INCORPORATING PRIOR INFORMATION IN MINIMAX ESTIMATION OF THE MEAN OF A GAUSSIAN PROCESS

bу

Robert Wolpert Department of Mathematics
Duke University
Durham, North Carolina, U.S.A.

James Berger²
Department of Statistics
Purdue University
W. Lafayette, Indiana, U.S.A.

Mineograph Series #81-37

Department of Statistics
August 1981

Research supported by the National Science Foundation under Grant No. MCS-78-01737.

²Research supported by the Alfred P. Sloan Foundation and by the National Science Foundation under Grants No. MCS-7802300A3 and MCS-8101670.

INCORPORATING PRIOR INFORMATION IN MINIMAX ESTIMATION OF THE MEAN OF A GAUSSIAN PROCESS

bу

Robert Wolpert¹
Department of Mathematics
Duke University
Durham, North Carolina, U.S.A.

James Berger²
Department of Statistics
Purdue University
W. Lafayette, Indiana, U.S.A.

I. INTRODUCTION

Let $\mathcal Z$ be the complete metric space of continuous—real-valued functions on a closed set $I \subset IR^1$, and let $\mathfrak B$ be a subspace of $\mathcal Z$. Let $\mathcal Z$ be a Borel-measurable $\mathcal Z$ -valued Gaussian process on some probability space $(\Omega, \mathfrak F, P)$ with zero mean $0 = \mathsf E \mathsf Z(t)$ and known covariance $\gamma(s,t) = \mathsf E \mathsf Z(s) \mathsf Z(t)$ for $s,t \in I$. Denote by $\gamma(s) = \gamma(s,s)$ the variance of $\mathsf Z(s)$. Here (as usual) we suppress the ω -dependence of functions $\gamma \in \mathsf L^1(\Omega, \mathfrak F, P)$ and denote $\int \mathsf Y \mathsf d \mathsf P$ by $\mathsf E \mathsf Y$ when convenient.

We consider the problem of estimating the mean $\theta \in \mathbb{C}$ of the Gaussian process $X(t) = \theta(t) + Z(t)$, based upon the observation of one or more sample paths $\{X_1,\ldots,X_n\} \in \mathcal{X}$, under a quadratic loss function L. The usual estimator in this situation is $\delta^0[\vec{X}](t) = \vec{X}(t)$; in Section 2 we develop an estimator δ^M which incorporates prior information about θ in an intelligent manner and whose-risk function $R(\theta,\delta^M) = EL(\theta,\delta^M[\vec{X}])$ satisfies

(1.1)
$$R(\theta, \delta^{M}) < R(\theta, \delta^{0}) \text{ for every } \theta \in \Theta$$
.

Research supported by the National Science Foundation under Grant No. MCS-78-01737.

Research supported by the Alfred P. Sloan Foundation and by the National Science Foundation under Grants No. MCS-7802300A3 and MCS-81016.70.

It was shown in Berger and Wolpert [3] that (except in trivial cases) δ^0 is minimax but inadmissible. Indeed broad classes of estimators improving upon δ^0 were found. In selecting an alternative estimator, it was pointed out that prior information concerning $\theta(\cdot)$ must be taken into account to ensure that the region of significant risk improvement over δ^0 coincides with a set in which $\mathfrak{g}(\cdot)$ is believed to lie. (No estimator $\mathfrak s$ can have uniformly large risk improvement over δ^0 , since δ^0 is minimax.) A simple type of prior information concerning $g(\cdot)$ is specification of a "best guess" $\xi(\cdot)$ for $\theta(\cdot)$. and specification of a subjective "variance function" $\underline{\lambda}(\cdot)$ representing the expected squared error in the guess $\xi(\cdot)$ for $\theta(\cdot)$. Although specification of other features of the prior distribution may sometimes be possible, it. would be useful to be able to proceed making use only of $\zeta(\cdot)$ and $\lambda(\cdot)$. Of course, sometimes $\theta(\cdot)$ may really be random with a known distribution. In such a case one would want to use the optimal Bayes estimator (or optimal filter) for the problem. If, however, the distribution of $\theta(\cdot)$ is only approximately known, then one might well wish to use a minimax estimator employing the known features of the distribution of $\theta(\cdot)$ (as developed here), since this ensures robustness against misspecification of the distribution of g(+).

