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1. Introduction. Consider a polynomial regression situation on [0,1].

For each x or "level" in [0,1] an experiment can be performed whose out-

' m
come is a random variable y(x) with mean value J
i=0

independént of x. The parameters By i=0,1,...,m and 02 are unknown. An

i . 2
Bix and variance o,

experimental design is a probability measure £ on [0,1]. If N observations

N 1 V- |

are to be taken and £ concentrates mass £; at the points X;

and Ngi =n; are integers, the experimenter takes N uncorrelated observa-
tions, n; at each Xis i=1,2,...,. The covariance matrix of the least

squares estimates of the parameters B; 1s then given by (oz/N)M-](g)vwhere
' |
M(g) is the information matrix of the design with elements mij#’f x"dg (x).
0

For an arbitrary probability measure or design some approximation would
be needed in applications.

Various criteria have been used for determining a good design £. Typ-
ically one tries to minimize some functional y(M(£)) of the information
matrix M(z). Examples are w](M(a)) = ]M_](g)l, ¢2(M(g)) = sgp d(x,g) where
d(x,8) = £ (O (E)F(x), £ (x) = (T,x,...X™) or ya(M(g)) = c¢'M ' (e)c for
some c, etc. The solution to the first problem is called the D-optimal de-
sign and the second is called the G-optimal design. These are known to be
equivalent, see Kiefer and Wolfowitz (1960).

In situations such as these, the model or the degree of the polynomial,
is assumed known. Numerous papers have been devoted to this problem. Others
have considered designing the experiment to include bias components. The
object of the present paper is~to describe a technique
for solving a problem formulated in a paper by Stigler (1971). Some
familiarity with Stigler's paper and the papers by Studden [19807[1981] is

useful.



The situation is described generally as follows. Let f'(x)= (1,X,...,x")
= (f(x),f5(x)) where f3(x) = (ToXs-02x"), fo(x) = ("1, .. .x™) and de-

compose M(z) similarly as

M(g) =
M1
Here Mn has size r and M22 has size s = m - r. The model is thought to

be of degree r but possibly the coefficients of the s higher powers xr+1,

..»X" are not zero. We would then Tike to determine a design £ which is
D-optimal if the model is degree r, i.e. maximizes the determinant IM]](g)I
subject however to the condition that there is some protection in being

able to determine whether the coefficients 8 ’Bm are zero. The

r41°Bpego e
covariance matrix for the LSE of By 2e e+ 2By is proportional to the in-

verse of the matrix

(1.1) rg(8) = Myp(E) - Myp (EIMT] (DM, (c).

We therefore consider the D -problem; which is to maximize [My1(2)] sub-:
ject to the condition Izs(g)] > C. A solution to this problem will be
called a Drm—optima1 design. This should provide a design which is good
in the sense of being D-optimal if the model is of degree r and allows

some protection in being able to test whether g »8, are zero. The

]
measure of protection is given somewhat indirectly by the constant C.
Stigler has proposed considering a G-optimal version of the above
problem and, at the end of his paper, of replacing the condition on IZSI
by a sequence of constraints, one for each degree above r. The latter

problem could be considered using our techniques. The G-optimal version

seems to be somewhat more complicated than the‘D-optima1 problem. Only



the Drm—problem is considered here.
One of the quantities used to measure the efficiency of a design is
the D-efficiency given by
1

mT
(1.2) () = | sl

n
Notice that the size of M(g) is m + 1. Using (1.2) we rewrite the constant
C as
(1.3) C = pmax|z (n)]
n

The D _-optimal design will have ]zs(g)| = C so that

1/s
z (g)

max Zsins
n
Thus o measures the D-efficiency in estimating the coefficients Br+1""’6m;

The case p = 1 corresponds to obtaining maximum information concerning
Bpgqse e 2By The other extreme p = 0 gives rise to the D-optimal design
for rth degree regressidn.a The'case o = 1 was studied in
Studden (7980) with the aid of canonical moments.- The purpose of
the present paper is to illustrate the further use of canonical moments in
handling the general Drm-problem.

For a given design £ the matrix M(g) has entries m.. =_{x1+jdg(x).

