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ABSTRACT

We consider the Bayesian statistical models in which the prior
distribution of the parameter vector 81 in the distribution of an
observable random vector % is to be specified in a hierarchical fashion
and one wants to learn about the hyperparameters at each level of this
prior distribution. It is shown that for a wide class of information
measures, based on the so-called f-divergence, the information decreases
as one moves to higher levels of hyperparameters. This result unifies
all the theorems in Goel and DeGroot (1981) and provides several other

information measures for which the above desirable property holds.
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1. INTRODUCTION AND SUMMARY

In the Bayesian hierarchical models the prior distribution of g],
the parameter involved in the probability distribution of the observable
random vector X, is specified by the Decision Maker (DM) in several
stages. Specifically, let the prior distribution of 81 belong to a
family of distributions indexed by the 'hyperparameter' vector 8o-
Instead of assigning a value to 9o in order to make an optimal decision,
the DM is willing to assign another prior distribution to the possible
values of 80> which in turn may be indexed by an hyperparameter vector
83> etc. This mode of expressing prior information was advocated by
Bayesians in the early fifties (see Good, 1950). Since the early
seventies, the Bayesians and empirical-Bayes statisticians have taken
a vigorous interest in hierarchical models. Good (1980) provides a
historical perspective and the usefulness of the hierarchical Bayesian
methodology. In this article we are specifically interested in studying
the behavior of the information about various hyperparameters in the |
observation X. The results obtained here show that for a wide class
of information measures, which includes all measures discussed in Goel
and DeGroot (1981), [referred to as G&D from here on], the information
about the hyperparameters decreases as one moves away from the data
through the various levels, Of course, this concept of decreasing infor-
mation does not hold true for all measures as shown by examples in
G&D. This article presents a more general and unified approach to
the problem considered in G&D.

In Section 2, we consider a general hierarchical model, and show

that information about 21 in % decreases as one moves to higher levels



of hyperparameters. This result is proved in terms of the class of
information measures based on the f-divergence between either (1) the
posterior and the prior distribution of g. or (2) posterior distributions
of 9; corresponding to two different observations. In Section 3, we
iTlustrate the results of Section 2 in terms of a linear hierarchical

model.

2. INFORMATION IN BAYESIAN HIERARCHICAL MODELS

Let: € denote an experiment ih which the value of the random vector
X is to be observed. Suppose that the gpdf g(%lgl) of X involves an
unknown parameter 91- By information about the unknown parameter 81
in the experiment. €, or a posteriori in the observed value b of X,
one may mean anything which changes the distribution of 81 Hence
there is no unique yardstick for measuring information and a measure
which is very general in definition, in that most other measures in
use are its special cases, will be most useful. In the Bayesian
formulation, measures of information are defined either in terms of
both utility and probability or in terms of probability alone.

Raiffa and Schlaifer (1961, Chapter 4) define the value of sample
information in terms of both utility and probability. The conditional

value of sample information (CVSI) is defined by the difference of

expected terminal utilities (with respect to the posterior distribution)
of the posterior Bayes action and the prior Bayes action. They also

define the expected value of'éample information (EVSI) as the expectation

of CVSI with respect to the marginal distribution of X.
The information measures that are.based on probability

alone use some measure of divergence between the posterior and the prior



distribution of 8. The idea is that if the posterior distribution is
close to the prior distribution, then the DM's opinion about 9 has not
changed much after observing X and therefore the observation X has
not provided any significant amount of information about 8. However,
if the two distributions are far apart then x has provided a lot of

information about 9. We shall call these as conditional amount of sample

information (CASI) measures. Gavurin (1963) calls the expectation

of CASI as the expected amount of sample information (EASI).

