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T. Introduction

In this paper, three new selection procedures are givén for the
problem of selecting a subset which contains all populations better
than a standard or control under simple or partial ordering prior.

Here by simple or partial ordering prior we mean that there exist

known simple or partial order relationships (defined more specifically
later in Section 2) among unknown parameters. The procedures described
do meet the usual requirement that the probability of a correct
selection is greater than or equal to a predetermined number P*, the
so-ca]jed P*-condition.

Many authors have considered the problem of comparing populations
with a control under different types of formulations (see Gupta and
Panchapakesan (1979)). Dunnett (1955) considered the problem of sepa-
rating those treatments which are better than the control from those
that are worse. Gupta and Sobel (1958), Gupta (1965), Naik (1975),
Brostrom (1977) studied the problem of selecting a subset containing
all populations better than the control. Lehmann (1961) discussed
similar problems with emphasis on the derivation of a restricted minimax

procedure. . Gupta and Kim (1980), Gupta and Hsiao (1980) studied the problem of

*This research was supported by the 0ffice of Naval Research contract
NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.




selecting popu]atioﬁs close to a control. 1In all these papers it is
assumed that all populations are independent and that there is no in-
formation about the ordering of unknown parameters. However, in many sit-
uations, we may know something about the unknown parameters. What we
know is always not the prior distributions but some partial or incom-
plete prior information, such as the simple or partial order relation-
ship among the unknown parameters. This type of information about the
ordering prior may come from the past experiences; or it may arise in
the experiments where, for example, higher dose level of a drug

always has larger effect on the patients.

In Section 2 definitions and notations used in this paper are
introduced. In Section . 3 we consider the problem for location param-
eters. We propose three types of selection procedures for the cases
when the control parameter is known or not known (the scale parameter
may or may not be assumed known). Some eqyiva]ent forms of the pro-

cedures are given, and their properties are discussed. In Section 3

simple ordering priors are assumed and some theoréms 1n}the theory

of random walks are used. A selection procedure for the problem of
selecting all populations better than the control under partial ordering
prior is given in Section 4. Section 5 deals with the use of Monte Carlo
techniques to make comparisons among the selection procedures proposed

in Section 3 and those in Section 4, respectively.



2. Notations and Definitions

Suppose we have k + 1 populations Tos TqseesTye The population
treatment T is called the control or standard population. Assume

s

that the random variable Xijis associated with F(-505) ‘and X, poueonXs
i
i=1,...,k, are independent samples from PR Assume that we have an

ordering prior of e],...,e First we assume that the ordering prior

K
is the simple order, so that without Toss of generality, we may assume
that, 6, <... <8 In Section 4 we will consider the partial order-
ing prior case. Note that the values of ei's are unknown.

Suppose our goal is toselect a non-trivial (small) subset which cen-
tains all populations with parameterslarger (smaller) than the control
eo (known or unknown) with probability not less than a given value P*,

The action space G is the class of all subsets of the set {1,2,...,k}.
An action A is the selection of some subset of the k populations. 1€A
means that s is included in the selected subset.

let 6 = (eo, 61""’ek)' Then the parameter space is denoted by Q,

k+1

where @ = {8 €R" | 8] S0y < ... 285 - @ < 8y <=} is a subset of

k + 1 dimensional Euclidean space B2k+].

The sample space is denoted by X where

nyt...tn,
Z={x€R | x = (XH""Xln]’”"Xk1""xknk)}"
(Here 8y 1s assumed to be known) .

Definition 2.1. A (non-randomized) selection procedure (rule) &(x)

is a mapping from X to G.



A population ™ (i =1,...,k) is called a good population if
6; > 8- A correct selection-(CS) is the selection of a subset which
contains all good populations. A selection procedure § satisfies the

P*-condition if

inf P_(CS|5) > P¥, (2.1)
ocq 2

.Let 8 ='{6|ggg EQ(CSIG) > P*} be the collection of all selection
procedures satisfying the P*-condition.

In the sequel we will use the 1sofonic estimators (see Barlow,
Bartholomew, Bremner and Brunk (1972)). Hence wwe give the following def-

initions and theorems.