1]
For convenience let

1
(1.4) ¢, = é Kde(x),  k=0,1,2,...

+ .
For a given, fixed, set of moments C ,Cqs...5C5 4 let c; denote the maxi-
_ ;o
mum of the ith moment [ x'du(x) over the set of measures u having the given
0



moments co,c],...,ci_]. Similarly let c; denote the corresponding minimum.

The canonical moments are defined by

(1.5) p, = i

The P; values are left undefined if c; = c:. As a simple example consider
the first two canonical moments P1» Py corresponding to Cys Coe The va]ué
of Py is simple ¢y since given fdz = 1 the first moment can range over
[0,1]. The set of all possible moments (c],cz) is generated byltaking the
convex hull of the curve (x,x2) for 0 < x < 1. Thus for given C; the

second moment <, is bounded between cé =_c$ and c; = Cq- In this case

cp-c?

Pp = c]l1-c]§

I't should be noted that measures £ are on the unit interval [0,1].
The canonical moments for measures on an arbitrary interval are defined
in precisely the same way. The canonical moments are invariant with respect
to linear transformations and all the results and designs given here can
be easily transformed to arbitrary intervals. The useful property of the
canonical moments is that the Ps values range "independently" over the en-
tire interval [0,1]. Problems defined in terms of the canonical moments
have some chance of easy solution especially if the involved expressions
are "relatively" simple. There are then known methods (which are describ-
ed below) for converting back and forth between the ordinary moments Ci»
the canonical moments P; and the design ¢.

We give as a simple example the quadratic situation m = 2 which was
used for illustration by Stigler (1971). More general cases are consider-

ed below. Suppose that m =2 and r = 1. The model is thought to be



Tinear but some protection against quadratic terms is required. Using the

value of Py and Po just calculated from ¢y and C, We find that
- 2 _ -
(1'6) IM]]({';)I - cz = C'I - p'lq'lpza (q1_]'p1)'
We show below that
_ 2
(1.7) IM(£)] = (pya;P,)"(a,P5a5p,).

Observe first that the D-optimal designs can be obtained very rapid-
ly in terms of the p;- For Tinear regression [M]1(£)| is maximized for
Py =Gy = 1/2 and Py = 1 while the quadratic D-optimal design maximizing
[M(g)] in (1.7) has Py = pg = 1/2 p, = 2/3 and pg = 1. We mention in

passing that symmetry of & about x = 1/2 is related to the odd canonical

moments being 1/2.

The D12—prob]em now reduces to maximizing P191Ps subject to the condi-

tion that
= Ml
(1.8) |z(g)] = T%JfT' = P19qP95P303P,
>p max]z(n)l
n
> p 2-6

It is evident that the solution involves Py = P3 = 1/2, Py = 1 and we max-

imize p, subject to p,q, > p/4 which gives

- I/
P2 = 72
The canonical moment sequence (1/2,p2,1/2,1) is then converted back to the
Ci» i=0,1,2,3,4 to get M(&) and to the design £. It will be indicated
shortly that the above sequence corresponds to a design on the points 0,

1/2, 1 with corresponding weights a, 1 - 20, o where




This is precisely the design encountered by Stigler (1971) on page 315.
His value of C is related to our p by 4 = pC.

The general formulation of the Drm-design problem becomes quite
simple once the value of |M(g)| (and hence [M]](g)|) is given. The ex-
pression below is taken from Skibinsky (1969). The value is also given in
Wall (1948),Brezinski (1980) and is "well-known" in the theory of orthogon-
al polynomials and continued fractions. The results originate with
Stieltjes.

