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SUMMARY

Stationarity is a property of infinite sequences of random variables.

An appropriate extension of this definition is made, to cover finite
sequences. The set of finite stationary sequences is shown to be a convex
set and its extreme points are related to shift register sequences {which
are paths on a graph known as the shift net, or the de Bruijn graph).

The set of finite stationary sequences as defined here is simply the set

of finite dimensional projections of infinite stationary sequences.
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§1. Introduction

A definition of stationarity for finite length sequences of random
variables is propoéed in section 2. A finite sequence will be called "sta-
tionary" if the joint probability of every consecutive block of elements is
shift invariant. It is shown that the set of finite stationary distributions
is exactly the set of finite dimensional projections of infinite stationary
distributions. With this equivalence, some of the material here is simply
a careful treatment, in a different language, of material that already exists
or is part of the "folklore" of Probability.

Using the concept of finite stationarity, one can define m-stationarity,
analagously to m;dependence. A distribution on an infinite sequence will be
called m-stationary iff the marginal distributions of every m consecutive
elements is stationary in the finite sense. This is a larger class than the
set of stationary distributions, but shrinks to the set of stationary distribu-
tions as m approaches infinity.

Section 3 is a brief review of a problem from combinatorial theory.
Considering shift registers on computers (even though the problem predates
computers by a half a century), one is led to a particular directed graph variously
known asléhe de Bruijn graph, the shift net, and a host»of other names. The
counting and generation of closed paths on this graph have been open problems
in the combinatorial literature for some time.

Section 4 shows that the set of finite stationary distributions forms
a convex set. The extreme points of this set are in a 1-1 correspondence

with prime eycles (closed paths which have no ctosed subpaths) on shift nets.
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This explicit representation of the extreme points is the central result.

In a handwritten manuscript made a short time before his untimely death at

age 34, Walter Weissblum (1966) had identified these extreme points. The
manuscript contains further thoughts on finite Stationarity,\as well as proofs.
The graph theoretic identification and the proofs here are independently
deriyed. An app1icatiqn Qf this gxtreme point representation is found in

Zaman (1982). -

The final section examines the similarities and differences between the finite
and the infinite cases. The ergodic theory resu]té from the infinite case do not
seem to be applicable to the finite case. The extreme point representation
of the finite case does not seem to carry over to the infinite situation. Yet
proofs of some results in the case of ordinary stationarity are still possible

as extentions of the finite stationary results.

§ 2. Stationarity in Finite Sequences

Let ¢" denote the set of all sequences of length n, taking values in the set
{0,1,...,c-1}. Confusion with the number c" can always be eliminated by context.
Henceforth n is assumed finite unless explicitly mentioned otherwise. Let S(c)
denote the set of stationary distributions on ¢~. The distribution of a sequence
Xec” is in S(c) if and only if (Xi,X1+],...) 0 (Xj’xj+1"") for every i and j.
The symbol "+" denotes "equal in distribution".

For finite sequences, let Sn(c) denote all distributions of X cc” for which
(Xi""’xi+k) N (Xj""’xj+k) for all i,j,k for which the equation is defined
(i.e. for 1 < i<Jj < n-k). The distributions in S"(c) will be called the
"stationary distributions on ¢"" or simply stationary.

For a sequence XE;cn with distribution P, the symbo? pm for m<n, will denote

the marginal distribution of (X],...,&n)ecm. The relationship between finite



and infinite stationarity is given by
Theorem 1 PeS{(c)e= vn PneSn(c)

Proof: The forward implication is true by definition. For the reverse, a

measure on an infinite sequence is determined by its values on the cylinder sets. L

This theorem shows the desirable result that S"(c) = S(c), and hence a uniform
definiton of stationarity is possible. In the final section, it will be further
shown that any Pe S"(c) can be extended to a probability Qe S(c) for which

p=q".

So Sn(c) is simply all the projections (marginals) of infinite stationary
distributions, or equivalently S"(c) is all the distributions which can be
extended to infinite stationary distributions.

The definition of Sn(c) can be immediately reduced to the following equivalents.