Definition 2.2. Let the set J be a finite set. A binary relation

"<" on J is called a simple order if it is

(1) reflexive: x < x for Xx€J

(2) transitive: x, y, z€J and x <y, y <z imply x < z
(3) antisymmetric: x, y€J and x <y, y < x imply x = y
(4) every two elements are comparable: x, y €J imply either

X<yory<x.

Definition 2.3. ‘A partial order on J ts a binary relation "<" on 7, such that

it is (1) reflexive, (2) transitive, and (3) antisymmetric. Thus every
simple order is a partial order. We use poset (7,<) to denote the set

J that has a partial order binary relation "<" on it.



Definition 2.4. A real-valued function f is called isotonic on poset

(7,<) if and only if (1) f is defined on J, (2) if x, y€J, x <y imply

f(x) < fly).

Definition 2.5. Let g be a real-valued function on J and let W be a
given positive function on 7. A function g* on J is called an isotonic
regression of g with weights W if and only if:

(1) g* is an isotonic function on poset (7,<)

2) T [ox) - ()T = min T [9(x) - F)I(),
XeEJT fEsF xeJ

where F is the class of all isotonic functions on poset (7,<).

From Barlow, et. al. (1972), (see their Theorems 1.3, 1.6 and the

coroT]ary there), we have the following theorems.

Theorem 2.1. There exists one and only one isotonic regression g*

of g with weight W on poset (7,<).

There aré some known algorithms, such as the "poo1ﬁadjacentwio1ators"
algorithm (see page 13 of Bariow, et. al. (1972)) or Ayer, Brunk, Ewing,
Reid and Silverman (1955) or the “"up-and-down blocks" algorithm, Kruskal
(1964), which show how to calculate the isotonic regression under simple
order.

The following max-min formulas were given by Ayer et. al. (1955).

Theorem 2.2. (max-min formulas)

Assume that we have poset (J,<) where J‘='{e1,...,ek}, 87 <---<Os
and that function g: J » R, then the isotonic regression g* of g with

weight W has the following formulas:



g*(e,) = max min Av(s,t)
s<i t>i

= max min Av(s,t)
s<i t>s

= min max Av(s,t)
t>i s<i

= min max Av(s,t)
t>1 s<t

where

t
I a(e, (o)

- Av(s,t) = ris

W
L

Corollary 2.1. (g + c)* = g*¥ + c, (ag)*A= ag*, if a> 0, c € K.

Corollary 2.2. [p(g*)g + @(g*)]* = 0(g*)g* + o(g*), where p is a

nonnegative function and ¢ is an arbitrary function.

3. Proposed Selection Procedures for the Normal Means Problem

We are interested in the (subset) selection problem of the unknown
means of k normal populations in comparison with a standard or control
normal with its mean known or unknown. Thus observations are taken on

X, . which are independently distributed normal random variables

1J
2 : . q o=

N(“i’c ), 3=1,...,n35 ¥ =1,....k. The values of HpsHps. ool are

unknown, but their ordering, say, My S My SeenSmp is known. Note that

in this case we replace 6 in the parameter space Q@ by u, all other

quantities remaining the same.



Let us define the subspace @, = {u€a| u,_; < 1y < w_j4q} for
T =T,....k-1, the subspace @ = {u € 2| ng < uy}, and the subspace

k
24 = {p €@l M < Hpls then we have 0 = U Q- Note that the control
i=0

uy could be known or unknown. If y, is unknown, we assume that the

distribution of population T is N(uo, 02) and we take independent

observations XO]""’X from L and the sample space X becomes

OnO
Nat...4n
(XeRr ©

0

the partition {90,;..,Qk} of parameter space Q, we have

inf P (CS[s) = inf "{inf" P (CS[8)1,
L€Q u 1<i<k 3691- B

k

for any selection procedure § €8. Hence the Pf-condition is equivalent

to
inf P (CS]G) > P*¥, for i=1,...,k.
uEQi L
Note that inf PU(CSIG) = 1 for any selection procedure § since there
QN =
0

exists no good population in this case.
Let Xi‘= X; be the observed sample mean from population Tis

i=1,....k. Llet J denote the set {u,, Hoseewsi } Where up < oo <y,

-2

and let W(ui) =Nio " =W, g(“i) = X i=1,...,k. Then by the max-

min formulas, the isotonic regression of g is g*, where

t
B .Z ijJ
g*(ui) = max - .min - Q%i————3 i=1,...,k.
1<s<i s<t<k T w
j=s J

The isotonic estimator of M is denoted by Xi'k’ i=1,...,k where

K= Ugpaeeshongs Xypoeeeokyp ee ooy X )3 Using



t

X.W:
. . JZS 33
Xi'k = max - min <%
1<s<i s<t<k Z W

j=s 3
= max {X_..} (3.1)
1<s<i 1k
where
X .. = min{X T Hhsaian sty L. (3.2)
s:k s’ WsHWg 1 g T gt ' AR