If i = Q5_1Pis i=1,2,..., where q, = 1 and q; = 1 - P; then the value

for |M(g)| is given by

. )m+1 -1i

m
(1.9) ' IM(E)I = .H] (CZ'i—]CZ'I
'|=

The value for |M]1(g)| is, of course, just (1.9) with m replaced by r. To

obtain lzs(g)1, use is made of the fact that
|2 (e)] = T3

The general qun—optima1 design problem is thus relatively easy to state
in termsof the canonical moments P '

The remaining sections are outlined briefly as follows. In section 2
we state a number of results allowing us to convert from the P; to the C;
and the design ¢. These are taken from Skibinsky (1969) or the other
sources listed above for (1.9). Proofs of most of these results will not

be given here. The explicit solutions for the D]merob1em and some calcula-

tions for the D2m-prob1em are given in Section 3. In both cases some
D-efficiencies as defined in (1.2) are calculated. It will be seen that

the solution to the D]z—prob1em gives rise to an immediate solution to the



D]m—problem. Similarly the D23-prob1em gives the solution to the
D2m-prob]em, etc. Moreover the solution to D23 involves the solution to

D]Z’ etc. so that the successive problems, as expected, are of more com-

plexity.

2. Converting from p, to c, and £.  There is a considerable amount of Tit-

erature concerning the relationship between the sequences {p;} and {c;} and
the design £. We will state here only those results which are :pertinent -
to the Drm-design problem.

In the Drm-design problem the P; values appear only through the deter-
minants [M| and |M;;]. These are given in (1.9) so there is no need to ex-
press the P3 values in terms of c; or &. (The P; values can be expressed
as ratios of Hankel determinants involving the moments Ci- The i = 95.1P;
values occur as the coefficients in the continued fraction expansion of
the Stieltjes transform of the measure ¢ and they occur in the three terms
recursive relations for certain orthogonal polynomials related to £.)

The direction useful here is in going from the canonical moments Pj to
the ordinary moments C; and the design g. The C; values are needed in cal-
culating M or M'] which Tleads to the covariance structure of the estimates

of BysBpsesesBye The measure £ is, of course, the design and is the prin-
cipal object of study.

To go from the P; to the C; we have the following.

Lemma 2.1. If soj =1, j=0,1,... and

J
(2.1) _ Si5 = kzi Ceois1Sioe 124

1l
w

then ¢



The first few moments are

‘7R Y

p] (p'|+q]p2) = C-l (C]+€2)
C3 = C1[§](C]+52)+C2(C]+§2+§3)] .
To describe the design £ we need the support and the corresponding weights.

Lemma 2.2. If T1sCps+-- sl are not zero and A 0 then the correspond-

ing design £ concentrates its mass on the zeros of the polynomial

X -1 0 0
-2 1 -1
0 o X
(2.2) D (x) = .
. -1
0 ‘Ck >T(X)

where t(x) = x or 1 according as k is even or odd.
Note that Dk(x) is a tri-diagonal matrix and is roughly of degree k/2.

The expression for Dk(x) can be expanded by the last row to show that
(2.3) Dk(x) = T(X)Dk_1(X) - cka_z(x).

The case k = 2m, where Pomy = 1, Zom = 9om-1 and Tomt] - 0 will be of partic-

ular interest to us. In this case

m-1 . .

(2.4) D, (x) = X 1 (-1)'a ™"
'|=

where ay = 1 o, bt a, T 1 Zi ;1]ci +1 and in general 3 is a
12

sum of products of j terms; the sum being over the terms with all subscripts

at least two units apart. For example



D,(x) = x3 - (c]+c2+c3+c4)xz
*{gyogte Tatiog, )X .
Further simplification occurs if Pois1 = 1/2 and also from noting that
Xx =1, as well as x = 0 is a root of DZm(X) = 0.
The weights on the various points can be calculated in a number of
ways. For our purposes we shall resort to simply calculating the'ci and

setting up the linear equations involving the weights and the ordinary

moments. That is,if XgsX]seeesX) are the required support points then

k .
(2.5) ci =V w.xd, 3§=0,1,...,k.

These equations are solved for WoseoosWpe In all our cases Pojs1 = 1/2

and the solution is symmetric.

Lemma 2.3. (a) The design corresponding to (1/2,p2,1/2,1) concentrates
mass a, 1 - 2a, a'on the points 0, 1/2 1 respectively where o = p2/2.

