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1. Introduction

Consider the Tinear model y(x) = o'f(x)+e which is assumed to hold
for each "level" x:w& % (compdct). Here € denotes a random variable with
mean 0 and variance 02 for all x. The present interest is in (univariate)
polynomial regression of degree n on ¥ = [a,b] so that ¢ = (6076]""’en)'
and f(x) = (1,x,...,xn)'.

Suppose that N uncorrelated observations on the response y(x) are
to be obtained at levels XpseeeoXye The Tinear model for these data is
Y=X6+e, where Y = [y(x]),...,y(xN)]', where Xij = fj(xi) for T <4 <N

and 0 < j < n, and where e = (e],...,eN)'. It will be assumed that

inferences about & are to be based on the classical estimator 6§ = (X'X)']X'Y.

1

Thus E(8) = ¢ and Cov(8) = cz(X'X)' . Note that if rank (X) < n+1, then

the inverse operation should be interpreted as a generalized inverse. The

design goal, which will be made more precise, is to choose Xys---sXy SO
as to "minimize" (X'X)_].

In order to more conveniently formulate the design problem, let Xgse - Xy

now denote the distinct levels at which n .,nr observations are taken.

0"

Here n0+...+nr=N. An "exact design" gN is a probability measure on % which

concentrates mass ni/N at each X Such a design prescribes exactly where
and how to allocate observations. The set of all exact designs for a given
value of N will be denoted by EN' The "information matrix (per observation)"
of an exact design gN is M(gN)=ff(x)f(x)'dgN(x). It is readily shown that

Ny *

Cov(6)=02M'](g /N. Thus a reformulation of the design problem is to determine

an exact design gN which "minimizes" M'](EN). Note also that for polynomial
b r
regression, Mij(gN)=p1+j where 0 <i,j<n and each uk=kadgN(x)= ) nng/N.
a 2=0



An approach which is often taken in optimal design work is to exfend
consideration to the class of all "approximate designs", ie. arbitrary
probability measures & on %. This approach has the distinct advantage
of greater mathematical tractability. Its Timitation is that, in practice,
only an exact design may be implemented. It is often the case that an
optimal approximate design is not exact for certain choices of N (or even
for any choice of N). This Timitation will be especially important when
N is not too large.

The present interest is to address some classical optimal design
questions in the context of the exact design setting. The results
obtained (and conjectured) will be compared with results known for
approximate designs.

Section 2 is denoted to the admissibility problem for polynomial
regression. Theorem 2.1 provides a necessary condition for admissibility.
It is conjectured that this condition is also sufficient and the basis
for the conjecture is discussed.

Section 3 treats the design criterion of D-optimality. Salaevskii

g distributes

(1966) conjectures that a D-optimal exact design ¢
observations as evenly as possible among the n+1 support points of the
D-optimal approximate design. Theorem 3.1 provides a simplified proof of
Salaevskii's result that the conjecture holds for sufficiently large N.

Section 4 provides some examples of G-optimal exact designs.

2. Admissibility

Recall that the exact design problem is to determine an exact design

gN which "minimizes" Nr](aN). A particular optimality criterion may

correspond to a rea]-va]ued‘function @ on the set of non-negative definite



matrices. A f@-optima]? design would minimize @(M'1(gN)) among all

exact designs. The examples of @(M-](gN))=|M_](EN)I(”Deoptimality”) and of
@(Mfl(sN))Fmax f(x?'MT](gN)fo)f("Groptimality“),will be considered in
sectiens 3 éfd 4.

In many cases (including D and G-optimality) the function ¢ is
monotone in the sense that if M'](ET) 5_M_1(52), then @(M'1(gq))_§
@(M-](gg)). Here the inequality A<B for non-negative definite matrices
A and B should have the customary meaning that B-A is non-negative definite.
These developments naturally suggest the admissibility problem: characterize
those exact designs whose inverse information matrices are minimal with
respect to "<". Equivalently, the problem is to characterize the exact
designs whose information matrices are maximal with respect to "<".
Aec@rding]y_ an exact design EN is "admissible" if and only if there exists
no other exact design EN such that M(éN) z_M(gN).