To incorporate $\xi(\cdot)$ and $\lambda(\cdot)$ in an improved estimator, it is convenient to <u>pretend</u> that $\theta(\cdot)$ is itself a Gaussian process (independent of $Z(\cdot)$) with a mean function $\xi(\cdot)$ and a variance function $\lambda(\cdot)$. Actually, we will assume that the entire prior covariance function $\lambda(s,t) = \mathbb{E}[\{\theta(s) - \xi(s)\}[\theta(t) - \xi(t)]\}$ has been specified, although in Section 3 it will be shown that knowledge solely of $\lambda(\cdot)$ will suffice in many applications.

In Berger and Wolpert [3], a version of the Karhunen-Loéve expansion of $X(\cdot)$ was used to reduce the estimation problem to that of estimating—a

countable sequence of normal means $\{\theta_i\}$. The prior information concerning $\theta(\cdot)$ was also transformed into prior information about the θ_i , but in selecting a minimax estimator using the prior information, the covariances among the θ_i were ignored. This could potentially lead to a serious misrepresentation of the prior information. In this paper a more complicated expansion of the process is considered, one which allows use of all the prior information in selecting a minimax estimator. This expansion is developed in Section 2, in which the desired minimax estimator is also derived. The implementation of this expansion is particularly easy when $\gamma(t,s)$ and $\lambda(t,s)$ commute in an appropriate sense, as discussed in Section 3.

II. THE MINIMAX ESTIMATOR

Let \mathscr{A} (the "action space") be a subset of the Borel-measurable real-valued functions on I. The loss incurred in estimating $0\in\Theta$ by $a\in\mathcal{A}$ will be

(2.1)
$$L(0,a) = \int |0(s)-a(s)|^2 \mu(ds).$$

Here μ is an arbitrary but specified non-negative Borel measure satisfying

- Al) $L^2(I,d\mu) \supset \Theta$,
- A2) $L^2(I,d\mu)\subset A$,
- $A3) \quad \gamma(\cdot) \in L^{1}(I, d\mu),$
 - A4) $\gamma(\cdot,\cdot)$ is continuous on I×I.

As in Berger and Wolpert [3] it suffices to take $\mathcal{A} = L^2(I,d_H)$ and to consider only the case of a single observation of X.

Let & denote the <u>decision space</u> of all Borel-measurable mappings &: $\mathscr{X} \to \mathscr{A}$, and &: $@\times_{\mathscr{R}} \to IR_+$ denote the risk function

(2.2)
$$R(\theta,\delta) = EL(\theta,\delta[X]) = \int_{\Omega} \int_{I} |\theta(s)-\delta[X](s)|^{2} \mu(ds) dP.$$

(2.3)
$$C = R(\theta, \delta^{0})$$

$$= E \int_{I} |\theta(s) - X(s)|^{2} \mu(ds)$$

$$= \int_{I} \gamma(s, s) \mu(ds)$$

$$< \infty \quad \text{by A3}.$$

Since δ^0 is minimax (if, e.g., Θ is dense in $L^2(I,d_\mu)$), any estimator δ^M satisfying (1.1) must also be minimax and, for each $\epsilon>0$,

(2.4)
$$A_{\varepsilon}^{\delta} \equiv \{\theta \colon R(\theta, \delta) < C_{-\varepsilon}\}$$

must be a proper subset of Θ . When prior information about the location of Θ is available it is desirable to use an estimator Θ for which A_{ε}^{δ} is quite likely to contain Θ . As discussed in Section 1, we will assume that prior information is available and is modeled as a Gaussian process with mean function $\xi(\cdot)$ and covariance function $\lambda(\cdot,\cdot)\colon I\times I\to IR^{\frac{1}{2}}$. Assume that $\xi\in \mathfrak{X}$ and that $\lambda(\cdot,\cdot)$ is a positive-definite function satisfying

A5)
$$\iint \lambda(s,t) \mu(ds) \mu(dt) < \infty$$

Denote by Γ (respectively A) the integral operator on $L^2(I,d\mu)$ with kernel $\gamma(\cdot\,,\cdot\,)$ (resp. $\chi(\cdot\,,\cdot\,)$), i.e.