It is known that the isotonic estimators X K i=1,...,k are also the
maximum Tikelihood estimators of i i= 1, .ok,

3.1. Proposed Selection Procedure 81

Case I. g known, common variance 02 known, and common sample size n.

Definition 3.1. We define the procedure 61 as follows:

Step 1. Select Mo i=1,...,k and stop, if

><>

otherwise reject ™ and go to Step 2.

Step 2. Select Tss i=2,...,k and stop, if

)

~ ( .
X —,
2 k /—

2:k = Yo

otherwise reject m, and go to Step 3.

Step k-1. Select Tis i = k-1, k and stop, if

o 1) g
X . 2 Ha -~ d( . s
k-1:k 0 k-1:k Jn

otherwise reject L and go to Step k.

Step K. Select Tk and stop, if

A

X ) o

| 1) o

k:k = Y0 ~ kkr
otherwise reject M-

Here d( & s are the smallest values such that 6] € 9, that is 6] sat-

isfies the p*-condition.



3.2.  On the Evaluation of inf P (CS]S ) and the Values of the
uEQ L

Constants d%?&,...,d(

)
k:k

For any u€q;, 1 <1 <k, let Z;'sbe i.i.d. N(0,1) and Tet ir'k =

JA +Zr+] Zr+zr+1+"'+zk

min{Z, 5 e es v e }.

Then PB(C5|51)

k-i+1

(1
B j=1 0 J:

—})

)
kK /7

k- 1+1 N (-I)
P( U U {X uy - d
u j=1 r=1 Y‘.k 0

)
Jk/ﬁ‘

k-i+1 j = TG
P U Uz, +20,_ 4l
j=1 r=1 T k = Jj:k

1)

fv

o/ /n
which is increasing in W 7= T, k=it
Hence

inf P CS|61) z_P(Zk_1+1.k 2" dé-i+1'k )
uGQ E . .

On the other hand,

inf P (CSIG

uGQ L]

k=141 (1) o
- p(7 (1)

= P iarik 27 e

* = - -
whenever u (uo, yeens . “0""’“0) €Q

Thus, we have !
inf PL(CS[6y) = PZy gy 2 - 41 0.
UGQ Ll . .
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Since Z, ;iq.r has the same distributions as Zy.5

letting
V1 = Z]:1 (3.3)
we have
: _ (1) . |
;EgiPE(CS|6]) = P(Vi > - dk—i+1:k)’ i=1,...,k. (3.4)
It is clear from the above that d§13+]-k = d%?g for all

i=1,2,....k and d%!? is increasing in i.

Theorem 3.1. In case I, (“0 known, common known 02 and common sample

size n), if d£13+1°k is the solution of equation
P(V; > - x) = P* (3.5)
where
1T
V. = min v Yy Z. and Zi are i.i.d. N(0,1),
I<r<i © =1 J

i=1,...,ksthen 6] satisfies the P*-condition.

Proof. For any i, 1 < i <Kk,

1
B
%

. - (1)
inf PU(CS|61) = P(Vi > - d1—1+1:k) =
ISUF

S0 8, satisfies the P*-condition.
Therefore, the problem of finding the dg!&'s reduces to finding the
distributions of V],...,Vkm This is achieved by using some results

in the theory of random walk.
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3.3. Some Theorems in the Theory of Random Walk

Suppose Y], Y2,... are independent random variables with a common

distribution H not concentrated on a half-axis, i.e. 0 < P(Y1 < 0),

P(Y1 > 0) < 1. The induced random walk is the sequence of random
variables

SO = {0, Sn = Y.| +...+ Yn’ n=1, 2,
Let

T = P(S.l < 0, ’Sn-1 <0, Sn > 0) (3.6)
and

t(s) = J s, 0<sc<] (3.7)
n=1

Then we have the following theorem which was discovered by Andersen

(1953). Feller (1971) gave an elegant short proof.