In the case of polynomial regression, the following Temma relates

the admissibility problem to a problem involving the moments wuq,....us 1>
Hon:
Lemma 2.1: gN js admissible for polynomial regression of degree n

if and only if there exists no other exact design which shares the same

values of yuis..coupy but has a larger value of v, .

Proof: See Karlin and Studden (1966).

In the approximate setting, a design £ is admissible for polynomial
regression of degree n if and only if the support of & includes n-1 or
fewer interior points. This characterization has been developed by

de la Garza (1954), Kiefer (1959), and Karlin and Studden (1966). Note



that this admissibility condition involves only the support of an
approximate design. It will be seen that the corresponding statement for
exact designs does not involve only the support of an exact design.

The following definition establishes some terminology which will

be used in subsequent developments.

Definition 2.1: . If gN({xj}) > 1/N, then X5 is termed a cluster

of gN.

ii. If gN({xj}) = 1/N, then xj is termed a singlet of gN.

Example 2.1: Let [a,b] = [0,5], Tet N=10, and Tet

N
£ ='.]60*'.16]4'.362*'.]63+31644'.365. (Here 8 denotes a point mass at x.)
X X
X _ X
Neoxe X ox x . x X
0 1 2 3 4 5

Thus gN is comprised of an interior cluster 2, interior singlets 1,3,& 4,
a cluster 5, and a singlet O.

It is proposed that the clusters of an exact design correspond to the
support points of an approximate design. The twist to this relationship
is that pairsof adjacent interior singlets and singlets at a or b act as
clusters. In this spirit, the following theorem establishes conditions
that are necessary for an exact design to be admissible for polynomial
regression of degree n. Arguments for the sufficiency of these conditions

will be given after the proof of their necessity.

Theorem 2.1: Let gN be an exact design with r interior support points,
with m interior clusters, and with s pairs of adjacent interior singlets.

If gN is admissible for polynomial regression of degree n, then:



i. r < 2n-1,
ii. m<n-1, and

iii. s < (n-1) - m.

Proof. The proof will make repeated use of polynomials of the form
2n 2n

P(x) = 1 (x-y.)= } (-1)2 e.xzn'z, (2.1)
=1 9 =0 J

where a §_y],...,y2n5p and where each

5 k
e, = I y. .
k i ‘< = J
1<J<eco<jpsn 2=1 v
2n K
Here e0=]. It will be convenient to define S = Z yj for k=0,...,2n.
J=1

In terms of this notation,
k
2
s, = ) (-1)" e, s

for k=1,...,2n. These equations establish a 1-1 correspondence between
SqseeesSy and S ERERTL for each k=1,...,2n. Furthermore, it is seen that
another set of points &1,...,§2n achieves §k = S for k=1,...,2n-1 but
§2n > So0 if and only if ék = e for k=1,...,2n-1 but éZn < ey According
to (2.1), this is possible if and only if there exists €>0 such that
the polynomial ﬁ(x) = P(x)-¢ has 2n roots on [a,b]. (Here e = o é2n and
the roots of P are y],...,yZn.) This approach will now be applied to the
admissibility problem by appropriate choice of Yyoeees¥oy

To demonstrate that conditions i. - iii. must hold, suppose first
that an exact design gN has more than 2n-1 interior support points. Let
y],...,yzn denote 2n of them. Then it is clear that there exists ¢ > 0

such that 5(x) = P(x) -¢ has roots &1,... on [a,b]. According to the

’y2n



preliminary argument, this implies that §k=sk for k=1,...,2n-1 but §2n>52n'
Now let %N be the exact design obtained from gN by exchanging the observations
at yys....y,, for observations at &1,...,§2n. Then ﬁk =y, for k=1,...,2n-1
but ﬁ2n>”2n' That is, according to Temma 2.1, gN is inadmissible. Therefore,
an admissible design can have no more than 2n-1 interior support points.
FSuppose next that aN has more than n-1 interior clusters. Let SERRRTT
denote n of them and let Yoi-1VYoi = Xj for i=1,...,n. As in the previous

i
case, the polynomial P(x) may be lowered to yield alternate observation
points 9],...,§2n such that ﬁk = uy for k=1,...,2n-1 but ﬁ2n > g Thus
gN is inadmissible, implying that an admissible exact design can have no
more than n-1 interior clusters.

