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ABSTRACT
The problem of finding optimal incomplete block designs for compar-
ing p test treatments with a control is studied. B.I.B. designs are
found to be D-optimal. A- and E- optimal designs are also obtained.
For a Targe class of functions ¢, conditions for a design to be ¢-optimal
are found. Most of the optimal designs are certain types of B.T.I.B. de-
signs (introduced by Bechhofer and Tamhane (1981)) which are binary in

test treatments.
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1. Introduction

Consider an experimental situation where it is desired to compare
p > 2 test treatments to a control treatment. Let the p + 1 treatments
be‘indexed 0,1,...,p with 0 denoting the control treatment and 1,2,...,p
denoting the test treatments. It is desired to compare simultaneously the
p test treatments to the control. For improving the precision of the com-
parisons the experimental units are to be blocked in b blocks each of size
k, 2 <k < p. We are then in an incomplete block design setting.

Let Yijh denote the observation on treatment i(0 <1 jiﬂ
in block j(1 < j < b) in plot h(1 < h < k). We assume the usual additive

Tinear model without interactions, namely

(1.1) Y.

jjh T tog t Byt

€ijh’
the €43h are assumed to be uncorrelated random variables with mean 0 and
common variance 02. The p control-treatment contrasts ag - a; are to be

estimated by their BLUEs a5 - a; (1 <1 <p). Tt is desired to choose

i
an experimental design (an allocation of treatments to blocks) which will
yield the best, in some sense, set of estimates among all possible designs.
For given values of b, k, and p let C(b,k,p) denote the class of all
possible incomplete block designs with b blocks, each of size k(p > k > 2),
p test treatments indexed 1,...,p, and a control treatment indexed O.
For a design ciEC(b,k,p) let rij(d) denote the number of rep]icat;ons of
treatment (0 < i < p) in block j(1 < j <b). Also let ri(d) = jZ] rij(d)
and Aiz(d) = jgl rij(d)rgj(d) (0 <1i# 2 <p). Notice ri(d) represents
the number of replications of treatments in the entire design d and

xiz(d) represents the number of times treatments i and & are paired to-

gether in a block summed over all blocks.



For d €C(b,k,p), Tet M(d) denote the information matrix correspond-
ing to estimating all Gy = O 1 < i < p, (as in Bechhofer and Tamhane
(1981)). M(d) is a nonnegative definite px p matrix and is nonsingular
if and only if all the ay = oy are estimable, in which case it is proportional
to the inverse of the covariance matrix of .y~ 6., 1< 1 <p,

We now make our goal of finding a design d €C(b,k,p) which gives us
the best, in some sense, set of BLUEs &0 - &1(1 < 2 < p) more explicit.
Following the work of Kiefer (see for example Kiefer (1958, 1959, 1971,
and 1974)) we seek a d €C(b,k,p) which minimizes ¢(M(d)) for some function
¢ over C(b,k,p). Such a design will be called ¢-optimal. Restricting to
non-singular designs, some common examples of ¢ are ¢O(M(d)) = detM_1(d)
(so called D-optimality), ¢](M(d))= tr M'](d) (so called A-optimality),
and ¢_(M(d)) = maximum eigenvalue of M(d) (so called E-optimality). In
the present context of control-treatment comparisons, A-optimality has an

p

appealing statistical interpretation, viz. it minimizes ) 'var(&o-&i)
i=1

over all designs. We are, however, yet to realize natural statistical
interpretations for the other criteria.

Traditionally, Kiefer and other researchers were interested in an
orthonormal basis of treatment contrasts. In other words, the aim was to
determine good designs for estimating Ps where o is the vector of all the
p + 1 treatment effects and P is a p x p + 1 matrix of zero row sums and
orthonormal rows. Nothing much seems to be known for the situation when
the contrasts are not mutually orthogonal. In this paper we Took at one
such situation - that of control-treatment comparison.

Letxﬁ(d), 1 <1 < p, be the positive eigenvalues of the well known
"C-matrix" of normal equations for &, for a design d in p + 1 treatments

in b blocks of k plots each. Let Pa be any vector of p independent



>
treatment contrasts, and V(P&(d)) be the covariance matrix of the BLUE's

of Py. Then it can be shown that

det V(P&(d)) = (det(PP")) (v (d)...v ().