Some attempts have been made to relate EVSI and EASI (see Perez,
1968). The argument in favor of using EASI as an information measure
is that whenever the DM does not have a clear idea of the utility function
and therefore cannot choose an experiment with maximum expected utility,
he or she may consider, as an alternative, maximizing EASI to choose an
experiment. Bernardo (1979) argues that with an appropriate choice
of the decision space and reasonable constraints on the utility function,
maximizing Shannon information really amounts to maximizing EVSI.
However, as shown by Perez (1968), other utility functions will not
lead to this EASI. |

We use several well-known CASI measures in G&D. However, a most
general CASI measure is based on the concept of f-divergence (see
Csiszar, 1963) for discriminating between two probability distributions.

Let My and Mo be two probability measures and A denote a finite or
a o-finite measure such that both My and u, are absoTutely continuous
with respect to A with the corresponding gpdf's denoted by 9 and 95

respectively. Furthermore, let f(u) denote an arbitrary convex function



defined on the interval (0,»).

Definition. The f-divergence of uy and u, is defined by
' g,(e) {

Some properties of f-divergence are discussed in Csiszar (1977) and
Ali and Silvey (1966). The f-divergence has as its special cases all
the well known measures for discriminating between two distributions
Tisted in Adhikari and Joshi (1956).

Note that‘eff(u],uz) does not depend on the dominating measure x.
However, in order to follownotations of G&D we will write*.ﬂf(g1,g2)
instead Of‘Jf(u1,u2)-

In order to simplify the notation for the Bayesian hierarchical
models, we shall denote the observable random vector X by 80 Let
g(golg]) denote the gpdf of 8o With respect to some o-finite measure,
where 81 is the unknown parameter vector. The prior gpdf of 81 is
denoted by g(gllgz), where gz is the 2nd-level hyperparameter vector;
and in general the gpdf of the ith-level hyperparameter 8i> given

is denoted by g{ 9 le Without any loss of generality, we

e1'+1 1+1

assume that each of the conditional distributions g(e le1+]), i=0,1,2,...

is nondegenerate for each possible value of 8i47- Lf for some level
k, the hyperparameter 8k in the distribution of Ok is known, then
we call it a k-1 stage hierarchical model.

For the general hierarchical model specified above, it was proved

in G&D that the CASI [g(e le (Qilgk)], based on f-divergence

O’mk



functions f(u)=u log u; f(u)=(u-1) Tog u; £(u)=1-u®, 0<a<1; and
f(u)=u"sgn(a-1), O<a#l, decreases as the level of the hyperparameter

i increases from i=1 to i=k-1, for every observation 80> every value

of 8k and all k, k=3,4,... . Thus the corresponding EASI also decrease
as i increases for every value of 8k and k=3,... . ‘We shall now unify
the results of Theorems 3.1 - 3.5 in G&D by proving this property for
a much wider class of CASI and EASI measures. These results will be

a direct consequence of the following theorem.

Theorem 3.1.Let (U,V,W) be a Markov chain. Then for any convex function

f(+) on (0,=),

fotw)r (2] auw < forne [9(—;}%}] div). (3.1)

Proof. Because of the Markov property, we have g(u|v,w)/g(u) = g(viju)/g(v),

and therefore,

i )g(ulv,w)
(ulw) _ fg(vlw géulljg W du(v)

il

fgévvw) g(viu)dv(v). (3.2)

Now, using Jensen's inequality, it follows from (3.2) that



fg(u)f [SUUW)] dr(u) < ffau)g(v]u)f [9‘&%’-)] du(v)da(u).

(3.3)
Changing the order of integration on the right hand side, (3.3) reduces
to (3.1).

For the Bayesian hierarchical model g. ; and

8547 are conditionally independent given 85> i=1,2,... . Therefore

{go,gl,gz,.;.} form a Markov Sequence. Now, conditionally on 8k?

if we identify U,V,W by o

9i41° Qi and QO respectively, then the next

theorem is a direct consequence of the above result.

Theorem 3.2. For any convex function f(-) on (0,»), let the CASI for

the ith level hyperparameter of the hierarchical model, given the
observation §o and the hyperparameter 81 (i<k), be denoted by If(ilgk),
i.e.,

T(ilg) = e [a(e: 18058, )-9(8; 19,01, (3.4)
whereleﬂf(g],gz) is defined by (2.1). Then If(1|gk) is a decreasing
function of i (i€ {1,2,...,k-1}) for every 808K and k>3.