Suppose finally that gN has m < n-1 interior clusters and more than
(n-1)-m pairs of adjacent interior singlets. Then let x],...,xm denote the
interior clusters, let Yoi1 = Yo5 = % for i=1,...,m, and let Yom12+ "+ *Yon
denote points which comprise pairs of adjacent interior singlets. By applying
the same method to construct %N, it is seen that gN is inadmissible. There-
fore, an admissible exact design with m < n-1 interior clusters can have
no more than (n-1)-m pairs of adjacent interior singlets and the proof is
complete.

Theorem 2.1 provides a complete class of exact designs for polynomial
regression. A "typical" exact design from this class might have clusters
at a & b, n-1 clusters with (a,b), and n singlets separating the clusters.

A "less typical" exact design from this class, for n>3, is given by
Example 2.1.

At this time, the sufficiency of the conditions of Theorem 2.1 may

only be conjectured.



Conjecture 2.1: If an exact design gN satisfies conditions i.-iii. of

Theorem 2.1, then it is admissible for polynomial regression of degree n.

It is believed that this conjecture is valid because if an exact design
satisfies the conditions i.-iii., then no other exact design which also
satisfies them can achieve the same values of Hyseeeslpy q- 1F true
in general, this uniqueness property (in addition to lemma 2.1) would
prove the conjecture.

In the special case of linear regression, the validity of Conjecture
2.1 is readily demonstrated. Theorem 2.1 implies that an admissible exact

design must have the form gN

= (nOcSa ts, + "16b)/N’ where n0+n]+1=N
and a < x < b. It is clear that no other exact design of this form can

achieve u]=(n0a + X + n]b)/N.

3. .D-Optimality

As already remarked, a D-optimal exact design gg minimizes {M-](gN)[.

Equivalently, |M(gg)| = max |M(gN)l .
£ €5y
Hoel (1958) has obtained the result that an approximate design is
D-optimal for polynomial regression of degree n on [a,b] = [-1,1] if and
only if it concentrates equal mass at the roots of =(x) = (1-x2)T6(x),

where Tn(x) is the nth

8 < x? <.;;<xg = 1 denote the roots of n(x) and let EO denote

the D-optimal approximate design.

Legendre polynomial. For purposes of notation,

let -1=x

If N is an integer multiple of n+1, then the D-optimal exact design
coincides with the D-optimal approximate design. Otherwise, a reasonable
exact design might be one which distributes the N observations as evenly

as possible among the same points’{xg,...,xg}. That such a property



characterizes the D-optimal exact design(s) is the subject of the following

conjecture of Salaevskii (1966).

Conjecture 3.1: An exact design gg is D-optimal for polynomial

regression of degree n on [-1,1] if and only if Suppport (gE) = {xg,...,xg}
and Igﬁ ({¥?}) - Eg({x?})l < 1/N whenever 0 < i < j <n.

It should be noted that EE is unique if and only if N is an integer
multiple of n+l (in which case gﬂ = go).

A general proof of Conjecture 3.1 cannot be given at this time. It
may be noted that, in order to prove the conjecture, it need only be
shown that gg has no more than n+l support points. (It must have at least
that many if |M (gg)l > 0.) Then |M(gg)l = ? (n?/N) Vz(xg,...,xﬁ),

k3

i=0

where V2(xg,...,xN) = I (xN - x'\.l)2

j is the square of the Vandermonde
O<i<J<n

determinant corresponding to the points xg,...xﬁ. This quantity is maximized

if and only if x? = x? for i=0,...,n. Also, the product .H (nE/N) is
maximized if and only if |n§-n§]5] whenever 0 < i < J g_ajo
The main result of this section is Theorem 3.1 which states that
Conjecture 3.1 holds for large enough N. The proof of the theorem follows
(but streamlines) that of Salaevskii (1966). Special cases of Conjecture
3.1 and numerical work which support the validity of the cqnjecture will

be presented following the proof of theorem 3.1.

The following notation will be used extensively. Let
o [l ] =
Ngs«--sNy,

According to the Binet-Cauchy formula,



XO,.. ’Xr v ) ; )
wN [ = Z n-i . ln_i V X_i IR ,X_i ).
L ERERE L 1<ig<...<i<r 70 n 0 n

This relationship immediately reveals that gg must include +1 in its

support. For convenience, set xg = -xﬁ = -1.