This can be established by starting from a spectral decomposition of the
C-matrix for the design d, or by proving a result 1fke equation (A.2) of
Bechhofer and Tamhane (1981). Since a B.I.B. design, if it exists, is
D-optimal in the traditional sense of estimating orthonormal contrasts,

we have the following theorem.

Theorem 1.1 A B.I.B. design, if it exists, is D-optimal for estimating
any set of p independent treatment contrasts.

It ‘has come to our notice that this result has been known for some time

by Hedayat (1974) and Kiefer (the result follows easily from section 3
of Kiefer (1958)). Observe that the D-optimality criterion ignores the
particular interests of the experimenter expressed through the matrix P.
From the work of Kiefer and others on optimal incomplete block de-
signs for estimating an orthonormal basis of treatment contrasts, it is
known that the B.I.B. design is optimal, not only according to the D-
criterion, but under a very large class of obtima]ity criteria as well
(see Kiefer (1958, 1959, 1971, 1974 and 1975)). Such results might lead
us to expect that in our setting an optimal design d in C(b,k,p) would
be symmetric (in some sense) and binary in the test treatments 1,...,p
(but not in the control). Since the control plays a special role in our
setting we might also exﬁect that the number of replications of the con-
trol (more specifically the roj(d)) will be an important factor in deter-

mining what design d is optimal. These expectations are indeed found to

be the case as will be seen in the results of section 2.



The proper sense of symmetry in a design d €C(b,k,p) turns out to be
that all Aiz(d) are equal for 1 < i # & < p and all Aoz(d) for 1 <2 <p
are equal (but not necessarily to the Aiz(d) for 1 < 2 < p). Such designs
are called balanced treatment incomplete block designs (abbreviated BTIBs)
and were first introduced in Bechhofer and Tamhane (1981) in connection
with making joint confidence statements about the contrasts ay = Gss
1 <i < p. The interested reader is referred to this paper for more infor-
mation on BTIB designs. We remark that if a design d €C(b,k,p) is a BTIB design
its information matrix M(d) is completely symmetric (i.e. all off diagonal
elements equal and all diagonal elements equal). Bechhofer and Tamhane
(1981) also have a review on available literature for designs for control-
treatment comparisons.

Section 2 of this paper contains results about what designs are ¢-
optimal for a fairly broad class of functions ¢. As an important applica-
tion we discuss A-optimal designs.

The class of functions considered in section 2 does not include
E-optimality. This is treated in section 3, whichva]so includes a result
showing that an A-optimal design is optimal according to another statistic-

ally interesting criterion. Section 4 contains some concluding remarks.

2. A-Optimal Designs

We begin this section with a series of lemmas culminating in a general
theorem from which A-optimal designs may be obtained as a special case.

Suppose d €C(b,k,p) is arbitrary. Let i} be the set of all p! permu-
tations of the test treatments 1,...,p. Let od, o€}, be the design re-
sulting from d by the permutation ¢ of the treatments in d. We define

(2.1) M(d) = } M(od)/p! = § «'M(d)n/p!
o€} T€ L

where I is the set of all p x p permutation matrices. It is easily seen



that when M(d) is the information matrix of some design then this design

is a B.T.I.B. design (Bechhofer and Tamhane (1981)).

Lemma 2.1. If deC(b,k,p) then M(d) has eigenvalues u](d), uy(d) = ...
= up(d) with

p b 2 _
08 = €L oy @/0/e = (rg(a)- T rstasiarp

r2.(d) /k-(r(d) - E 2 (d)/k)/p}/(p-1)
: 1j 0 i rOj py/(p-1).

I ~10
Il ~10
Ho~0

i(d) = ¢ T ry(d) -

i=1 i=1 j
In addition if d is binary in test treatments

b
r2(d) = Dk /Mryle)-(rg(e) - [ 55 (d)/K)/p3/ (p-1)

pf. From the appendix of Bechhofer and Tamhane (1981), the entries of
M(d) are

b
(ry (d) - .Z r?