Theorem 3.2. (Feller (1971))

Let

Py = P(S.l‘>0,...,Sn > 0),
then

‘—'oo n: ] 38

p(s) = n§1pns T (3.8)

hence
oosn
log p(s) = ] =-P(S > 0) (3.9)
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By symmetry, the probabilities

q, = P(S] < 0, ,Sn < 0) (3.10)
have the generating function q given by
o] sn
Tog q(s) = } == P(S_< 0). (3.11)
n=1 " n-

Note: The above theorem remains valid if the signs > and < are

replaced By > and <, respectively.

Theorem 3.3. The generating function o(s) of P(Vj_z X)y J = 1,2,...

is

" P(S, 2 0)} (3.12)

S)—

where

Proof. Since the distribution of random variable Yi = Zi’- X is not

r
concentrated on a half-axis, and Yi's are i.i.d. Tlet Sp = Y (Z,

r=1,...,k. Then

{V. > x} = { min

; S, 20} ={S; »0,...,5; > O}
1<r<j

1
r r = jz

By Feller's Theorem 3.2 , we complete the proof.



Now let

j J h|
© N
a(s) = § 34,
n=1 n
then we have
p(s) = I 57 P(Vy 2 x) = exp (a(s)).
J:

Lemma  3.1. (n+])(s) = ZO M p(J)(s) a(n+1'j)(s), for all n > 1.
J=

Proof. Since p'(s) = p(s) - a'(s), the result can be proved by induc-

tion on n.
Theorem 3.4. Under the assumption of Theorem 3.3
P(V 11m d" ]E( )
n+ fcal s+0" ds“”
10 _
= L PO 208 g 0= 0, 2 (3.13)
j=0
where
P(V0 >x) =1, forall x.

Proof. By Lemma 3.1, we have

(n+1)(s)

©

o .
P(Vn+-| > X) = W 11m+
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Let G (x) = P(V >x) and 1-G_(x) denote the Timiting distribution

function as n » « of W1’ Suppose the distribution of random variable

Y

“Aridersen-Feller Theorem

G_(x) = exp {- ) lr-P(Sr < 0)}.
r=1

Now, et

~ Now .we can use the recurrence formula of'Theorem 3.4 to

. (1 - .
solve the equations P(Vi > - dk-i+1:k) =P*, i=1,...,k.

(]) d(]) (1

Remark 3.1 From Section 3.2 we know that d _:.q., = d7.j

The values of d%!&, for k =1 (1) 6, 10, » and P* = .99, .975, .

.925, .90 are tabulated in Table I.

= Z] - X is not concentrated on a half axis, then we have from

(3.14)

Definition 3.2. We define a selection procedure Gi by replacing

the inequality in the ith step of procedure 6] by the inequality

T A
jik 20 T e 1T Tk

><X»

where d!:k""’d&-k are the smallest values such that 6i satisfies

i
the P*-condition.

Then it can easily -be shown that the selection procedure 84

are identical and d\1), = dii5T=1,2,.. .k,
3.4, Some Other Proposed Selection Procedures 62, 63, 64

In Case I, we propose some other selection procedures:

and 6]
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Definition 3.3. We define a selection procedure 62 by

62: Select T if and only if Xi:k >y - d i=1,...,k

=

where d is the smallest value such that 62 satisfies the P*-condition.

Note that under assumptions of Case I, and selection procedure
62, if we select population Tis then we will select populations Ty

for all j > i, since Xik 5-Xj:k‘

Evaluation of the d-Values of 62

For any i, 1 < i < k, we have from a similar argument as for 84 that

inf P (CS|6,) = inf P (X, suq.. > un - d =)
uéo, u 2 uéa, wk=i+1:k = 70 Jn

= P(Vi > - d).

We need the constant d such that P(Vi > - d) > P* holds for all i,
1 <i <k. By Theorem 3.1we have d = d%!a. It also follows that
if S] and 52 are the selected subsets associated with selection proce-

dures 84 and 805 respectively, then S]fE Sp. Thus d, fs better e S,

Definition  3.4. The procedure 85 is defined as follows: Let ij=max(x],...,Xj).