Now application of Theorem 2.1 implies that r<2n for a D-optimal

exact design gg and that it can have no more than n-1 interior clusters.

Thus it may be assumed that n? = 1 for i=ntl,...,r. For convénience it

may also be assumed that x? <...<x2_]

The following lemma is essentially a statement that gg converges

weakly to go.

Lemma 3.1: x? - x? and n?/N + 1/(nt1) as n > » for i=0,...,n.

Proof: First note that EE ¥, £0° Also, lM(gO)|3JM(gg)|3JM(£E)|—+|M(£O)|.

Therefore, IM(gg)J —> lM(gO)l. The proof will be completeonce it is established

N
0

Suppose that ag did not converge weakly to g0 Then there exists a

that ¢n £q-

continuity point Yo of F0 such that FN(yO) does not converge to'FO(yO),
where FN(y) = gg([-l,y]) and FO(y) = go([-1,y]). Thus there exists >0
and a sequence {N.} such that |F, (y,) - F,(ys)|>e for all j. According
to the Helly selection theorem, there exists a subsequence {Nj } and a

measure £ such that géNjk) W, £. Therefore M(go(Njk)) — M(g) so that

IM(EO(N

established and since €9 is unique, this implies that &€= &g Hence

jk))l —|M(£)|. Since IM(gg)l ——+|M(g0)| has already been

F. (y.) —> F-(y.). This contradiction implies that £n “— g, and
N; Vo oY 0 0
\.k »

completes the proof.



10

The following lemma will be needed for the proof of Theorem 3.1.

Lemma 3.2: If i # 2, then

0 XnseoosX o X .

{ ll) [03 sk]( =n___,lp [J ‘

BX, N _ ia N-n.-n_+1 el (3.1)
il Ngs---oM | 1 %57%, Xy i g "j’ 3#1,n2—1 .

Proof: According to the Binet-Cauchy formula, the left hand side of

(3.1) is

)

X

; _i o e
b |

0 n 0 n

151'0<...<'inik

First note that the summation need only be taken over sequences 10 <Jo.<i
which include i. If the sequence also includes %, then Vz(xi see Xy
0

as a polynomial in Xis has a double root at Xs = Xo. Therefore such

sequences may be deleted from the summation and (3.2) equals

3 g y 2
— non, .o VO(XseXs senesXs )
9X; ]<i]<...<i <k T n T 'n -
—_ n— X'i—XQ'
is#i,z for s=1,...,n
=n; 3 n, n V2(x2,xi seeeaXy )
. . n
3X, 1§J]<...<1n§k 1 n 1

1sfi for s=1,...,n

Y X3
L N-n.-n +1 ‘s
: i nj,3#1,n2=]

These preliminary results will now be used to prove the following theorem.

Theorem 3.1: For N sufficiently large, a D-optimal exact design gg==gg .
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Proof: Suppose that the conclusion of the theorem were false. Then
there would exist an integer k such that n<k<2n and such that gg has k+1
support points for infinitely many values of N. Several steps are needed
to show that this supposition cannot hold.

i. Recall first from Lemma 3.1 that x? — x? énd n?/N — 1/(n+1) for
i=0,...,n.

For the remainder of the proof, N will be assumed to be one of the
infinitely many values for which gg has k+1 support points.

ii. The 1imiting behavior of x? will now be considered for n<i<k.
This sequence is bounded by + 1 and so a 1limit point x? exists. It will
0

be shown that X5 = xQ for some je{l,...,n-1}.

Since gg maximizes [M(gN)l? it must be true that

0=1 Efﬂ xg,...,xﬁ
n o ox. _
N 8 nN nN
002Ny
N 0
n....n,
= ) ) 10 .In 8V2 (X]_\il ) s X )
]5J0<"'<11F3k N 3¥1 0 n
) Nyoe-My 2
= Y 1 n oV N N N
1<ip<.lo<i <k T W o (xil""’xin’xi)' (3.3)