It is clear that Theorems 3.1 - 3.4 in G&D are special cases of
Theorem 3.2. Here, the information is being measured in terms of the
divergence between the posterior and the prior distributions of the
hyperparameters. However, one may also be interested in measuring
information in a local sense, as with Bayes-Fisher information, defined
in G&D, which measures the effect of a small change in the observation
vector 8, on the posterior distribution on ;- In Theorem 3.5 of G&D,

it is shown that the Bayes-Fisher information about 95 decreases as



i increases. However, the Bayes-Fisher information can be shown to

be the Timit, as Ag;>0, of the f-divergence between 9(Q1!Q0+Aﬁosﬁk)v

and g(%ilgo,gk), for f(u)=u Tlog u. So Theorem 3.5 of G&D can be obtained
as a limiting case of the following general result, which can be proved

by tracing the steps in the proof of Theorem 3.1.

Theorem 3.3. For any convex function f(-) on (0,»), the f-divergence,

Le(1.9880101) = ¢ [9(8;195-9))-9(9;180-8, )] (3.5)

between the posterior distributions of £ corresponding to two different
observations 8% and 8, decreases as i increases.
A0 A0
Theorem 3.3 indicates that as the level of the hyperparameter
moves away from the data, the posterior distributions corresponding to
two different observations get closer and closer. Thus, the information
about the hyperparameters decreases as the level i increases in this

sense also.

3. THE LINEAR HIERARCHICAL MODEL
In this section, we shall consider the linear hierarchical model

given by

i1 = A8y +eis 151,20 (3.1)
Here §p 1s an observable po-d1mens1ona1 random vector, 8; 1s a p;-
dimensional vector of hyperparameters; e; are independent normal
N(O,gi) random vectors which are independent of Qi's. This model has

been widely used in the Bayesian literature and is discussed in G&D,



It is well known that if the prior distribution of 85 given Sk is
N(%ikgk’ﬁi)’ then the posterior distribution of Qi given QO and Qk

. are given by (4.3) and (4.4)

is N(ﬂini’ﬂi) where B..,P. and Hashs

ViR i i
respectively in G&D.
We know from Theorems 3.2 and 3.3 that the f-divergence information
measures decrease as one moves to higher level of hyperparameters.
The CASI and the corresponding -EASI values for some f-functions are
given in G&D. The CASI corresponding to “f*(u)=(u-1)2, i.e., the

xz-divergence between the posterior and the prior distributions of

g; can be shown to be equal to

5] gy _
Lex(ilgy) = IEgE%ET% expl2 trip} (LH(28;-1) ypyid] - 1

%2 IV

(3.2)

u-1 _
where B.=H. P, and y.=H.h.-B:\ 8-

It follows from (3.2) and Ee (yiy%) = Ri'ﬂi that
A vy

Tog|B;| - % Tog|2B,-1| + % tr[(f+(2B.-1) ' 1(1-B])]  (3.3)
is also a decreasing function of 1.

Furthermore, the xz—divergence between the posterior distribution

of o. for two different observations 8% and 8. can be shown to be
g A0 0

If*(']s,%.s’mol,%k) = eXD{(QS-QO)' 4 (1)(,%6',%0)} = 15 (3-4)

where! & (i) is the Bayes-Fisher information matrix for 8 given by

(4.11) of G&D. 1In fact, it can be proved that all f-divergence measures



between these posterior distributions are monotone increasing

functions of (gg-go)' ﬁz(i)(ga-go), which can be thought of as the
Mahalonobis distance between the two posterior distributions. This

result has an important implication for the classical discriminant

analysis problem. Let Y ~ N(u,z) and Z ~ N(x,g). Then every f-divergence
v v

measure between these two distributions is a monotone increasing function

of the Mahalonobis distance D2=(g-¥)'§"1(g-¥), and therefore the

classical classification procedure based on any f-divergence measure

is equivalent to the one based on ‘ﬁz.
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