Step 1. Select mis 1> 1 and stop, if

~

X] > - d

L
Vm
otherwise reject ™ and go to Step 2.

Step 2. Select T i > 2 and stop, if
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~

XZZuO-d

e
2 e

otherwise reject L) and go to Step 3.

Step k-1. Select e i >k -1 and stop, if

N)'( >U"d i‘a
k-1 = %0 k-1 J

otherwise reject L and go to Stepk.
Step k. Select T and stop, if

Y o
e zmo = G

otherwise reject T

Here di's are the smallest values such that &5 satisfies the P*-condition.

Evaluation of di's

For any i, 1 < i <k,

k-i+1 _
inf P (CS]6,) = inf P ( U {X; >uy - d;—})
uén, © 3 e, H =1 I=0 Ioa
k-1+1 - S
= : -d, -2
Py*( jti] X5 > ug=d; /ﬁ})
= P41 2 7 diu)

whenever u* = (Hn»=®y...s=Pslnse--sln) € -

u* = (up: 0 0 i
.i

Since Zi is N(0,1), it implies dk—1+1 = d for all i, and

d = o 1 (p*).

Hence, we have the following theorem:
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Theorem 3.5. Selection procedure 63 satisfies the P*-condition with
d1 =d, i=1,...,k, which do not depend on i. Hence the procedure is
not changed if the statistics ii are replaced by Xi’ the sampie mean of

population ms for i = 1,...,k.

The following procedure 64 was given by Gupta and Sobel (1958),

without assuming any ordering prior:

Definition 35. The selection procedure 64 is defined as follows:

8,0 i=1,...,k

4t Select T if and only if Xi >y - d

o
n
where d is the smallest constant such that 64 satisfies the P*-condition.
It was shown that the value d is determined by the equation
1 1
o(- d) =1 - P i.e. d= o1 (pPH).

3.5. Some Proposed Selection Procedures ng), i=1,2,3,14

When Ho is Unknown

2 .
Case II. g unknown, common o~ known, common sample size n.

(

Definition -3.6. We define a selection procedure 612) by replacing

the inequalities

in procedure 81 (Definition 3.1) with

¢ 2) o .
Xoy > Xq - d(_ —, 1i=1,...,k, respectively.
itk =70 ik -~
7 (2) '
Here X, = ) XOi/n’ digs 1= Ts....k are the smallest constants such
i=1 )

that the selection procedure 6%2) satisfies the P*-condition.

Similar to the Case I, we have the following theorem:
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Theorem 3.6. For any i, 1 <1i <k, défg;],k is determined by the
équation
L P(V; > t - dl(<_1?+1:k)d.q>(t) = P, (3.15)
It is easy to see that d£?3+1:k = d%ég and it is increasing-in i. The fol-

(2)

Towing theorem gives us an identical form of the selection procedure 8777

(2)

Theorem 3.7. The selection procedure 6] is not changed if

the statistics ii-k’ i=1,...,k, are replaced by ii'k’ i=1,...,k,

respectively.

Proof. The proof is straightforward and hence it is omitted.

The values d%?z, i=1,...,k are tabulated in Table II for

k=1¢(1)6,8, 10, »and P* = .99, .975, .95, .925, .90.

(2)

Similar to the Case I, we propose a selection procedure 62 as

follows:

Definition : 3.7. We define a selection procedure 6é2) by

2),

( . i v
85 Select s if and only if Xi:k Z-XO -d

e

)

satisfies the P*-condition.

Then, similar to procedure 8, we have d = df?g.

whére d is the smallest value such that déz

Next, we define a selection brocedure § 2) which is similar to 63.

(
3
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Definition 3.8. The selection procedure 6§2) is defined by replacing

~ ~

o g . EFTINE - AR
X; > g d; 1/ﬁ_m 84 (Definition  3.4) by X; > Xg - di . i=1,...,k

where di,...,d& are the smallest values such that ng) satisfies the

P*-condition,
Similar to Theorem 3.5 we have:

Theorem 3.8. = The selection proceddrefaéz) satisfies. the P*-condition

with d% =d, i =1,...,k where d is determined by the équation

fee]

[ e(d-t)de(t) = P*. (3.16)

- 0O

And 6§2) is not - changed if the statistics ii is replaced by Xi’

the sample mean of population s for i = 1,...,k.