Theorem 2 The following statements are equivalent:
(i) Pes(c)

(1) (XgaenaaX q) v (KpsnensX,)

(i11) For all aecn”!
P{X = (ay5...5a,_1,1)} = P{X=(i,a7,...,a }
'i:O ] n-] .i=0 ] n—]

Proof: By the definition of Sn(c),(1)=>(1i). Also, (ii) « (iii) is true because
(iii) is just (ii) written out explicitly. To show (ii) = (i), assume

(X X o) (X2,...,Xn). Then for any k < n, by successive shifts,
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(Xp- oK) (RgseeesXiy)
v (X3,.-.,Xk+2')
v (X X )

n-k+177° ">/

So X has a stationary distribution. O

An m-stationary measure reqUires--that the distribution of each

(X .,X.. ) be in S™(c). By theorem 2, this is true iff

i+1°° i+m

(X ) v (X »X )

IR P D A M 0%
for every i and j. Thus every sequence is 1-stationary, and identically distributed,
though possibly dependent sequences are 2-stationary. In generai, m-stationarity
guarantees identical distribution of the joint m-1 dimensional distributions of

consecutive random variables.

§3. The shift Net T .
c

Define the shift relationship x >y, for points x,y in the set " by

X >y iff (XZ""’Xn) = (y],...,yn_])._

Define the directed graph T n with ¢ as the set of vertices and with arcs

from x to y if and only if i > y. The notation here follows that used by
Lempel (1971) where T n is called the shift net. Counting the number of cycles
on this graph, as we]% as algorithms for generating cycles have been open prob-
lems in the literature for a long time. An excellent recent survey is given

by Fredricksen (1981), and a detialed discussion of shift register sequences

can be found in the book by Golomb (1967).
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Fig 1: Examples of shift nets.
A pathon T n is a sequence of points aie;cn such that a; > .- A
c

Toop is a finite path (a],...,ae) for which a, > 2y For Toops we will identify

a with ays A4 with 3,5 and so on so that we may write a; > .4 for i=1,...,e.

et]
A cycle is a loop with no repetitions, i.e. a; = aj e i =].

A Toop is called divisible if it contains a proper subset which is a loop.
The term divisible is justified, because the remainder after removing the subset
will also be a loop. For example, the cycie (001, 011, 110, 101, 010, 100) has
subcycles (001, 011, 110, 100) and (101, 010), as well as (001, 010, 100) and
(011, 110, 101).

A Toop which is not divisib]e is called prime. It is clear that every loop
has a prime factorization, even though, as the previous example demonstrated,
the factorization is not unique. Clearly only cycles can be prime, because if
for a Toop, a; = ay then (ai,...,aj_]) is a proper subloop.

The following lemmas in this section are well known results, but proofs are

given here because their proofs are simple and their ideas useful.

Lemma 3 A cycleon T n

is prime iff a. - a, & j = itl.
c o

Proof: For the forward implication, let a be a cycle in Tcn and assume a; > aj



for some i + 1 # j. If i+l < j then (aj,...,ae, a],...,ai) is a subcycle other-

wise (aj,...,aj) is a subcycle, hence a is divisible.

For the reverse implication, assume that a; > aj ® Jj = i+1, and that a has

a proper subcycle a' = (al,...,a',). Then for some i al = a. -~ al. But a! is
1 e 1 i 2 2

a vertex in a, so by hypothesis aé =2, +'aé. Continuing this by induction

a' must contain all the vertices of a, and hence is not a proper subset.ll
Clearly there is a large amount of redundancy in the loop representation.

If (a1,...,ae) is a loop in T n

o
a Toop in T 1° and this mapping is invertible. For example the loop (001, 011,
c

, then the first elements (a] ERRRECR ]) form

110, 101, 010, 100) maps to (0,0,1,1,0,1). As this is true for all T 0’ it

establishes a 1-1 correspondence between loops on T n and loops on T ; for
all m and n. Explicitly fn,m: Toops on TCn > 1oop§ on TCm is givencby
fn’m(a1,...,ae) = (ai,...,aé)
where a} = (ai’], a1+],1,...,ai+m_],])‘€ M
Lemma 4 fn,n+] establishes a 1-1 correspondence bétween the cycles of T | and
the prime cycles of T¢n+1'

+1]

Proof:,For X,y in Cn, and x -+ y definei<xsy>”ecn by

<K, y> = (X],Xz,...,Xn,yn) = (X],y],---,yn_]syn) .