Recall now that n1=] for n<i<k. Thus the summands in (3.3) vanish in the
1imit as N -+ « unless 1n < n. Therefore, taking the limit of (3.3) and

applying Lemma 3.1 yields
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n 2
1" ¢ 0 0
0 = Z (__) o (X- s ,X ,X.)
1<i <<l <n neltoexy Ty h !
0 0.0 »
C " D [).(O"""X‘ri’xi] (3.4)
k1t Xy 1o, 1,1

Applying exactly the same methods to the condition

2 N N

n 2 N N
N 3Xi Ngs««- sy
yields
2 0 0 '
3y XaseooeX oXs
" [0 " ?]i-o. (3.5)
d X | I
As a function of x Y x0 x0 X
.i’ n+2 O,-.., n, _i
T1,...,1 51
is a polynomial of degree 2n. For 0<%<n, the Binet-Cauchy formula implies
0 0.0]_ 2,0 0 L : .
that ¢n+2 [XO""’Xn’Xz] 2V (xo,...xn). That is, this polynomial assumes
Toeueesl 1
. 0.0 0 0 _
the same value at the n+l points -T=xp<x;<...<x q<x  =I.
3y
Therefore Siﬂig' must have at least one root in each of the n intervals
i

" 0 '
of the form (xz,x2+]), where 0<g<n-1.

Furthermore, application of Lemma 3.2 yields

| 0 0.0
W2 {XO""’Xn’Xz] _ ay? 0 _ ¢

0
= m— (XQse..sX ) =
axi 1,.0...1 ,1 ax2 0 n

for 2=1,...,n-1. Here the equality to zero follows from the (approximate

theory) result that -]=x8 <x?<...<xg_]<x2 = 1 maximize V2.
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Now note that, according to the Binet-Cauchy formula, decreasing
0) Wpt2

. . 0 .
(increasing) XO(Xn would increase wn+2' Therefore 'axi must be
negative (positive) at xg(xg).

The net result of these properties is that ¢n+2 has one root in

each interval of the form (x0

: 2,x2+]), where 0<¢<n-1, and at that root
R

nt2

>0. Therefore (3.4) and (3.5) imply that x? must be one of the
OX
i

. 0 0
points X1""’Xn-1'
iii. The main idea of the proof is to exploit the following Taylor

series expansion.

N N . N N N N
" Xgoe+ o X | ¢N 1o XPseee X g T XppqoeeesXy
N N N N N N
Ngs- - Ny LnO, Nyseeel 7o Mo 1T seees 1
XO,o ’XO
=y 0 k
N nN N
0> "k
) 0 0 N
. 5 BlIJN X+ o X (X'i - X'l)
. X N N
i#0,n 7 no,...,nk
2. ~N ~N
oY XnseoosX
1 N 0’ >k N 0 N 0
TR _ (x. - x3) (xs - x:), (3.6)
2 §,j70,n 3X§9%; nlgnll\: U R R

where each i? Ties between x? and x?. It will subsequently be shown that
the first order terms vanish and that the second order term is negative

for N sufficiently large. Once demonstrated, these results will imply

that xg,...,xg xg,...,xﬁ
LA N7 NN N

n

no,...,nk nO,..., k
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for N sufficiently large. This contradiction of the D-optimality of gg

must imply that k=n for N sufficiently large which will complete the
proof of the theorem.

iv. To show that the first order terms in (3.6) vanish, consider the
case that 1<i<n-1 and that xg # x? for j=n+1,...,k. For 0<a<n, Tet Py

0

denote ng plus the number of points among xg+],...,xp which equal x

k %"
Then
0 0
oY XpsesssX
N 0 k |1_39d 2, 0 0 0 0
e N N x| Pore Py v (xo, CaXg oKX 0 ,xn) 0
1 nO,---,nk 1 X_i_x_i

. _.0..0 0 0_ .. 2
$ince -1 = x0<x]<...<xn_1<xn-] maximize V°©,

Consider next the case that 1 < i < n-1 and that exactly r of the

points xg+],...,xg equal x?.(r=pi—n§.) Application of Lemma 3.2 yields

0 0 -0 0 0 0.0
_B_IP_N_ XO,...,Xk =_3——- " Xo,...,X_i_-I,X_i,X_i_I_-I,...,Xn,X_i
X, N N[ ox. , _ _
1 nO,...,nk PO,.-..,P.i_-l,n,iap.i_*_v-la--_-.,Pn':Y' X X(-I‘)
0 0 0 0
_ nN 3 ’ XO,...,X_i_-I,y,X_i_I_-I,...,Xn
iy |TN-pt .
P>=r+oPi12 BoPiare o oPn | ] y=x
_nN :
N 3 V.2 ,.0 0 0 0
_p-i pO-o pn a‘y V (xo,---,X_i_-l,_ygx_i_l_-lgn.-,xn)
0

The final case is that ntl<i<k. In this case, there exists

Jje{1,...,n-1} such that x? = xg.