(2.5)
$$\Gamma[f](s) = \int_{I} \gamma(s,t)f(t)\mu(dt)$$

$$\Lambda[f](s) = \int_{I} \lambda(s,t)f(t)\mu(dt).$$

Let \mathscr{N} and \mathscr{N}^{\perp} represent the null space of r and its orthogonal complement, $f^{\mathscr{N}}$ and f^{\perp} the orthogonal projections of an element $f \in L^2(I, d_{\mu})$ onto \mathscr{N} and \mathscr{N}^{\perp} , respectively. Since $(X-\theta)^{\mathscr{N}}=0$ almost surely and since

4

$$L(\theta,a) = L(\theta^{\perp},a^{\perp}) + L(\theta^{N},a^{N})$$

$$\geq L(\theta^{\perp},a^{\perp})$$

$$= L(\theta,a^{\perp}+X^{N}),$$

we can restrict our attention without loss of generality to estimators $\boldsymbol{\delta}$ satisfying

(2.6)
$$\delta[X] = (\delta[X]^{\perp}) + (X^{N}).$$

We will in fact restrict attention to the smaller class of estimators satisfying (2.6) and also $\delta[X]^{\perp} = \delta[X^{\perp}]$, i.e., to the problem of estimating θ^{\perp} by observing X^{\perp} . This entails no serious loss of generality (once the prior mean $\xi(\cdot)$ and covariance $\lambda(\cdot,\cdot)$ are updated by the observation of $\theta^{\mathcal{N}} = \chi^{\mathcal{N}}$) and permits us to simplify notation by assuming that $\mathcal{N} = \{0\}$, i.e.

A6) r is positive definite.

It follows from A3) and A5) that Γ is positive definite and trace class, A is nonnegative definite and Hilbert Schmidt, and hence that $(\Gamma + \Lambda)$ is positive-definite and Hilbert-Schmidt; thus

$$Q = (r+\Lambda)^{-\frac{1}{2}} r^2 (r+\Lambda)^{-\frac{1}{2}}$$

is positive-definite and trace class, with a complete orthonormal set of $p \le \infty$ eigenfunctions $\{e_i\}_{0 \le i < p} \subset L^2(I,d_E)$ with corresponding eigenvalues $q_0 \ge q_1 \ge \dots > 0$ satisfying

$$(2.8) tr(Q) = \sum_{i \le p} q_i \le tr(i) = C.$$

Here $p \le \infty$ is the dimension of the range of Q; in most interesting cases $p = \infty$. Define $B = \Gamma(\Gamma + \Lambda)^{-\frac{1}{2}}$ and set (for $0 \le i < p$)

(2.9)
$$e_{i}^{*} \equiv Be_{i}$$

$$X_{i}^{*} = \frac{i}{q_{i}} \int_{X} X(s)e_{i}^{*}(s)\mu(ds),$$

$$\theta_{i}^{*} = \frac{1}{q_{i}} \int_{I} \theta(s)e_{i}^{*}(s)\mu(ds),$$

$$\xi_{i}^{*} = \frac{1}{q_{i}} \int_{I} \xi(s)e_{i}^{*}(s)\mu(ds).$$

The random variables $\{X_j^*\}_{j < p}$ are a Gaussian family with means $\{X_j^*\}_{j < p}$ and covariances

$$\sigma_{ij}^{*} = E(X_{i}^{*} - \theta_{i}^{*})(X_{j}^{*} - \theta_{j}^{*})$$

$$= \frac{1}{q_{i}q_{j}} \int_{I} e_{i}^{*}(s)_{Y}(s,t)e_{j}^{*}(t)_{\mu}(ds)_{\mu}(dt)$$

$$= \frac{1}{q_{i}q_{j}} \langle e_{i}, B^{t}rBe_{j} \rangle_{\mu}.$$

Here $\langle f,g \rangle_{\mu} = \int\limits_{I} fg d\mu$ is the inner-product in $L^2(I,d\mu)$ and B^t represents the adjoint of B with respect to $\langle \cdot , \cdot \rangle_{\mu}$. The $\{e_i^*\}$ are a complete orthogonal family since