1 j=1 1
(d)/k (1471,

S/ (=)

LT S
]’ 2 -)\._i _i
1'2

and the sum of the entries in the i-th row (or i-th column) 1is AOi(d)/k.

Thus is it straightforward to check that

b
(2.2)  f(d) = (¢ Iordks 7
1o

2 ry(d) -
1

1 i

It ™~

i /k(p=1)}/p)I
1< Fiyp 172 P

il ~10

- ( ) As s /kp(p-T1))J
T<iifiyep 172 PP

where I 1is the p x p identity matrix and J_ _ is the p x pmatrix all of

P psP
whose entries are +1. The first part of the lemma now follows from the
well known fact that aIp + bJp b has eigenvalues a with multiplicity p-1
and a + bp with multiplicity 1. The second part involves essentially

straightforward computations only.



Lemma 2.2. Suppose ¢ is a convex real-valued possibly infinite function
on the set of all p x p non-negative definite matrices and ¢ is invariant
under permutations, i.e. if = is a permutation matrix, ¢(r'Mr) = ¢(M).

Then for d €C(b,k,p), MMM))quWdH.

pf.  ¢(M(d)) = zi $(M(cd))/p! since ¢ is permutation invariant. Thus
o€ '
by convexity ¢(M(d)) > of Zi M(ad)/pl) = o(M(d)).
o€

Lemma 2.3. Suppose ¢ is some real-valued possibly - #nfinite function on
the set of all non-negative definite p x p matrices with the property that
if M and N are non-negative definite p x p matrices with eigenvalues

Hp S o < ... and V] SVp S ees v respectively which satisfy

| A

"p
1,...,p then ¢(M) < ¢(N).
Let d €C(b,k,p) be a design which is not binary in test treatments.

I

wj > vy for i

Then there exists d* €C(b,k,p) which is binary in test treatments with
ro(d*) = ro(d) and which satisties ¢(M(d*)) < ¢(M(d)).

pf.  In each block of M(d) replace any duplicates of test treatments by
test treatments not in the block so that each block is binary in test
treatments (this is possible since k < p). Call the resulting design d*.

Notice d* is binary in test treatments, has "0 (d*) = roj(d) for all

p :
1 <J<b,and has ) r.(d*¥) = Z r:(d). As a result it is easy to see
i=1 i=1

AT IO N R
rs. < r
i=1 j=1 W T i=1 §=l
From lemma 2.1 it then follows that the eigenvalues of M(d) and M(d*)
satisfy u](d) = u](d*) and uz(d) = L., = “p(d) f_uz(d*) = .. 0= “p(d*)'

Hence by the property of ¢ given in the statement of the Temma,

o(M(d*)) < o(M(d)).



Lemma 2.4. Among all non-negative integers ro1°T02° > ob satisfying

b b
r~. = r, where r is a fixed constant, the value of r2. is minimized
=1 0j . 0j

j=1

by choosing r - b[r/b] of the r.. to have value [r/b] + 1 and the remain-

0J
ing b(1+[r/b]) - r of the 03 to have value [r/b]. Here [+] denotes the
greatest integer function.

pf. This is Temma 2.3 of Cheng and Wu (1980).

Lemma 2.5. Suppose ¢ is as in lemma 2.3. Suppose d €C(b,k,p) is binary
in test treatments and has ro(d) > bk/2. Then there exists d* € C(b,k,p)
which is binary in test treatments, has ro(d*) < bk/2, and satisfies
o(M(d*)) < o(M(d)).

pf. Take d* to be the design where {n each block of d we replace all
test treatments by the control and all of the original replications of the

control by differing test treatments not originally in the block. Notice

b b

(2.3) ry(d*) = .2] ro;(@*) = _Z](k-roj(d)) = bk - ry(d) < bk/2 < ry(d)

J= J=

) (@) - T v2(¢) (@ - 3 2.
(2.4 r.(d*) - ra.{d*)/k = r,(d) - r~.(d)/k.
0 =1 0j 0 =1 0j

From (2.4) it follows that if ul(d)’ “Z(d) = ... = “p(d) and u](d*),
“z(d*) = ... = up(d*) are the eigenvalues of M(d) and M(d*), respectively,

as given in lemma 2.1, then u](d) = u](d*). Also from (2.3), (2.4), and
lemma 2.1, “z(d) < “z(d*)' By the property of ¢ given in the Temma it
follows that ¢(M(d*)) < #(M(d)).