For a Toop a in T'n’ clearly
c

f (a) = (<a15a2> ,<a2:a3>,...,<ae,a] ).

n,ntl

Using the previous lemma:

fn,n+](a) is a prime cycle

|
[

i < . i+ 1 =
iff <@s.8547> <aj,aJ+]> e i 1

iff I

I
.

= a. e i+ 1
J

iff a is a cycle. O



§4. lLoop measures in Sn(c)

With each Toop a on T n.assoC1ate the Toop measure Pa on c" which chooses
c
a vertex a at random. Specifically, if a has length e, and I is a uniform random:

integer between 1 and e, then Pa is the distribution of ay-

Lemma 5 If a is a Toop than Pa is stationary.

Proof: By the identification of a; and a 410 We have ap v ary- Since ap > aApgys

(XZ""’Xn) " (aIz,...,aIn) = (aI+],]""’aI+1,n-1) O (X]""’Xn-])’
so by theorem 2, Pa € Sn(c).[]

When the loop a is a prime cycle, the measure Pa is called a prime cycle
measure. Since the constraints for stationarity given in theorem 2 {ii are linear,

any linear combination of measures in Sn(c) is also in Sn(c). This shows that

Sn(c) is a convex set.
Theorem 6 The set of extreme points of Sn(c) is fhéiset&ofia]T“pﬁTmé“Cyclefmeasures,

Proof: As an induction hypothesis, assume all measures in Sn(c) with less than k
support points are mixtures of prime cycles measures. To start the induction, it
is enough that the hypothesis is vacuously true when k = 0.

Let PeS"(c) have k points in 1its: support. By theorem: 2, for any
X€ supp (R) we have

c-1
0 <Plx} < ] Pllixysenusx )l
i=0
= P{(Xpseeuox ,1)}
VI "
= ) P{y}.

Xy



This shows that for every Xe supp (P), there exists a y e supp(P) for which
X - y. Because P is a finite set, this implies the existence of a loop
and hence a prime cycle in supp(P).

Let a be one such cycle, so that aie_supp(P) for i=1,2,...,e. Define

a = min eP{a.}.
; i

By definition 0 < o < 1. If a=1 then P=P_ and the induction is over,
If o < 1, define the measure
Q - P - a Pa

1 -«

One can verify that Q is a probability. Q has at least one less than the k

support points of P, because

(1-a)Qfa;} = Pfay} ~aP,fa;} = Pla.) - min eP{a'j};—-

Finally, QegSn(c) because Q is a 1inear combination of the stationary measures P
and P_.
a

By the induction hypothesis, Q is a mixture of prime cycle measures, and
P = aPa + (1-a) Q.

This shows that any Pe;Sn(c) is a mixture of prime cycle measures. It only remains
to show that all prime cycle measures are extreme points.

Let Pa be a prime cycle measure. If Pa is a mixture of stationary measures,
by what has just been shown, Pa is a mixture of prime cycle measures. For any Pb
in that mixture, supp(Pb) c:supp(Pa). But a is a prime cycle, so the only cycle

contained in it is itself, and hence b = a. This shows that Pa is an extreme point.[

Theorem 7 Loop measures are dense in S"(c).



Proof: Let Pe;Sn(c). We will find a sequence of Toops b(j), for which Fb(j) - P
in distribution as j - «. By theorem 6, P is a mixture of prime cycle measures,

i.e.

for prime cycles a(i) and positive weights W summing to one.
On the graph T ne any point x€c" can traverse to any other point yEEcn in
o]

a path of at most length n by
X = (XZ,---,Xn_]sy])

> (X3,.-.,Xn_]sy]sy2)

- (xn_],y],...,yn_]) -+ Y.

Construct the loop b(j) as follows. Start at the point a(])]. Take [jw]] steps
in the cycle a(1) (since b(j) is a loop, it is allowed to go back over points).
Now take the shortest path to the point a(2)], and take [jwz] steps in the cycle
a(2). Continue like this for a(3),...,a(k). Finally, after taking [jwk] steps
in a(k), take a path to a(])1 to complete the loop.