(2)

The following selection procedure 8, " was proposed by Gupta and

Sobel (1958):

(2)

Definition 3.9, The selection procedure 84 is defined by

s{8): select x. if and only if X, S Hy - d =T =T,k
My

where d is determined by the following equation.

ok n.
/ H1[@(u/;z+ d)]¢(u)du = P*. (3.17)
-0 'i: 0
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For the special case n; =n (i =0,1,...,k)

j‘m cﬁk(t+d)¢(t)dt = P*, (3.18)

Under the normal distribution N(0,1), the tables of d-values sat-

isfying the Equation (3.18) for several values of P* are given in

Bechhofer (1954) for k = 1 (1) 10 and in Gupta (1956) for k = 1 (1) 50.

3.6.. Some Proposed Selection Procedures 6$3), i=1, 2, 3, 4 for the Normal

Means Problem When Common Variance 02 is Unknown

. 2
Case III. Mg known, common variance ¢~ unknown, ni =n> 1.

(3)

Definition 3.10. We define the selection procedure 61 by replacing

the inequaTities

A

—le
. —

Kisk 2 = 95,

in procedure &, (Definition 3.1) by

» 3) § R .
Xep > 1 - dg, — i=1,...,k, respectively,
ik ="0 1k|/rT
where d(3)'s are the smallest values such that 6%3) satisfies the

P*-condition ; 32 denotes the pooled estimator of 02 based on
v = k(n-1), that is
K n

2 2
s = Xis = X:)%/v. (3.19)
151 321( g7
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2
Note that 3% has the chi-square distribution XE with v degrees of

[¢)
freedom. The following theorem then follows:

Theorem 3. 9. The equation which determines the constant d£§z+1-k
is
(3)
P(V dk 41k 0) = p* (3.20)
or
” (3) _ .
f P(Vi > - dk—'i+]:k Y)qv(Y)d.V = p* (3.21)

0
where_qviy)gis the density of %-, -

We can rewrite Formula (3.21) as

- = p*
J Pz L //ﬁbd ¥

or

j P(V, > k 1+1 ‘ //___) ( ) " gt = o (3.22)
I‘._
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Remark 3.2. The values of 4(3) i=1,...,k depend on v = k(n-1); also

k-1+1:k>
(3) (3)
delierae 7 935

By using Rabinowitz and Weiss table (1959) (with N=24 and n of their table
equal to 0) we have evaluated and tabulated the values of déf%+]:k, i=1,...,k,
in Table III, for k = 2 (1) 6, P* = .99, .975, .95, .925, .90,
with common sample size n = 3, 5, 9, and 21.

For k > 6 and n > 21, i.e. v > 120 we can reasonably well approximate

(3) : (1)
deie7:x DY 975

Definition 3. 1. We define the selection procedure 6&3) by

3 . cr % S
aé ): Select =, if and only if X, > ug - d(3)-;: i=T1,....k
n
(3)

where S is defined as in procedure 8177 and d(3)

is the smallest

constant such that 6&3) satisfies the P*-condition.

3) _ (3
()=d(|)<

As before, it can be shown that d 1k

(3)

Remark 3.3. In Case III the selection procedure &y ° will not be

changed if we replace the isotonric statistics iﬁ‘k by‘ii-k’ respectively,

(3).

But this is not necessarily true for. selection procedure 3,

Definition . 3.12. The selection procedure 6(3) is defined to have the

3
same form as procedure Géz) except that the inequality defined in the
ith step of procedure ng) is replaced by
X, >y - d-> fordi=T1,....k
AT 5o ek

/n
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The proof of the following theorem uses the same arguments

as that in Case I, hence it is omitted.