Theorem 2.1.  Suppose ¢ is a real-valued possibly infinite function on

the set of all p x p non-negative definite matrices satisfying



1r~3io

¢(M) =

3
where 1, S Hp S .. gy ave the eigenvalues of M, f is a real valued
possibly infinite function on the set of all non-negative numbers which
is continuous on the set of all positive numbers, has f' < 0 and f" > 0
(here primes denote differentiation). Suppose there is a 8 €C(b,k,p) such
that M(§) is completely symmetric and

(i) & is binary in test treatments

(i1) ro(s) is the value of the integer r, 0 < r < [bk/2], which
minimizes
(2.5) g(rsb,k,p) = f((r-h(r;b)/k)/p)

+ (p-1)f((b(k-1)-((k-1)/k)r-(r-h(r;b)/k)/p)/(p-1))

where

(2.6)  h(rsb) = (b(1+[r/b1)-r)[r/b]* + (r-b[r/b1)([r/b1+1)

(iii) the rOj(s) have value either [ro(d)/b] or [ro(d)/b] + 1.
Then 6 is ¢-optimal over C(b,k,p).
pf. First we notice ¢ and f have the following properties

(a) ¢ is convex and orthogonal invariant (i.e. if m is an orthogonal

matrix then ¢(n'Mr) = ¢(M))
p E .
(b) 12 2 wi > vy forall 1. <14 <p.
(c) ‘ifu]iu2=...=up, \)]i\)2=...=\)p, Hy 2 Vys and
p P P p
Iowg= I vy then T f(u) < I f(v)
i=1 i=1 i=1 i=1

Property (a) follows from the fact that f" > 0. Property (b) follows from
the fact that f' < 0. Property (c) follows from the fact that ¢ regarded

as a function of (u1,...,up)' is Schur convex.



Now suppose & is as given in the theorem. Let d¢€C(b,k,p) be any
design which is binary in the test treatments. By (a) and lemma 2.2,

o(M(d)) < ¢(M(d)). If ro(d) > bk/2 by lemma 2.5 there exists d¥ € C(b,k,p)

with ro(d*) < bk/2 and ¢(M(d*))< 4(M(d)). Replace d by d*. If ro(d)_i bk/?2
let d* = d. Notice by Temma 2.1 M(d*) has eigenvalues
b
u1(d*) = (Po(d*) - .Z] rOj(d*)/k)/P
J:
w(d*¥) = ... = up(d*)

b
(kT = (k1)K g ) -(rg(d*) - T s (67K /p3/ (p-1).
J:

Using the facts k > 2, ro(d*) < bk/2, and some calculus, one can prove
that,
Uz(d*) > bk/4p

b 5
= max(ro- -Z roj/k)/p
j=1

> U1 (d*)

where the maximum is over all real numbers r.,rs s...>rn: such that
b 0°° 01 0j v

rog 2 0, r0; >0, 1<J<b, and jZ] *o; = To < bk/2. Thus the eigenvalues
p](d*),pz(d*),...,up(d*) of M(d*) satisfy u](d*) 5_u2(d*) = ... = ”p(d*)'

Next notice

(2.7)  ¢(M(d*))

o

= Fg (4] + (D) (¢9) = Flir(@) - 1 rg;(4%)/k /p)

' b
+ (p=1)F(Cb(k-1)=((k=1)/K) v () =(r(d%) = T r5s(d*)/K)/py/(p-1)).

j=1
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For a fixed value of rO(d*).i bk/2 we have u](d*) + (p-1)u2(d*)

1l

(k-])(b-ro(d*)/k) = constant and the largest possible value of u1(d*)