$$\langle e_i^*, e_j^* \rangle_{\mu} = \langle e_i, B^t B e_j \rangle_{\mu}$$

$$= \langle e_i, Q e_j \rangle_{\mu}$$

$$= q_j \langle e_i, e_j \rangle_{\mu}$$

$$= q_i \text{ if } i = j, 0 \text{ else.}$$

Thus any $f \in L^2(I,d\mu)$ may be expanded in an L^2 -convergent series (2.10a) $f(\cdot) = \sum_{i < p} f_i e_i^*(\cdot) ,$

where the $f_i = \frac{1}{q_i} \langle f, e_i^* \rangle_{\mu}$ satisfy

(2.10b)
$$\langle f, f \rangle_{\mu} = \sum_{i < p} q_i |f_i|^2 < \infty$$
.

If $\vartheta(\cdot)$ were regarded as a sample path of a Gaussian process independent of $Z(\cdot)$, with mean ξ and covariance $\lambda(\cdot,\cdot)$, then the ϑ_i^* would themselves

be Gaussian random variables with means ξ_i^* and covariances

$$\lambda_{ij}^* = \frac{1}{q_i q_j} \langle e_i, B^t \wedge B e_j \rangle_{\mu}$$
.

Nevertheless in the expectations in the sequel, θ will be regarded as constant.

The following estimator will be considered. Define

(2.11)
$$\delta^{\mathsf{M}}[X](\cdot) = \sum_{i\geq 0} \delta_{i}^{*\mathsf{M}}[X]e_{i}^{*}(\cdot),$$

where for $0 \le i < p$,

(2.12)
$$\delta_{i}^{*M}[X]$$

$$= X_{i}^{*} - \frac{1}{q_{i}} \sum_{j \geq i} (q_{j} - q_{j+1}) \min\{1, \frac{2(j-1)^{+}}{||X^{*} - \xi^{*}||_{j}^{2}}\} [\sharp_{(j)}^{*-1}(X_{(j)}^{*} - \xi_{(j)}^{*})]_{i},$$

$$||X^{*} - \xi^{*}||_{j}^{2} = (X_{(j)}^{*} - \xi_{(j)}^{*})^{t} \sharp_{(j)}^{*-2}(X_{(j)}^{*} - \xi_{(j)}^{*}),$$

$$X_{(j)}^{*} = (X_{0}, X_{1}, \dots, X_{j})^{t}, \xi_{(j)}^{*} = (\xi_{0}, \xi_{1}, \dots, \xi_{j})^{t},$$

and $t^*_{(j)}$ is the $(j+1)\times(j+1)$ matrix with entries $\sigma^*_{k\ell}$

Theorem. δ^{M} is well defined and (if p > 3) $R(\theta, \delta^{M}) < R(\theta, \delta^{0})$.

<u>Proof.</u> To show that 5^{11} is well defined, it is first necessary to prove that the summation in (2.12) converges. To see this, let

$$Z_{(j)} = \dot{x}_{(j)}^{*-1} (x_{(j)}^{*} - \xi_{(j)}^{*}),$$

so that the sum in (2.12) can be written

Clearly each term in the series is bounded by

$$(q_{j}-q_{j+1})\min \left\{1, \frac{2(j-1)^{+}}{|Z_{(j)}|^{2}}\right\}|Z_{(j)}| \leq (q_{j}-q_{j+1})\sqrt{2(j-1)^{+}}$$

Also, summation by parts gives that

$$\sum_{j=i}^{\infty} (q_{j} - q_{j+1}) \sqrt{2(j-1)^{+}} = \sqrt{2} \left\{ q_{i} \sqrt{(i-2)^{+}} + \sum_{j=i}^{\infty} q_{j} \left[\sqrt{(j-1)^{+}} - \sqrt{(j-2)^{+}} \right] \right\}$$

$$\leq \sqrt{2} \left\{ q_{i} \sqrt{(i-2)^{+}} + \sum_{j=i}^{\infty} q_{j} [1] \right\}.$$

By (2.8), this sum is bounded by

$$\sqrt{2} (q_i \sqrt{(i-2)^+} + \sum_{j < p} q_j) < \sqrt{2} (q_i \sqrt{i} + c) < \infty$$

and (2.12) converges uniformly.