As j - = cohsider the measures Pb(j)‘ Firstly, at the most, k(n-1) points
were used for paths connecting the end of one cycle to the start of the next.
Since this does not increase with j, these points may be ignored. Asymptotically,

‘the measure will pick a point from the block a(i)],...,a(i) ] with proba—

[iw;
j
bility w;. As J approaches infinity, this will tend to a uniform choice from

the loop a(i) with probability W
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§5. Ergodic Theory and Infinite Stationarity

The starting point of ergodic theory is a shift operator t: ¢ - ¢, defined
by t(x) = (x2,x3,...). A measure is stationary iff P(A) = P(<(A)) for all Ac ™.
For such measures the ergodic theorem (e.g. Phelps 1966) states that S(c) is a
simplex with extreme points given by the ergodic measures, i.e. stationary measures
which assign either zero or one as the probability of shift invariant sets.

Unfortunately it seems difficult to apply this machinery in the finite
case. There is no appropriate definition of t(x) for xec". A parallel definition
for the shift can be defined for sets in a restricted class as follows. If a set
A = ﬁl x B for some Bczcn_], then t(A) = B x c]. With this definition, a measure
is in Sn(c) iff P(A) = P(z(A)) for sets A on which 1 is defined (see theorem 2).

Because of difference between the finite and infinite cases, the ergodic
theorem is actually false for Sn(c). The set of measures Sn(c) is not a simplex,
and so the decomposition of a measure as a mixture of the extremal measures given
in theorem 6 is not unique. This is evident from the fact that Toops do not have
a unique prime factorization.

Consider the infinite graph Ttm on the set ¢ determined by the relationship
x>y iffy-= (x2,x3,...). This ig a different graph from the finite ones, because
every Xx€c has a unique successor. A path on the graph is thus completely specified
by its first vertex, and will Toop only if that is a repeating sequence. A prime cycle
on T _, thusconsists of starting from a repeating xec , and sUccessive]y shifting

o
until after one period it returns to x. A1l loops are simply further repetitions
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of prime cycles. This means that on T _ the set of loop measures is identical to

C
the set of prime cycle measures.

As in Section 2, the map f, 7 can still be defined in the same way, and

remains 1-1. This establishes the correspondences .- and fn s Which will be used

in the following theorems.
Theorem 8 Qe S™(c) = 3 PeS(c) such that P" = Q.

Proof: For a prime cycle, a, on T the Toop f, (@) on T is given by
c ? C

a = ((a]’1,...,an’]),...,(a a

I e+n-1,1))

—h

—
o)}

o
i

= ((a1,]a2,1"")"f"(aé,1’ae,Z""))

so that Pa = P? (a)" By theorem 6, any Q€ S"(c) can be represented as

where the sum ranges over prime cycles a in T‘n’ and w, are mixing weights. The

choice

satisfies the conditions of the theorem.
Because the decomposition of Q is not unique, there may be several possiblie

extensions P of the same measure Q. Hobby and Ylvasaker (1964) consider properties

of such extensions. [

The differences between the finite and the infinite graphs results in the

following modifications to the theorems in section 4.
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Theorem 8 Prime cycle measures on T
c
(i) are extreme points of S(c)
(ii) are not all of the extreme points of S(c)

(iii) are dense in S(c).

Proof:

(i) Let Pa be a prime cycle measure. For any measure Q€ S(c), if
supp(Q)c supp(Pa) then some a, € supp(Q). But because Q& S(c)
Qla;} = Qagyqd = ... = Qla} = Qlaglk = ... = Qfa; 4}
So Q is the uniform measure supported on the vertices of the loop a, i.e. Q = p.
(ii) A simple counter example is given by an iid sequence on ¢, generated
by ¢ sided dice. It is clearly in S(c), yet almost surely it is non repeating.
Any loop measure, or mixture of loop measures will almost surely repeat.
(i11) Let X be a random sequence with distribution P& S(c). Then Pnessn(c)

so by theorem 7, there is some Toop a(n) on T n for which
c

Pa(n) - PUL < 1/

where the norm is the variation norm. As in the proof of the previous theorem

k _ ok
an,d(a(n)) = Pa(n) for k < n. So for all k

k

f
N,

k
p (a<n)) + P as n > o,

By Billingsley (1968 p.19) this is enough to show that

n,m(a(n)) > P as n >,

As this is true for all measures P€S(c), the measures Pf (a(n))? i.e. the
n,» .

prime cycle measures are dense in S(c).[
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