Hence Lemma 3.2 again yields
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0 0 0 0 0.0 0
Efﬂ_ xo,...,xk o ¢N XO""’Xj-1’xj’Xj+1""’xn’xi
3X.. N N ox. | !
1 no, ,nk 1 pO:---st_] spj'] spJ+-| 5. -:-,Pﬁa] X-i=xg
0 0 0 0
8 wN—p‘+1 XO""’Xj-]’y’xj+]""’xn
3y J
po,...,pj_.1,1,pj+],...,pn y=xq
J
p -p
_ 0 n a_ 2,0 0 0 0
= 5 5y v (xo,...,Xj_],y,xj+],...,xn) 0
J y—xj
=0 .
-0 0
awN xo,...,xk
The net result is that X, N N | = 0
| nO,...,‘nk

for i#0,n. Thus the first order terms in (3.6) all vanish. Note that this

result holds for any value of N.

v. The final step of the proof is to demonstrate that the matrix WN

is negative definite for N sufficiently large, where the elements of

azw iN,...,iN -
WN are _N 0 k
IX.9X. N N
1 J no,...,nk

Here i, j=1,...,n-1,n*1,...,k. It will be convenient to use the notation

\PN=[AN BN]
gV N,
N . N . . N .
where A" is (n-1)x{(n-1) and C" is (k-n)x(k-n). The negativity of ¥ will
be established by showing that its 1th principal minor D? satisfies
(-1)1D§ > 0 for N sufficiently large and for i=1,...,n-1,n+1,...,k. (This
particular set of k-1 indices is chosen to correspond to previous notation.)
It will first be shown that (-1)D§ > 0 for i=1,...,n-1 and for N .

sufficiently large. To obtain this result, it suffices to show that AN is



negative definite for N sufficiently large.
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Equivalently, it will be

shown that AN/Nn+] is negative definite for large N. Note first that

ol Ll

10" i

n 32

<A_N_> i
N 45 1<

;l_) 9
nt+l Bxiaxj

. ntl
0<...<1n§k N

> (

i
The convergence follows because n?
1imiting matrix thus obtained. Th

(approximate theory) result that -

It may now be shown that the
negative definite for N sufficient

largest eigenvalue of AO and let A
been established that AN+0 and so

max

N (1.0 2
1<i,j<n-1 145120/ (0107 whe

implies that

n-1
N N
Y'AYY = ) Ais Y.V
1,5=1 M T
5_(n—])2 max
-I-<_-i ,jin-
1.0 .
ST MYy
Therefore,
N
] A - I 0 : 1
y VT y=y'Ay +y'a
0 ]
E-()‘n-l " A

v

9X.0X.
23°%5 .

"xn)i 0

x2= x2;2=0,...,n.
=1 for i=ntl,...,k. Let AO denote the
0

XO,..

en A" is negative definite due to the

_.0.0 0 0
1—x0<x]<...<xn_]<xn

negativity of A0 implies that AN/N
ly large. First let Ag_]<0 denote the

N n+l - AO for each N.

=1 maximize V2.

= AN/N It has

there exists NO such that

never NxN,. Then for any yeﬂin'], N>N,
N 2

|a;.] max y.|
1 MY q<ian-1
N
Yy

1 1 0 1

ﬁ_]) Y'y =YYy (3.7)

Xe senesXs ) :
0 T kx£=xN;2=O,...

ntl is

»K
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whenever NzNO. The right hand side of (3.7) is negative unless y=0.