To show that (2.11) converges in $L^2(I,d_\mu)$ it is enough to show that $\sum_{i< p} q_i (\delta_i^{*M}[X]-\theta_i)^2 < \infty$; we do this and prove minimaxity using techniques originated in Bhattacharya [4]. First note that by Berger [1] the finite-dimensional estimators

$$(2.14) \qquad \delta^{(j)}[X_{(j)}^*] \equiv X_{(j)}^* - \min \left\{ 1, \frac{2(j-1)^+}{||X^* - \xi^*||_j^2} \right\} \left[\sharp_{(j)}^{*-1}(X_{(j)}^* - \xi_{(j)}^*) \right]$$

$$\delta_{i}^{*M}[X] = \frac{1}{q_{i}} \sum_{j>i} (q_{j}-q_{j+1})\delta_{i}^{(j)}[X_{(j)}^{*}]$$

satisfies

$$\begin{split} \mathbb{E} \big(\delta_{i}^{\star \mathsf{M}} - \theta_{i}^{\star} \big)^{2} &= \mathbb{E} \big[\ \frac{1}{\mathsf{q}_{i}} \ \ \, \sum_{j \geq i} \ \, (\mathsf{q}_{j} - \mathsf{q}_{j+1}) \big(\delta_{i}^{(j)} - \theta_{i}^{\star} \big) \big]^{2} \\ &\leq \mathbb{E} \ \frac{1}{\mathsf{q}_{i}} \ \ \, \sum_{j \geq i} \ \, (\mathsf{q}_{j} - \mathsf{q}_{j+1}) \big[\delta_{i}^{(j)} - \theta_{i}^{\star} \big]^{2} \ \, , \end{split}$$

$$\begin{split} \sum_{i \geq 0} \; q_{i} & \in (\delta_{i}^{*M} - \theta_{i}^{*})^{2} \leq \sum_{0 \leq i \leq j} \; (q_{j} - q_{j+1}^{}) & \in [\delta_{i}^{(j)} - \theta_{i}^{*}]^{2} \\ & \leq \sum_{0 \leq i \leq j} \; (q_{j} - q_{j+1}^{}) \sigma_{i}^{*} i \\ & = \sum_{0 \leq i} \; q_{i}^{} \sigma_{i}^{*} i \\ & = \sum_{i \geq 0} \frac{1}{q_{i}^{}} \; \iint \; e_{i}^{*}(s) e_{i}^{*}(t) \gamma(s, t) \mu(ds) \mu(dt) \\ & = \int_{I} \gamma(s, s) \mu(ds) \; = \; C. \end{split}$$

Since C < ∞ and (by Al)) $e \in L^2(I,d_P)$, Parseval's identity (2.10) guarantees that the sum (2.11) converges in $L^2(I \times \Omega; d_P \times d_P)$ to an estimator δ^M in Ω with risk

(2.15)
$$R(\theta, s^{M}) = E \sum_{i=1}^{M} q_{i} (\delta_{i}^{*M} - \theta_{i})^{2} \leq C.$$

Since $R(9,\delta^0) \equiv C$ and δ^0 is minimax, δ^M must be minimax too. The inequality (2.15) is strict (by Berger [1]) if $p \geq 3$.

The estimator e^M is the infinite dimensional analog of the estimator e^{MB} in Berger [2]. Indeed the decomposition induced by Q in Section 2 corresponds to the linear transformation induced by Q* in Berger [2]. The reader is referred to Berger [2] and Berger and Wolpert [3] for extensive discussion of the motivation for this estimator.

III. ANALYSIS WHEN I AND A COMMUTE

In general, it is difficult to work with Q and to determine the $\{e_i^*\}$ and $\{q_i\}$. When F and A commute, however, in the sense that

$$\Gamma \Lambda f(\cdot) = \Lambda \Gamma f(\cdot)$$

for all $f \in \mathcal{L}^2(I; d_\mu)$, then the problem simplifies considerably. This is because a complete set $\{e_i\}$ of eigenfunctions of r with eigenvalues $\{v_i\}$ can be found which are also eigenfunctions of Λ with eigenvalues, say, $\{\lambda_i\}$, and hence

$$Qe_{i}(\cdot) = \frac{v_{i}^{2}}{v_{i}^{+\lambda_{i}}} e_{i}(\cdot) ,$$

so that we can choose

(3.1)
$$e_{i}^{*} = e_{i} \text{ and } q_{i} = \frac{v_{i}^{2}}{v_{i}^{+\lambda_{i}}}$$

The estimator δ^M reduces in this case to the estimator considered in Berger and Wolpert [3] (letting $\lambda_i = \lambda_{ii}$).

