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I. INTRODUCTION

o
Let = be the complete metric space of continuous=—seal-valued functions
on a closed set Ic:IR], and let & be a subspace of 7. (et 7 be a Borel-
measurable X -valued Gaussian process on some probability space (2,3,P) with
zero mean 0 = E£7(t) and known covariance y(s,t) = EZ(s)Z(t) for s,t€1. De-
note by v(s) = y(s,s) the variance éf 2(s). Here (as usual) we suppress the
w-dependence of functions Y EL](Q,g,P) and denote [YdP by EY when convenient.
We consider tHé‘Bkob]em of estimating the mean ¢ €g of the Gaussian pro-
cess X(t) = g(t) + Z(t), based upon the observation of one or more sample
paths {xq,...,xn}e X, uﬁder a quadratic loss function L. The usual estima-
tor in this situation is 6O[§](t) = X(t); in Sectian 2 we develop an estima-

tor 5M which incorporates prior information about o in an intelligent manner

and whose -risk function R(o,s“) = EL(@,éH[XJ) satisfies

(1. 1) R(e,am) < R(s,ao) for every g€g .
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[t was shown in Berger and Wolpert (3] that (except in trivial cases)

'ao s minimax byt inadmissibie. Indeed broad classes of estimators improv-
ing upon 50 were found. In selecting an alternative estimator, it was point-
ed out that prior information concerning 6(-) must be taken into account to
ensure that the region of significant risk improvement over 60 coincides with
¢ set in which §(-) is pelieved to Tie. (No estimator ¢ can have uniformly
large risk improvement over 60, since 60 is miinimax.) A simple type of prior
information concerning 6(-) is specification of 3 "besg‘gyessf £(-) for o(-)
and specification 0f a subjective “variance function" A(-) representing the
expected squared error in the guess ¢(-) for g(-), Although specification

07 other features of the orior distribution may sometimes be possible, it
would be useful to be able to procecd making use only of £{-) and »-). of
course, sometimes (- ) may really be random with 3 known distribution. In
such 3 case one would want L0 use the optimal Bayes estimator (or optimal
filter) for the problen. [T, however, the distribution of 5(-) is only ap-
proximately known, then one might well wish to use a minimax estimator em-

ploying the known featyres of the distribution of 0(-) (as developed here),
— T

since this ensures rebustness against misspecification of the distribution

)

To incorporate :(-) ang 2(-) in an improved estimator, it is convenient

~

of 4

to pretend that 3(-) is itself a Gaussian process (independent of Z(;)Q with
a mean function £(-) and a variance function a(.). Actually, we will assume
that the entire prior covariance function a(s,t) = é[[e(s)—g(s)][e(t)—g(t)]}
has beenrspecified, although in Section 3 1t will be shown that know?edge
solely of x{-) will suffice in many applications.

In Berger and Uoloert (3], a version of the Karhunen-Loéve expansion

of X(-)was used to reduce the estimation problem to that of estimating-a



countable sequence of normal means {Bi}' The prior information concerning
§(-) was also transformed into prior information about the 8., but in select-
ing a minimax estimator usjng the prior information, the covariances among
the 5, were ignored. This could potentially lead to a seriousgmisrepresenta~
tion of the prior information. In this paper a rore complicated expansion

of the process is considered, one which allows use ot all the prior informa-
tion in selecting a minimax estimator. This expansion is developed in Sec-
tion-2, =17 which the desired minimay estimator is also derived. The implemen-
tation of this expansion is particulerly easy when Y(f;?T ahd A(t,s) com-

mute in an appropriate sense, as discussed in Section. 3.

[T. THE MINIMAX ESTIMATOR
Llet o (thc_"attion space™) be a subset of the Borel-measurable real-

valved functions on I. The loss incurred in estimating 6 ¢ by a €cf will

be
(2.1) L(0,a) = flo(s)-a(s)]%u(ds).
Here u is an arbitrary but specified non—negatﬁve Borel measure satisfying
A1) ) se, . R
\ 2 i
/12/‘ L (I,d‘,l)C(_\l—,

A3) ",’(‘)EL'(l,d}:),
A%)  ~v(-,-) is continuous on Ix].
As in Berger and Yolpert [3] it suffices to take 94 = LZ(I,du) and £o’ con-

sider only the case of a single observation of X.

& ~¢of , and R: éx)g - IR+ denote the risk function

(2.2) R(o,5) = EL(0,8[x]) [ [le )-6[X]( )[ p(ds)dp.



The usual estimator 6O[X] = X has constant risk

(2.3) C

Mt
X
—
<D
(=2
~—

= € f Jo(s)-X(s)] % (ds)
1

= { v(s,s)u{ds)

A
3

by A3).