Therefore AN/Nn+] is negative definite for NzNO.
It now remains only to show that (-1)1D§>0 for i=ntl,...,k and for N

Dy =1-Nt -

sufficiently large. For purposes of notation, let N 'AN EN‘
i
B C'{,

where EN is (i-n)x(i-n). It has already been established that AN is negative
definite for large N. Hence DY = |AV| |gN - BV (ANyTEN] and it suffices
-N -NI N)—

to show that the matrix EN = {C" -B" (A ]EN}/Nn is negative definite

for sufficiently large N. For n+l<j,m<i,

(E) -
M gm NN (3.8)
Yo e 02 (V2 e 0]
Teigeen.<i <k N B 9% 0 o) x =X 3050505k,
Here n? = nx =1 and so the Timit of (3.8) is zero unless j=m. For the

diagonal elements,

(3.9)
Ly 3 2% 2. 00 O
1T 20 axt 0277 -1 Tp+1> 7 027y 0 0
J J i
If LO(x),...,Ln(x) denote the Lagrange polynomials such that Li(x?) = aij

and the vector z%(xj)=[L0(x.),...,Lp_](xj),Lp+](xj),...,Ln(xj)]',

J
then
2, 0 0 0 0 0 ,0,2 2
v seovs s seeesX 4X:) = - .
(xg X5 15Xp41 Xp xJ) 0<rEs<n (xg-X.)" [T, i%(xa)

0 Lp(xJ

2 0 .02

= Lp(xj) I (xs - xr) .

O<r<s<n
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Therefore, the right hand side of (3.9) becomes

2

i+
L L2 (x f 3.10
§ ; Z p( J) _— ( )

i 0 _ 0 2
O<r<s<n r

(xg

(=)

Recall now that (according to the approximate design result on D and
n
G-optimality for polynomial regression) d(x,go)=(n+1) ) Lg(x)
2 p=0

)
and ———-;d(x,g )g <0 for 2=1,...,n-1.
ax° 07 x=x?

Therefore the expression in (3.10) is strictly negative so that F /n" > FO,

a negative definite diagonal matrix.

Applying the same argument to IT'N/Nn which was applied to AN/Nn+]

yields the conclusion that there exists Ni such that I?'N/Nn is negative
definite whenever NzNi.

The net result is that whenever N>max[N ,...,Nk], then WN is

0°Nn+1

negative definite. This completes the final step of the proof of the
theorem.

In the case of linear regression, the validity of Conjecture 3.1
is readily demonstrated. Of course N=2k implies that gg = (s +6])/2 =
For N=2k+1, Theorem 2.1 implies that only exact designs of the form
gN = [(k-s)a_] te ¢t (k+s) 6]]/N, where 0<s<k and -1<x<1, need be

considered. Now it is not hard to show (by elementary calculations)

N [(k+1)6_y+ks, I/N

that the exact designs g] ks _ +(k+1)6 J/N and £y =

are both D-optimal and satisfy Conjecture 3.1.
Federov (1972) suggests that the conjecture holds for n=3.

For n=2, numerical work has been done to determine the D-optimal

exact design of the form gN

= (ngd_q * 6y1 + nze;y2 + 6v3 * ny8q)/N,
where -1 <Yy 2V, 2V, < 1 and ng + 1+ n, + 1+ n, = N.
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For each possible choice of the integers RSP the PUCC subroutine SECANT
was utilized in a Fortran program to solve the system of non-linear equations
obtained by setting the partial derivatives of [M(gN)I with respect to

Yys¥os and Y3 equal to 0. The nature of the procedure requires that N > 7.

The following table displays the best designs thus obtained.

Table 3.1: Exact Designs for Quadratic Regression on [-1,1]

N £ EIG

, -1,.0000, + 1] .1399
| 2, 3, 2]

8 £1,.000 , + 1] .1406
3, 3, 2]

-1,.0000, + 1 .1406
|2, 3, 3]

9 <1, .0, + 1] .1481
3, . 3

10 L1, .000, + 1| .1440
4, 3, 3.

(1, .00, +1 1440
1 3, 4, 3]
- .

1, .000, + 1 .1440
3, 3, 4|

11 [-1,.0000, + 1] .1443
4, 4, 3

1, .000, + 1| .1443
|4, 3, 4]

1, .00, + 1 .1443
3, 4, 4]
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Note that these calculations invariably gave support (EN)= {-1,0,+1}
and §N= gﬂ.