The only remaining problem is that of determining when Γ and Λ commute. (In terms of $\lambda(s,t)$ and $\gamma(s,t)$ this means

$$g(t,s) \equiv \int_{\gamma} (s,v)_{\lambda}(t,v)_{\mu}(dv)$$

must equal g(s,t), so that we will also say $\lambda(s,t)$ and $\gamma(s,t)$ commute.) Since the eigenfunctions of Γ are often easy to determine (see Berger and Wolpert [3]), it will often suffice to merely check that these eigenfunctions are (or can be chosen to be) eigenfunctions of Λ .

If the $\{e_i^{}\}$ are eigenfunctions of $\lambda(s,t)$, then it follows from A5) that

(3.2)
$$\lambda(s,t) = \sum_{i\geq 0} \lambda_i e_i(s) e_i(t).$$

(Although this sum is in general only an $\mathcal{L}^2(I\times I; d_\mu\times d_\mu)$ sum, if the λ_i are summable and $\gamma(\cdot,\cdot)$ bounded then the convergence is uniform.) The class of all such $\lambda(s,t)$ (with $\lambda_i\geq 0$, of course) is thus the class of prior covariance functions for which the analysis is particularly simple.

Finally, we can address the question of determination of suitable $\lambda(s,t)$ from knowledge of $\lambda(t) = \lambda(t,t)$. Using (3.2), it is clear that a suitable (i.e., commuting) $\lambda(s,t)$ can be found providing

(3.3)
$$\lambda(t) = \sum_{i\geq 0} \lambda_i e_i^2(t),$$

i.e., providing $\lambda(\cdot)$ is in the positive cone spanned by the $\{e_i^2\}$. We conclude with the application of these ideas to the situation of Example 2 in Berger and Wolpert [3].

Example. Suppose $X(\cdot)$ is Brownian motion with mean $\theta(\cdot)$ and covariance function $\gamma(s,t)=\sigma^2\min\{s,t\}$ ($\sigma^2>0$ known), I=[0,T], and $\mu=$ Lebesgue measure. In Berger and Wolpert [3] (or Wong [5]) it is shown that the eigenfunctions and eigenvalues of Γ are, for $i\geq 0$,

(3.4)
$$e_{i}(s) = (2/T)^{\frac{1}{2}} \sin[(i+\frac{1}{2})\pi s/T],$$

$$v_{i} = [\sigma T/\pi(i+\frac{1}{2})]^{2}.$$

For these eigenfunctions, using (3.2) and the multiple angle identity, we obtain the class of commuting $\lambda(s,t)$ as being those of the form (with $\lambda_1 \geq 0$)

(3.5)
$$\lambda(s,t) = \sum_{i=0}^{\infty} \lambda_i \frac{1}{i!} \{\cos[(i+\frac{1}{2})\pi(s-t)/T] - \cos[(i+\frac{1}{2})\pi(s+t)/T]\}$$

= $h(\frac{|s-t|}{2}) - h(\frac{s+t}{2})$,

where

(3.6)
$$h(y) = \sum_{i=0}^{\infty} \lambda_i \frac{1}{T} \cos[(2i+1)\pi y/T],$$

for $0 \le y \le T$. Noting that (for $j \ge 0$, $i \ge 0$)

$$\int_{0}^{T} \cos[js\pi/T]\cos[(2i+1)s\pi/T]ds = \begin{cases} 0 & \text{for } j \neq 2i + 1 \\ \frac{T}{2} & \text{for } j = 2i + 1 \end{cases},$$

we obtain (for $j \ge 0$)

(3.7)
$$\int_{0}^{T} h(s)\cos[js\pi/T]ds = \begin{cases} 0 & \text{if } j \text{ is even} \\ \frac{1}{2}\lambda_{j} & \text{if } j = 2i+1. \end{cases}$$

Since $\{\cos[is\pi/T], i=0,1,\ldots\}$ is a complete orthogonal system in $2^2(I;d_{I\!\!u})$, the fact that all even Fourier coefficients are zero means that h must be an odd function about $\frac{T}{2}$, i.e.,

$$h(s) = h(T-s).$$

All odd functions can be represented as in (3.6), but the subclass for which the λ_i are nonnegative is, of course, smaller. Although this subclass is hard to describe in general, the following lemma describes an important special case.