(Y‘O(d*) -

rgj(d*)/k)/p occurs when b(1+[r0(d*)/b])-r0(d*) of the
J

i >~ O

1

roj(d*) are [ro(d*)/b] and ro(d*) - b[ro(d*)/b] of the r J.(d*) are

0
[ro(d*)/b] + 1 by lemma 2.4. This choice of the roj(d*) maximizes u1(d*)
for fixed ro(d*) and hence by property (c) of ¢ minimizes ¢(M(d*)). 1If

we then select a value of ro(d*) < bk/2 (with the optimal choice of the
roj(d*)) which minimizes the R.H.S. of (2.7) we see that this is precfse~
1y the value of ro(a) and the roj(a) stated in the theorem. We thus con-
clude § is a design minimizing ¢(M(d*)) among all d* which are binary in
test treatments and have rO(d*) < bk/2. Since M(s) is completely symmet-
ric, M(s) = M(s) and we see using lemma 2.2 that ¢(M(s)) < ¢(M(d)) < ¢(M(d))
(d is the design, binary in test treatments, we chose arbitrarily) we con-
clude s is ¢-optimal among all d which are binary in test treatments.
Property (b) of ¢ and Temma 2.3 then give us that § is ¢-optimal among all

designs.

Theorem 2.1 is useful for finding optimal designs for many ¢ such

p p
as ¢(M) = .2] - 1nu1 (D-optimality) and ¢(M) = _z] ]/pi (A-optimality).
i= 1=

It is not directly applicable to the problem of finding E-optimal designs,
i.e. the design s€C(b,k,p) which minimizes the maximum eigenvalue of
M'](a) (or maximizes the minimum eigenvalue of M(s)).

As mentioned in the introduction A-optimé] designs are statistically
very meaningful. So we examine such designs in some detail. A design
d €C(b,k,p) is A-optimal if it minimizes tr M'](d) over C(b,k,p). In the
notation of theorem 2.1 this means ¢(M(d)) = tr M'](d) and f(u) = 1/u.
Equations (2.5) and (2.6) then become
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(2.7) g(r;b,k,p) = p/{r-(h(r;b)/k)}

+ (p-1)%/1b(k=1)-r(k-1)/k-(r-h(rsb)/Kk)/p}
with

(2.8) h(r;b) = [r/b1%(b+b[r/bI-r) + (r-b[r/b1)([r/bI+1)2.

The following result result is a consequence of theorem 2.1.

Theorem 2.2.  Suppose R is the value of the integer r, 0 < r < [bk/2],

which minimizes g(r;b,k,p) as given in (2.7). Also suppose <§€C(b,k,p)
is a B.T.I.B. design such that
(i) s is binary in test treatments
(i) ro(a) = R
(ii1) roj(a) = [R/b]l or [R/B] + 1 for 1 <j <p
then § is A-optimal over C(b,k,p).
The integer r which minimizes g(r;b,k,p) can easily be found using
a computer. As an example, r = 18 minimizes g(r;24,3,9) and the follow-

ing B.T.I.B. design is therefore A-optimal.

0O 00O0OOOCOOOOOOOOOOOOTTT 2 3 45
11112 2 2 2 3 3 34456 6 7 7 2 6 3 458
3458457857 96 968989976879

Here columns correspond to blocks and the numbers are the treatment labels.
Having determined the integer R, the next step is to investigate
whether a B.T.I.B. design satisfying (i)-(iif) exists or not. Writing

q = [R/b] and a = R - bg, an A-optimal design Tooks 1like

<d(1f>
d = .
d

2)
where d(]) consists of q plots in each of b b1ocks-and.d(2) the.rest of the
k - q plots in the blocks. d”? consists entirely of the control, while d(2)

is binary in all p + 1 treatments with the control appearing a times.
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The A-optimal design shown above gives an example of d = d(Z)'Since.here
qg = 0.
If a = 0, then d(gyﬁhés to be a B.I.B. design in the p test treatments.