(b) The design corresponding to (1/2,p2,1/2,p4,]/2,1) concentrates
mass a, 1/2 - a, 1/2 - a, a on the points 0, 1 - t, t, 1 respectively

where o = p2p4/2(q2+p2p4), t = (1+VP2q4)/2-

Proof. The proof in each case follows from Lemma 2.2 and (2.5). In each
case the expression (2.4) can be used to show that the points of support

are correct. To get the weights we use (2.5) and the symmetry. For example
in the first case the symmetric weights will give Cy =Py = 1/2. The

second moment is ¢, = p](p]+q]p2) = (1+p2)/4 so that using (2.5) we require

= (1/2)%(1-24) + a

which gives o = p,/2. The situation in part (b) is similar.
2
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3. The cases r=1 and r=2 and general m. We first discuss r = 1, where a

simple linear regression model, Bo + ByXs is being considered and some

protection is desired for the terms BpsBgse-esBye

Theorem 3.1. For r = 1 and general m the D

]m—optimal design has canonical
moments
Poj_1 = 1/2, i=1,2,...,.m
1+/1-p
P2 2
(3.1)
m-1+1 §22,3,... ym-1

P2i = Zm2ieT
= 1.

Corollary 3.1. The D]Z-optimal design 512 has mass ays 1 - Za], a; on the
points 0, 1/2, 1 respectively where

ay = Pp/2 = (15/T-0)/4 .

Corollary 3.2. The D]3—opt1ma1 design_g]3 has mass Qs 1/2 - %ss 1/2 - %o s

a, on the four points 0, 1 - t, t, 1 where

t= (]+’p2q4)/23 0¢2 = 2p2/(2p2+3q3):

p2 = (1+/T:E)/2, q4 = 1/3.

We should reemphasize that the definition of o in equation (1.3) makes
use of the number s of extra parameters to be guarded against. In the
present case r =1 and s =m - 1. With this definifion some of the lower
order canonical moments and efficiences consideked below are independent of
m. Thus, p (or 1 - p) measures how much is taken away from the D-optimality

of the basic model with r parameters.
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The proof of Theorem 3.1 makes use of (1.9) and the problem easily re-
duces to maximizing Py subject to the condition that P45 > p/4. In the
process we use that fact that piqj is maximized for p = i/(i+j). The re-
sulting value of Py is then given in equation (3.1). The corollaries fol-
low immediately from Lemma 2.3.

Some of the pertinent quantities of £12 and £13 from Corollaries 3.1

and 3.2 are given in the following table.

Table 3.1
o 0 .1 .2 .3 4 .5 .6 .7 .8 .9 1.0
Py 1T .974 .947 .918 .887 .854 .816 .774 .724 .658 .500

]-Za] 0 .026 .053 .082 .113 .146 .184 .226 .276 .342 .500
t .789 .785 .781 .777 .772 .767 .761 .754 .746 .734 .704
]-2a2 0 .038. .078 .118 .160 .204 .252 .304 .364 .438 .600

The -values of 1 - Za] and 1 - 2a2 are listed , as measures of the
- proportion of the observations which are taken on the interior of the
interval and not at the endpoints 0 and 1. Thus for o = .5 about 15% are
to be taken at the midpoint 1/2 to guard against By Note that the two
interior points for 513 stay close to approximately t = 3/4 and the weight
changes for varying p. The D-optimal design for quadratic regression has
Py = 2/3 and Py = 1 corresponding to o = 8/9 while the D-optimal design
for cubic regression has Py = 3/5, Py = 2/3 and P = 1 corresponding to
p = .96. (These designs are symmetric and Poj1 = 1/2.)

We might mention here in passing that if m - ~ the resulting 1imit-
ing design has canonical moments p; = 1/2, i#2 and Py = (1+/1-p)72. 1t
can be shown,. somewhat difficult arguments involving Stieltjes trans-

forms, that the limiting design, denoted by Ew? has density
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on [0,1] given by

(3.2) VP ;
a(x(1-x)) "/ c[2=p=2V/T-p . #16VT-p x{1-x)]

For o = 1 this is the arc-sin law while for p - 0 the density converges to
the D-optimal design for Tinear regression with masses 1/2 and 1/2 at the
endpoints 0 and 1.

The case r = 2 and general m can be formulated in terms of canonical

moments very easily. For r = 2 and m = 3 the problem reduces to

. .2
(3.3) maximize psq,p,

subject to p,Q,p,a, > 0/16 .

