Stoer and Witzgall stated in the proof of Lemma 2
of this appendix, there is a positive scalar e such that
(PF(X)+E(PN(X)-PF(X))) is in F. Then F contains

Z

Pr(X)+e/ (1+€) (Py (X)-P, (X))

1/(1+€) (P (X) v (P (X)-PL (X)) + €/ (1+€)PL(X)

since F is convex.
Since F is contained in N, we have PF(X) equal to PF(PN(X)).
But

[1Py0-21 12 = e/ se))?] Pyx-Po0 | [,

which is less than ]]PN(X)—PF(X)H2 unless Py (X) equals PL(X).
This would be a contradiction to the definition of PF(X) (equal
to PF(PN(X))) since it would imply that Z is closer to PN(X) than
PF(X). Thus we must have PF(X) equal to PN(X).

LEMMA 9. Let zero be contained in the convex set K which is
contained in the convex set Q. Define N o be the Linear sub-
dpace generated by K and Let Nt be its orthogonal complement
Apace. Define

_ P
CK—N"(]Q

where QP 48 the polar cone 04 Q and Zet PQ’ Py and Pyt be the

projections to Q, N, and N respectively. Then PQ(X) A8 An the
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nekative interion X* of K if and onky if P () 48 in k' and
PN_L X) 48 4in CK' '

Remark. 1In the case that Q is a pointed convex polyhedron -
with a vertex at zero, then Qp and Qpp are convex polyhedral
cones. As noted by H. P. Wynn [5], CK is a face of Qp whose di-
mension is equal to the codimension of K.

Proof. Assume that PN(X) is in KI and PNL(X) is in CK' Then
PN(X) is in Qpp since KI is in Q which is in Qpp. Also PNL(X) is
in Qp by the definition of CK. Furthermore PN(X) and PNL(X) are
orthogonal since N is a linear subspace. By the LEMMA cited in

the proof of Lemma 2, PN(X) equals P pp(X) the projection of X to

Q
Qpp. Because PN(X) is in Q, then P pp(X) is in Q. Because Q is
Q
contained in Qpp we have that P, (X} equals P (X). Thus P_.(X)
Q QPP Q

equals PN(X) and is in KI.

Assume that PQ(X) is in KI. Then by Lemma 8, P

Thus PN(X) is in KI. By Lemma 3, (X-P

Q(X) is PN(X).

Q(X)) is PQp(X). But

Pyt (X) is (X-Py(X)) which is (X-P,(X)). Thus pNL(xj is in both N

Q
and Qp, which implies that PNL(X) is in CK'

LEMMA 10. Let T be an r dimensional nosumal random vectonr
with mean v and covardiance . Assume that h 4is a real-valued

difgerentiable function defined on (0,o) satisfying

(*) Lim t%h(t) exp(-t/2) = 0

-

. 1
(**) Lim t®h(t+c)exp(-t/2) = 0 for any c > 0.
t->0

Then
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r
t -1 t -1
E[(jEII(O.w)(Tj))T L (T-1)h(T°27°T)]
r 1 1
= E[(N I )(T.))(rh(th-lT)+2h'(th- T M),
j=1 2%
Proof. Let u be (T-r)tz-l(T-r), and let v be th-lT. Note

that
d 1 -1 1
ET; {exp(- 5 u)Tjh(v)} = (= (T~T))jexp(— E-u)Tjh(v)
1 -1 1
+ exp(- 7 wh(v)+2(z T)jTjeXp(— 5 wh'(v).

Thus
Tj:oo -
[exp(~ %u)T.h(v)] = -G T-0) T W) +h(v)
J T.=0 0 JJ
j
+ 27T R () Jexp - L wydr..
3 2 J

Using (*) and (**) we have

g(z (T-r))jTjh(v)exp(- E'U)de

- 7 __l + 7 -1 '
= gh(v)exp( > u)de gZ(Z T)jTjh (v)de.

Now multiply both sides of the equation by I I(O
i#j ’
tegrate both sides of the equation with respect to the other

oo)(Ti) and in-

It

Ti's. Then summing over j yields the appropriate result.
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