The following table gives some examples of A-optimal designs having this

structure.
b k b q
10 3 5 1
14 4 7 1
30 2 4 1
30 4 5 1
30 4 6 1
30 5 10 1
30 6 25 1

Let us denote by dq a -design in C(b,k,p) which is a B.I.B. in the
k - g plots of b blocks in the p test treatments, augmented by the con-

trol in each of the remaining q plots of b blocks. Designs of this type
have been mentioned briefly by Cox (1958, p. 238); Pesek (1974) has

look at d]. Neither of them have considered these as optimal designs. The

interested reader may find their efforts put in perspective in Bechhofer
and Tamhane (1981). We shall now show that for many g, dq cannot be a
very bad design - it is at least A - better than a B.I.B. design in all
p + 1 treatments.

A B.I.B. design is a binary B.T.I.B. design with ro(d) = bk/(p+1).
Moreover, for any B.T.I.B. design, tr M(d)_] = g(ro(d);b,k,p). Hence we

look at the sign of the function,

(2.9) g(a) = g(gbsb,k,p) - g(bk/(p+1);b,k,p)
= p/{r-(qu)/k}
+ (p-1)%/1b(k=1)-r(k-1)/k-(r-(baZ) /K)/p} - 20/ {b(k-1)} ,

with q allowed to be positive integers only. If one allows q to be any
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real number, then it is easy to see that the polynomial equation

g](q) =0
has no roots in the interval [1,(k-1)/2] of q. Moreover g](l) < 0 and
g]((k-l)/Z) < 0, but g](k/Z) > 0. Thus in particular 91(q) <0,q=1,2,

...>[(k-1)/2]. We summarize this in the following theorem.

Theorem 2.3. dq is A-better than a B.I.B. design in all p+ 1 -treatments

for all q = 1,2,...,[(k-1)/2], whenever they exist.

Remark. Recently Constantine (1981) has also obtained some results on

A-optimal designs in a subclass of all block designs.

3. E-Optimal Designs

We now determine E-optimal designs.

Theorem 3.1. If there exists s €C(b,k,p) such that

(i) every block contains exactly k/2 replications of the control, if
k is even, or either [k/2] or [k/2] + 1 replications of the con-
trol if k is odd
and
(1) 2g7(8) = 2gp(8) = +ov = 29 ()
then s is E-optimal over C(b,k,p).
pf. We first show that AO](S)/k is the minimum eigenvalue of M(s). To
see this, notice that the sum of the entires in the i-th row of M(§) is
AOi(s)/k. Since 101(6) = AOi(a) for all i, all the row sums of M(s) are
AO](G)/k. It therefore follows that the p x 1 vector (1,1,...,1)" is an
eigenvector of M(8) with eigenvalue AOl(é)/k. |
To verify that AO](G)/k js the smallest eigenvalue of M(8), let [
be any eigenvector of M(s§) other than (1,...,1)'. Without Toss of gen-
erality we may assume the largest coordinate in absolute value of ¢ is

+1. Suppose +1 is the i-th coordinate of é. Let A denote the eigenvalue
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of M(s) cokresponding to the eigenvector e. Let ej denote the j-th co-

ordinate of @ and mij(d) the i,j-th entry of M(§). The i-th coordinate

of M(s) € is

351 mis(8)e; = egmyi(8) + J'E‘. ey (8) = mi(8) + J_E! mg5()
J#i J#
p =
= J_Z] i3(8) = 2gq(8)/Kk = 2y, (8)/k

The inequalities above follow from the fact that e, = +1, Iejl <1 for
all j, and mij(s) <0 fori# j. Since x@ = M(s5)& and the i-th coordinate
of Aé is re; = a, we have A > ag;(8)/k.

Since & was an arbitrary eigenvector, hence A was an arbitrary eigen-
value, we conclude AO](G)/k is the minimum eigenvalue of M(§).