IS

- . . . . M
s minimax (if, e.g., o is dense in LZ(I,dU)), any estimator § sat-

~ -

dince & 1 I
. R
isfying {1.1) must also be minimax and, for each ¢ » 0=
I 6 = . -
(2.4) Az {o: R(8,8) <C-¢}

must be a proper subset of @. Vhen prior information about the location of

£ is available it ig desirable to use an estimator o for which AS 1s quite
likely to contain ¢. As discussed in Section 1, we will assume that prior
information is available and s modeled as a Gaussian process with_mean func-
tion ¢(-) and covariance function 5(-,-): Ix] = IR Assume that ¢ € 2 and that
A-,-) is a positive-definite function satisfying

Ab) f/k(s,t)u(ds)u(dt) <o
Cenote by 1 (respectively %) the integral operdto?fég?rzjl,dp) vith kernel

7

(o) (resp. al-,.)), i.e.

(2.5) ' FUEJ(s) = [ (s, t)F(t)u(dt)
I
AlFJ(s) = [ A(s,t)F(t)u(dt)
I .
Let 4 and ¥ represent the nul] Space of T and its orthogonal comple-
e 2 -
ment, £/ and £+ the orthogonal projections of an element f €L°(1,dy) onto /

s

and ¥+, respectively.  Since (X-39)” = g almost surely and since
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Lﬁua):lJoL@*)+lJoﬁ£/% )
> L(a*,a*)
= L(e,ai+x/’/),

we can restrict our attention without loss of generality to estimators § sat-

isfying

(2.6) §[X) = (elx]4) + ()

)

We will in fact restrict attention to the smaller class of estimators satisfy-

—

= a[X*], i.e., o the probiem of estimating 9" by
T — - -

w

ing (2.5) and also §[X
. 1 I . . . .
observing X~ . This entails no serious loss of generality {once the prior
] . . r_' /s/ . /YI
mean ;(-) and covariance A(-,.) are updated by the observation of 9/ = ¥ )
and permits us to simplify notation by assuming that A= 10}, i.e.
AG) T is positive definite.
It follows from A3) and A5) that T is positive definite and trace class,
i 1S nonnegative definite and Hilbert Schmidt, and hence that (t+p) is

positive-definite and Hilbert-Schmidt; thus
(2.7) Q = (r+a) % rf(rep)

is positive-definite and trace class, with a‘compTéfE”@rthonormal set of p < w
eigenfunctions {ei}Oii<pC:L2(I’d“) ©1th corresponding eigenvalues AU > 4 =
) satisfying
(2.8) tr(Q) = z . < tr(y) = C.
<
Here p < » s the dimension of the range of Q; in most interesting cases

q

p = . Define B = r(r+a) * and set (for 0 < i < p)

(2.9) e? = Bei
Xr = ;—1 { K(s)ex(s)u(ds),



N

1 q] I 1
et = oo [ els)e*(s)u(ds).
! q"l 1 1
The random variables (X;}J are a Gaussian family with means;EX3== 8% and
cocvariances
* = D(Y*_a*N (Y% _a%
O]'j E(X] Of)()(j GJ)
| ) .
- Tqay L[ eflshvls tler(t)udsuat)
i i o
! t
= e.,Bre, _
9;9; <8 €5

, N ro. R , . . 2 '
Here {f,g» = | fgdy is the ner-product in L (I,dy) and Bt represents the
1t

adjoint of B with respect to (-,-> . The {e?) are a complete orthogonal
i

family since

er,er¥) =<e.,B Be.d
Cefheld, = ey 57
=<e.,Qe.>
u
ERTARELEDS

= q; if i=j, 0 else.

S L2, \ . 2 .
Thus any f € (I,du) may be expanded in an L -convergent series
(2.10a) f(-) = 7 fie;(-) ,

i<p

: 1 .- .
where the f. = a«-(f,e;) satisfy
i "

(2.10b) {(E,f> = .Z qi]f

If 9(-) were regarded as a sample path of a Gaussian process independent

of Z(-), with mean ¢ and covariance A(+,+), then the e; would themselves
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be Gaussian random variables with means g? and covariances

1 . t
AF. = — e€.,8 ABe. .
1) Q]-QJ- N 1 \ eJ >‘.J

Nevertheless in the expectations in the sequel, g will be regarded as con-

stant.