For given Po the solution for Py is

- __P 1/2
(3.4) Py = 1/2004(1- 2= )T

If we substitute this value back into pngp4 and maximize with respect to

P, we find that Py is the root of

(3.5) 0(1-2p)% +16(2-3p) (pa- 2) (p-1) = 0

that lies between 1/2 and max{2/3, lié;ii } . Equation (3.5) is expressed
in the form given since an analysis of (3.3) leads to a consideration of
the position of the solution Py which is related to (3.5). The expression
in (3.5) reduces to

4 128p3 + 16(p+7)p2 = 8(4+3p)p + qo = Q.

(3.6) 48p
The solution for r = 2 and general m follows the same pattern as the
case r = 1 and general m in that Py and Pa remain the same and the higher

moments p,. are given by (3.1) for i > 3.
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Theorem 3.2.  The D2m—optima1 design has canonical moments Py and Py -

which are the solution of (3.3) given by (3.5) and (3.4), py;_y = 1/2,

Pom = 1 and

- m-i .
p21' --zTn—_—z-_m' ’ 1—3,...,m-].

The actual design for m = 3 is given by Lemma 2.3. For higher values
of m Lemma 2.2 may be used. Some of the pertinant quantities from Lemma

2.3(b) are given in Table 3.2 for m = 3.

Table 3.2.
p 0 . .2 .3 A .5 .6 .7 .8 .9 1.0

Py .667 .663 :.660 .655 ,650 .644 .636 .625 .611 .587 .500
Py 1.0 .971 .941 .909 .874 .837 .797 .752 .699 .634 .500
o .333 .328 .323 .317 .309 .301 .291 .278 .262 .237 .167
t .500 .569 .599 .622 .643 .662 .680 .697 .714 .732 .750

Note that for p = O the design begins at the D-optimal design for quadratic
regression and ends at o = 1 giving maximal information for B3 where it

has mass proportional to 1:2:2:1 on the points 0, 1/4, 3/4, 1.

4. Efficiencies. In this section some D-efficiencies and some G-

efficiences are given for the designs described in Section 3. Recall
that in equation (1.2) the D-efficiency of ¢ for regression with m + 1

parameters was defined by

e () =e () = SuplM Tw]

n
The quantity em(g) measures how well & performs in a D-optimal sense for
polynomial regression of degree m. The values for the supremum in the

denominator can easily be calculated using the expression for le(g)| from
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equation (1.9). The maximum occurs for p,. ;. = 1/2,p5; = (m-1)/(2m-2i+1),
i=1,...,m-1 and p, = 1. Thus the values of em(g) are relatively simple
expressions in terms of the canonical moments of .

The first three efficiencies are given by

e (g) = (py)/2
2 1/3
IPRPYY
(4.1) ez(g)=3< 24“>
es(g) = 1/2(55pgqu§q4p6)1/4 .

Using the appropriate P; values for the various designs we find that

NY
eq(eq,) = <—]+‘./2]—p )

1/3

e2(212)

1\ 1/3
e2(&qp) = ( s > ep(215)

5 1/4
5 — 2
—— (1+/1-p) )
< 2733 pJp

e3(ey3)

In Table 4.1 some of the efficiencies are given for various p. A plot of
some of the efficiencies for E1m is drawn in Figure 4.1. The table can
be used to plot the efficiencies for £03 if desired.

Note that the efficiencies that are zefo for p = 0 rise fairly rapid-
1y for increasing p and those that are 1 for p =0 decrease rather slowly.
Thus by increasing o one appears to lose a small amount of D-efficiency for
the original model for a significant gain in over-all D-efficiency for the

higher order models. Recall that p itself measures the D-efficiency for
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Table 4.1
o 0 .05 .1 .2 .3 4 .5 .6 .7 .8 .9 1.0
e](g]m) 1 .994 .987 .973 .958 .942 .924 .904 .880 .851 .811 .707
ez(g]z) 0 .440 .548 .684 .775 .843 .896 .938 .971 .992 1.000 .945
e2(513) 0 .385 .479 .597 .677 .736 .783 .820 .848 .867 .873 .825