Similar work has been done for n=3. The following table displays the
best exact designs thus obtained. These should be compared to gﬁ which

distributes observations as evenly as possible among the points + 1, + 1//5.

Table 3.2: Exact Designs for Cubic Regression on [-1,1]

4 -1,-.447213596,.447213596, + 1 .0051200
|1, 1 s 1 s> 1 '

5 -1,-.447213596,.447213596, + 1 | .0041943
L1, 2 . 1 s 1
1,-.447213596,.447213596, + 1] .0041943
1, 1 , 2 , 1.

6 ~1,-.44721360, .44721360, + 1] .0040454
L1, 2 2 , 1

N N

Here it is seen thét g' = g, in each case. Again, the validity of

Conjecture 3.1 is suggested.

4. G-Optimality

As already noted, a G-optimal exact design gg satisfies

max d(x,gg) = min max d(x,gN), where the variance function

% N._ %
£es)y

d(x,e") = ()M (M) F(x).
Guest (1958) obtained the G-optimal approximate design £ for

polynomial regression of degree on [a,b] = [-1,1]. This later turned out
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to coincide with D-optimal approximate design given by Hoel (1958), leading
Kiefer and Wolfowitz (1960) to prove that the two criteria are equivalent
in the general approximate design setting.

For polynomial regression of degree n, the G-optimal exact design
coincides with the G(and D)-optimal approximate design when N is a multiple
of ntl. Otherwise, G-optimal exact designs can exhibit some interesting

behavior as may be seen in the following examples.

Example 4.1: Consider the most simple example of linear regression

on [-1,1]. Here d(x,gN) =1+ (X-p])z/(uz-uﬁ) and so

max d(x,g

N) i {] + (u]-1)2/(u2-u$) ~1<ny<0
-1<x<1

1+ )% (apmd)  Osg<l.

Therefore, a G-optimal exact design gg will have u]=0 and will maximize Mo

among exact designs satisfying u]=0- Thus

N { (5_1 + 87)/2 N=2k
E =
0 _
(ks_q + 8 + k§7)/2  N=2k+1.
Note that 2 N=2k
max d(x,gg) =
~1zx<l 2+ 1/(N-1)  N=2k+]

whereas. max d(x,£,) = 2. Note also that for N=2k+1, the design gN_aalways
-1<x<1 0 0

has an interior singlet.

Example 4.2: Consider the setting of quadratic regression on [-1,1].

For N=3k, the G-optimal exact design is gg =&y " (6_] topt 6])/3.
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For N=3k+1, it is believed that the form of the G-optimal exact design
is gg = [ké_] teo (k—])a0 ot kﬁ]]/N. Among such designs, G-optimality
will be attained if and only if d(O,gg) = d(1,6)). Manipulation of this
condition yields

(3-5/k)u” - (9-1/K)u? + 2 = 0.

An interesting consequence of this result is that u2 ~ (9-vV57 )/6 as k » «.
That is, for large k, the G-optimal exact design for N=3k+1 has singlets
at approximately + .4916. Perhaps even more interesting is that

u2 = /5 -2 for k=1. Thus , for k=1, the two singlets + u 3 + .4859 are

already very close to their asymptotic values. Neote that

max d(x,gg) =1+ {-1+(3k+1)(k+u4)/2(k+u2)2}_] whereas
-1<x<1

max d(x,go) = 3.
-T<x<1

For N=3k+2, it is believed that the form of the G-optimal exact design

N

is &= (k¢ . +6& + ks, + 8, + k61)/N. Among such designs, gg will be

-1 -V 0
G-optimal if and only if d(O,gg) = d(],gg). Therefore,

(3-4/K)v*-(9-2/k)V2 + 4 = 0.

n
In the limit, v2 > (9-/33)/6 and the singlets converge to ¥ Vv + .7366.
For k=1, the singlets are at + v = + .7288 which are already close to the

asymptotic values. Note finally that

max_ d(x,£5) = 1+ 1+ (3ke2) (k) 720kv) 2y,

-1<x<1

The one gap in this example would be filled by the proof of the following

conjecture.

Conjecture 4.1: A G-optimal exact design for polynomial regression on

[-1,1] must be symmetrical about the origin.
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Forn >3 and N # 0 mod(n+1), it may be seen that the clusters of

gg will not coincide with the support points of £g-
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