The following estimator will be considered. Define

M E
(2.11) sX3C) = T sMixdex(o),
1>0
L -
where for 0 < i < p, e
(2.12)  s:M[x)
L. ] 2(j-1) prl *
= kp -2 T (amag, ming, —2USIL el e e
] q] Jﬂ J +1] H)}k_{AHJZ (3)'=(3) 2(3)7-
2 * * L K- *
A*x_g* . = - . ] . X Y " )
ety = gy G Y Oy ()
* t * t
bA = (X, X, K , = 2 Eq » £ )
f5) = Booky i f) T e 5
and 1?4) s the (j+1)=(j+1) matrix with entries o:F .
J 5

3
l

Theorem. ¢ is well defined and (if p > 3) R(a,éH) <-R(6,6O).

Proof.  To show that &' is well defined, it is first necessary to prove
T . . F

that the summatior in (2.12) converges. To see this, let

Lx-1 % *
Zioy = B (0 -eh ),
() TG Gy e
so that the sum in (2.12) can be written
+

: 2(3-1)
ymin{1, D— }z(j)].
12051

Clearly each term in the series is bounded by

(2.13)

It~ 8
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(9.-q. )minS], __il_ll
J i+
L lzg)1°

,Z l S <qj_qj+1) v 2(3‘]—)—:

Also, summation by parts gives that

1 (0505472 2(5-1)" f% v ) J[ (J-1) 7 (j"-2)+H
J=1 J=i
? tlo J[]]é
j=1i
Ry (2f§77 this sum is bounded by
72 (0 /(-2 T ag) @ (g +C) < o

J<p
and (2.12) converges uniformly.
To show that (2.11) converges in LZ(I,du) it is enough to show that
) qj(sfM[x]-ei)Z <= ; we do this and prove minimaxity using techniques

i<p
originated in Bhattacharya [4]. First note that by Beraer [1] the finite-

dimensional estimators

(3)py* * : 2(3-1)7 | epwe1,on
oo ’ m_g—,?s L) X gyme sy
N

are (for sum of squares error loss) minimax est1nators of the mean

(2.14)

e?j) z (66,...,e§)t of a multivariate normal X?j) = (X6,...,X3¥)t with covari-
ance matrix i?j)' It follows that the random variable
*“ (3)
= X
SRS R RIS IR TN
j>i
satisfies
*M 2 1 B J 2
Blo;-67)" = €l g 1 (a5-a5,9)(6;7 -01)]



50
150 ;£ (Mg 2 5,O£§£j (qj-qj+])E[61j)_a?]2
- Qigfj.(qj_qj+1)o?1 )
) O_%j_i qio?1
) ]g g: /I ex(s)ex(t)y(s,t)u(ds)u(dt)

Since C < = and (by Al)) ec LZ(I,du), Parseval's identity (2.10) guarantees
~that the sum (2.11) converges in LZ(IXQ;dude) to an estimator 6N in © with
risk

(2.15) R(9,5") = Efa; (s0.)% < c.

. 0 0 . .. M .. . .
Since R(3,5") = C and 6o 1S mInimax, § must be minimax too. The 1nequality

(2.15) is strict (by Berger [1]) if p > 3. [l

1

- o A . S - . .
the estimator s is the ntinite d]mens1ona7»qgilog of the estimator

R [X17] .
0 : - . _ . .
& n Berger [2]. Indeed the decomposition induced by Q in Section 2 cor-

respends to the linear transformation induced by Q* in Berger [2]. The
reader is referred to Berger [2] and Berger and Wolpert (3] for extensive

discussion of the metivation for this estimator.

TTT. AMALYSIS WHEN [ AND A COMMUTE
In general, it is difficult to work with Q and to determine the {e?}
and {qi}. lhen 1 and 4 commute, however, in the sense that

CAF(-) = Arf(-)
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for all fe=- 2(I;du), then the problem simplifies considerabﬁy. }his is
because a complete set {ei} of eigenfunctions of r with eigenvalues {Vi}
can be found which are also eigenfunctions of A with eigenvalues, say,

{Ai}, and hence

2
Vi
Qe]( ) = V_.Ll\_ e]( ) 2
i 7
so that we can choose
g
2
v1 .
_ . - 3 .
(3.1) e¥ = e. and 9. v

The estimator GM reduces in this case to the estimator considered in Berger
and Holpert [3] (letting Ay o= Aii).

The only remaining problem is that of determining when r and A commute.
(In terms of a(s,t) and y(s,t) this means

g(t,s) = [y(s,v)a(t,v)u(dv)

must equal g{s,t), so that we will also say x(s,t) and v(s,t) commute.)
Since the eigenfunctions of I are often easy to determine (see Berger and
Wolpert [3]), it will often suffice to merely check that these eigenfunctions

are (or can be chosen to be) eigenfunctions of A.

If the {ej} are eigenfunctions of A(s,t), then it follows from A5) that

7

(3.2) Ms,t) = Aie.(s)e.(t).