Lemma. Suppose that

- (i) h(y) is continuous and nonincreasing;
- (ii) h(y) is convex on $[0, \frac{T}{2}]$; and
- (iii) h(y) is odd about $\frac{T}{2}$.

Then h(y) is of the form (3.1) (and hence $\gamma(s,t)$ commutes with $\lambda(s,t)$), with

(3.8)
$$\lambda_{i} = 2 \int_{0}^{T} h(y) \cos[(2i+1)y_{\pi}/T] dy \ge 0.$$

<u>Proof.</u> By (3.5), it is only necessary to show that (3.8) holds. This can be done analytically by dividing the integral up into regions of size T/(4i+2), changing variables so all integrals are from 0 to $\frac{\pi}{2}$, using the

periodicity of cosine to collect terms, and employing convexity and monotonicity of h to prove that the resulting integrand is positive. The details will be omitted.

The above observations also solve the problem of determining appropriate (i.e. commuting) $\lambda(s,t)$ from the variance function $\lambda(t)$. Indeed, (3.5) implies that

(3.9)
$$\lambda(t) = h(0) - h(t),$$

so, in particular, any function h satisfying the conditions of the Lemma will result in a suitable variance function via (3.9).

In Berger and Wolpert [3], the choice $h(t) = -\rho t$ ($\rho > 0$) was considered, i.e., the variance function

$$\lambda(t) = \rho t$$

was investigated. This, however, corresponds to

$$\lambda(t,s) = h(\frac{|s-t|}{2}) - h(\frac{s+t}{2}) = \rho \min\{t,s\},$$

which is simply a multiple of $\gamma(s,t)$, and hence a rather trivial example of a commuting γ . Many other suitable variance (or covariance) functions can clearly be developed using the Lemma. For example, choosing

$$h(y) = (\frac{T}{2} - y)^3$$

(which clearly satisfies the conditions of the Lemma), results in

$$\gamma(t) = (\frac{T}{2})^3 - (\frac{T}{2} - t)^3$$

and

$$\gamma(s,t) = \frac{1}{4} \min\{t,s\} [3(\max\{t,s\}-T)^2 + \min\{t,s\}^2]$$
.

(The above variance function (or a multiple of it) might be reasonable in a situation where the "expected error" in the prior guess $\xi(t)$ for $\theta(t)$ is

more sharply increasing near the endpoints of [0,T] than near the middle.) An easy calculation yields

$$\lambda_{i} = \frac{6T^{4}}{(2i+1)^{2}\pi^{2}} \left[\frac{1}{2} - \frac{4}{(2i+1)^{2}\pi^{2}}\right],$$

which can be used with (3.4) and (3.1) to define δ^{M} . (In the commuting situation it is probably easier to use the expression in Berger and Wolpert [3] for δ^{M} than to use (2.11) and (2.12).)

REFERENCES

- [1] Berger, J. (1976). Minimax estimation of a <u>multivariate</u> normal mean under arbitrary quadratic loss. J. Multivariate Anal. 6, 256-264.
- [2] Berger, J. (1982). Selecting a minimax estimator of a multivariate normal mean. Ann. Statist. 10, No. 1.
- [3] Berger, J. and Wolpert, R. L. (1981). Estimating the mean function of a Gaussian process and the Stein effect. Mimeograph Series #81-17, Statistics Department, Purdue University.
- [4] Bhattacharya, P. K. (1966). Estimating the mean of a multivariate normal population with general quadratic loss function. Ann. Math. Statist. 37, 1819-1824.
- [5] Wong, E. (1971). Stochastic Processes in Information and Dynamical Systems. McGraw-Hill, New York.