Notice

)/k =1 Exm )/kYp = {ry(s) -

_ rgj(a)/k}/p .
i=1 J

e~

1
By a proof similar to that used in lemma 2.4 one can show that among all

integers rp srpos-..sr such that 0 < Toj < k, the value of

Ob

b b
2
ry - .Z rOj/k(r0= jz] o3 .) is maximized by choosing all roj = k/2 if k
is even or o5 = [k/2] or [k/2] + 1, j =1,...,b, if k is odd. Since these

are precise]y the values of the rO.(G) we conclude

J

(3.1) min eigenvalue of M(s) = - Z OJ (s)/k)/p

b2
r (d)-jz1 ro;(d)/Kk)/p

for all d€C(b,k,p). For any d€C(b,k,p)
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‘min  U'M(d)
4] [=1

(1,7,...,1)M(d)(1,1,...,1) " /p

min eigenvalue of M(d)

| A

b b

min eigenvalue of M(s)

| A

P
where we have used the facts that ) m

i .. (d) = AOi(d)/k,

1]

p
z >\0-|(d)/k = ro(d) K

2
r~.(d), and (3.1).
=1 g5 W

—
ne-1o

We conclude that & has the Targest minimum eigenvalue among all

d €C(b,k,p) and hence it follows that & is E-optimal over C(b,k,p). O

The first of the following designs is E-optimal when b = k = p = 3,

the next two are both E-optimal when b = k = p = 4 and the last is

E-optimal when b = k = 5, p = 6.
0 0O 0 0 0O 0 0 0O 0 00 0O
(1 1 2‘> 0 0 0O 0 0 0O 0 00 0O
2 3 3 1 2 3 4 1 2 3 4 1 4 0 00
1 2 3 4 2 3 4 1 2 5 1 3 5
3 6 2 4 6

The first two are B.T.I.B. designs; in fact the first one is A-optimal

also.

Even though E-optimality is an effective way of minimizing a norm of

M(d)~"!

, in the present context it does not seem to possess a very natural
statistical meaning. If one favours a minimax style approach then possibly
one way is to minimize the maximum variance of (&0-&1), the maximum being

over 1 < i < p, minimum over all d €C(b,k,p). In other words, one considers
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the criterion ¢(M(d)) = maximum diagonal entry of M'l(d). Since ¢ is con-
vex and permutation invariant lemma 2.2 says :that o(M(d)) < ¢(M(d)) for
any d €C(b,k,p). Furthermore, since M(d) is completely symmetric, it is
easily verified that ¢(M(d)) = tr M(d)'1/p. From these two observations
it follows that if § EC(b,k;p) is as in theorem 2.2 than it is ¢-optimal
as well as A-optimal. This lends additional significance to the A-optimal
designs.

A class of criteria that are sometimes considered in optimal design

investigations (see Kiefer (1974)) are the ¢q criteria, 0 < q < » , where

and Mp S e S U are the eigenvalues of M(d). D-optimality and E-optimality

are limiting cases of these criteria in the sense that 11'm(q>q(M(d))/p)]/q
a0

= (det M'](d))]/p and 11'm(q>q(M(d))/p)]/q = max eigenvalue of M"](d). In

q—)OO

particular, %0 and ¢_ are sometimes used to denote the D-optimality and
E-optimality criteria, respectively. Also notice that ¢, is just the
A-optimality criterion.

| An examination of our above results for D-, A-, and E-optimality (or
for 99> 97> and ¢_ ) indicates that the number of replications of the con-
trol in an optimal design is smallest for D-optimality, second smallest
for A-optimality, and largest for E-optimality. This suggests that the
number of replications of ‘the: control in a B.T.I.B. design which is ¢q-
optimal is increasing as q increases. Since ¢q’ 0 <q<w», satisfies
the conditions of theorem 2.1, it is possible (although somewhat tedious)
to verify that this is indeed the case. From this it follows that if

d €C(b,k,p) is a B.T.I.B. design which is binary in test treatments with
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[bk/(p+1)I<ry(d) <bl[k/2], then d is $q-0Ptimal for some 0 < g < .

4. Concluding Remarks

}n this paper we have established optimality properties of some
B.T.I.B. designs. It is hoped that this Qi]] provide added incentive
for the study of these designs, particularly their construction. Observe
also the dependence of optimal designs on the optimality criterion used.
This is different from the usual incomplete block design setting where

orthonormal treatment contrasts are of interest.
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