(Although this sum is in general only an iZZ(IxI;duxdu) sum, if the A, are
sunmable and y(-,-) bounded then the convergence is uniform.) The class
of all such Ax(s,t) (with A; > 0, of course) is thus the class of prior co-

variance functions for which the analysis is particularly simple.
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Finally, we can address the question of determination of sujtable A(s,t)
from knowledge of A(t) = A(t,t). Using (3.2), it is clear that a suitable

(i.e., commuting) A(s,t) can be found providing

(3.3) M) = T oagel(e),
i>0 :

. _ . o 2

1.e., providing A(-) is in the positive cone spanned by the {ei}. e con-
clude with the application of these ideas to the situation of Example 2 in
Berger and Wolpert [3].

T

Example. " Suppose X(-) is Brownian motion with mean 6(-) and covariance func-
ticn v(s,t) = ozmin{s,t} (02 > 0 known), 1 = [0,T], and , = Lebesque measure.
In Berger and Wolpert [3] (or Wong [5]) it is shown that the eigenfunctions

and eigenvalues of I are, for i > 0,

(3.4) e (s) =(2/T)% sin[(i+3 Jns/T],

vo = [oT/nlie2 ) )2,

For these eigenfunctions, using (3.2) and the multiple angle identity, we

cbtain the class of commuting a(s,t) as being those of the form (with

NS 0) , s e T

b2

(3.5) s t) = Y % {COS[(i+£;)ﬁ(S-t)/T]—cos[(i+;i)n(S+t)/T]},
i=g "
} |
= (430 _;(%;_),
where
fas) q
(3.6) h(y) = 7§ As %-cos[(21+])wy/T],

for 0 <y < 7. KNoting that (for j >0, 1>0)
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T 0 for j#2i+1

[ cos{jsu/T]cos[(2i+1)sn/T]ds
0

i

for j =21+ 1,

ro|—

we obtain (for j > 0)

T : 0 if J is even
(3.7) [ h(s)cos{jswn/T]ds =
0 3 Al if j=2i+1
Since {cos[isa/T],i=0,1,...} is a complete orthogonal system in 2(I;du),

o g
the fact that all even Fourier coefficients are zero means that h must be

BN

an odd fdﬁction'about %—, i.e.,

h(s) = h(T-s).
A1l odd functions can be represented as in (3.6), but the subclass for
which the A; are nonnegative is, of course, smaller. Although this subclass
is hard to describe in general, the following lemma describes an important

special case.

Lemma. Suppose that
(i) h{y) is continuous and ﬁonincreasing;
(i1) h{y) is convex on [0, %-];-and .
(i11) hly) is odd about 7 .
Theﬁ h(y) }s of the form-(3.1) (and hence y(s,t) commutes with A(i,t)),

with

(3.8) h(y)cos[(2i+1)yr/T]dy > 0.

>

Hi

~No
O —

Proof. By (3.5), it is only necessary to show that (3.8) holds. This can
be done analytically by dividing the integral up into regions of size

T/(4i+2), changing variables so all integrals are from 0 to %—, using the
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periodicity of cosine to collect terms, and employing convexity and mono-
tonicity of h to prove that the resulting integrand is positive. The de-

tails will be omitted. [ |

The above observations also solve the problem of determining appropri-
ate (i.e. commuting) A(s,t) from the variance function x(t). Indeed, (3.5)

implies that

(3.9) x(t) = h(0) - h(t),
- e .
so, in particular, any function h satisfying the conditions of the Lemma will
result in a suitable variance function via (3.9).
In Berger and YWolpert [3], the choice h(t) = -pt {p > 0) was consider-

ed, i.e., the variance function
x(t) = ot

was investigated. This, however, corresponds to

A(t,s) = h li%ﬁl ) - h{ E%E ) = 0 mintt,s} ,

which is simply a multiple of v(s,t), and hence a rather trivial example of
a commuting y. Many other suitable variance (or covariance) functions can

clearly be developed using the Lemma.. For examples—choosing

(which clearly satisfies the conditions of the Lemma), results ins
(8) = (507 - (1)
and

y(s,t) = 4 min{t,s}[3(max{t,s}—T)2+min{t,s}2].
(The above variance function: (or a multiple of it) might be reasonable in a

Situation where the “expected error" in the prior guess £(t) for o(t) is



<t
- »

more sharply increasing near the endpoints of [0,T] than near the middle. )

An easy calculation yields

r.’ hes
which can be used with (3.4) and (3.1) to define éj. (In the commuting
situation it is probably easier to use the expression in Berger and Wolpert

(3] for g than to use (2.11) and (2.12).)

—
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