ez(g]m) 0 .305 .380 .474 .537 .584 .622 .651 .673 .688 .693 .655
e3(g]3) 0 .257 .364 .512 .622 .712 .788 .854 .910 .957 .991 .975
e](523) .817 .816 .814 .812 .809 .806 .802 .797 .791 .782 .766 .707
e2(523) 1.0 1.0 1.0 1.0 1.0 .999 .999 .998 .996 .993 .987 .945

e3(£23) 0 .546 .647 .764 .838 .891 .932 .963 .985 .998 .998 .935

the neglected part or the higher order terms. The designs themselves for
increasing p move rather slowly away from the D-optimal design for the low-
er order model. For example, consider the case r = 1, m = 3 where our model
is roughly linear and protection is desired for Bys B3 For p = .5 the
D]3—optima1 design takes about 1 - 2u2 = .20 of the observations (see Table
3.2) away from the endpoints and puts it at approximately 1/4 and 3/4. The
resulting design has 50% efficiency for BoB3s 92.4% D-efficiency for the
Tinear model and 78.3% and 78.8% overall D-efficiency for the quadratic
and cubic modé]s. For p = .8 the corresponding values are e](g13) = .811
e2(513) = .873, e3(g]3) = ,991, The design in this case moves 36.4% of
the observations away from 0 and 1.

Some comparisons with other designs can be made by calculating their

canonical moments. For example it can be shown that the design &n which
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Figure 4.1

D-efficiency for guarding against higher coefficients

Plot of o

VS. ek(g) = D-efficiency for degree K.
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puts equal weight on n equally spaced points on [0,1] has
n+i _ n+2
(4.3) p2 = ]/3( ﬁ:T') and p4 = 2/5( n-T ).

For example, e](E]O) = .638 and ez(g]e) = ,707. For n - «» the corres-

ponding values are e = .577 and e, = .585.

The G or A efficiencies of the designs considered above can also be
calculated using canonical moments, the expressions being relatively
simple for the linear and quadratic cases. For example let
dr(x,g) = f{(x)M;z(g)fﬁx) denote the normalized variance for estimating
the response function at the point x. It is known that the D-optimal de-
sign Ep for degree r minimizes sup dr(x,g) and sup dr(x,gr) =r + 1. The

X X
G-efficiency eE(g), for degree r, of the design ¢ is given by

el(g) = 1]
r sup arlx,gi

X

The design €19 has Py = 1 so that from (4.3) we find that

2 8
. 3(1-py)  pp23 or o<y
%2(412) - 3 2 8
7 P2 Ppz3 OF r2g
The design £y has Py = %—(from Corollary 3.2) so that
6(]’p2) 5
. Pr > &
G 2+p2 2 -8
e,(8,2) =
2'713
6p2
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A short table of some G-efficiencies is given below.

Py 1 .974 .947 .918 .887 .854 .816 .774 .724 .658 .500
e](g]m) 1 .987 .973 .957 .940 .921 .899 .873 .840 .794 .667

.078 .159 .246 .339 .438 .552 .678 .828 .987 .750

(1
N
—
Nat
—
nNo
~—
o

.052 .108 .169 .235 .307 .392 .489 .608 .772 .667

(0]
N
—
oy
-_—
w
~—
(ew]

References

Brezinski, Claude (1980). Padé-Iype Approximation and General Orthogonal
Polynomials, ISNM 50, Birkhauser, Boston.

Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum prob-
Tems. Canad. J. Math. 12, 363-366.

Skibinsky, Morris (1969). Some striking properties of binomial and beta
moments. Ann. Math. Statist. 40, 1753-1764.

Stigler, Stephen M. (1971). Optimal experimental design for polynomial
regression. ~ JASA, 66, 311-318.

Studden, W. J. (1980). DS-optimal designs for polynomial regression using
continued fractions. Ann. Statist. 8, 1132-1141.
Studden, W. J. (1982). Optimal designs for weighted polynomial regression

using canonical moments. To appear in Statistical:Becision Theory
and Related Topics III. .

Wall, H. S. (1948). Analytic Theory of Continued Fractions. Van Nostrand,
New York. _