Theorem . 3.10. The equation which determines the constant d of

(3)

selection procedure 63 is

[os]

fo o(yd)q (y)dy = P*, (3.23)
Gupta and Sobel (1958) gave a selection procedure 6§3) in this
case. It is as follows:
s{3): select m; if and only 1f X, >y =D —— = T,....k
Vﬁ}
and the equation which determines D is
[ (yD)a (y)dy = P*, (3.24)
0 K
where v = 121 (ni-l).
-3.7.» Some Proposed Selection Procedures 6§4), i=1, 2, 3, 4 for the Normal

Means Problem When Beth Control uo-and,cqmmen Variance a%_are Unknown

. 2
Case IV. Mg unknown, common variance o~ unknown and common sample

size n.
: s . (3) .
Here we replace up 1N each selection procedure aj by XO’ 1< <4,
and get procedures 6§4), } < j < 4, respectively. The constants déf%+1:k’

i= 13;;.,k,_of prOCedurefa§4) are” determined by
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L ez df sl - e (3.9

The constant d of procedure 6%4) is

(4)

The constants d of procedures 83 and 6£4) are determined by
o o"(u+ e d)do (el (t) = -~ (3.26)

with v = 1 and k, respectively, and their values for selected values

of P*, k and v are given in Gupta and Sobel (1957) and Dunnett (1955).

3.8. Properties-.ef:the Selection Procedures

Under simple ordering prior, it is natural to require that an ideal

selection procedure is isotonic as defined below:

Definition 3.13. A selection procedure § is isotonic if it

selects s with parameter s and if My < Mys then it also selects mse
Procedure ¢ is weak isotonic or monotone if

P(“i is selected|s) §_P(nj is selected|s) whenever My < Ry

It is easy to see that any isotonic selection procedure
is weak isotonic, but the converse is not true.
Now, Tet ag‘) =6, 1=1,2,3, 4

Theorem 3.11. The selection procedures 6%1), aéi) and Ggi) are

isetonie*and,procedure;agli is monotone, for i = 1, 2, 3,.4,
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Proof. The proof follows immediately from the definitions of the pro-

cedures.

Given observat1ons X = X = (xo,...,xk) where x is the samp]e mean
of population n1, i=1, ,k, and Xg = 0 if “0 is known otherw1se

X0 is the sample mean of population Ty Let

vs (X, §) = P(n; included in the selected subset|X = x, &)

for i =1,...,K.

Definition 3.14. A selection procedure § is called translation-
k+1

invariant if for any x € R » CER

wi(x0 ey Xyt ChennXy +c; 8) = wi(XO""’xk; §), i=1,...,k.

(1) 51 §(1) ng 5(1)

Theorem 3.12. The selection procedures 81 5 s 83 A

are translation-invariant for i = 1, 2, 3, 4.

Proof. Proof is straightforward and hence omitted.

Expected Number (Size)of Bad Populations in the Selected Subset

Suppose the control i is known and we have common sample size n
and common known variance 02; without loss of generality, we assume
that ng = 0 and o/vn = 1. Let E(S'|s) denote the expected number of

bad populations in the selected subset in using the selection procedure
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§, then for any j, 0 < J <k,

sup E (S’{Bi)

Y A
~ 'I)
= sup % P(ULX,., >- d(, })
uEQk . r=1 =1 2k 2k
-J
I L (1)
= ) PLUAZ 5> - dy. 3) - (3.27)

On the other hand, for procedure 8o

sup  E(S'[s,) = % P( E'{EQ:. > - )

1. (3.28)
& - J 1:k
HEQk—j r=1 =1

From (3.28) we see that the supremum for 8, js increasing in j and

is greater than or equal to the supremum for 6] given in (3.27), since

(1) _ 4(1) (1)
ok = 9okt <90k
Therefore, we have the following theorem (see also the remark just before
Def. 3.4),

Theorem .3.13. For any i, 0 <1 <k

| A

sup E(S'|62) > sup E(S'la1),
Eﬁﬂi Eﬁﬂi

sup E(S'[s,) = sup E(s']s,).
u€n Hﬁﬂo

Theorem 3.14. In Section 3.1, Case I, forany j, 0 <J <k

sup E(S'[s3) = § - a(1-q7)/P> (3.29)
Eﬁgk-j

where q = 1 - P*.



Proof.

sup E(S'|63)
ueQ

k-J
J
= sup ) P (select m:|s5)
E-Eﬂk—j i=1 &
J
= sup ) P, ((max X > - d)
Eﬁgk-j i=1 B l<r<i
J i
= ) (1 - 1 F(-d))
i=1 r=1
J s
=j- )q

j- q(1—qj)/P*

where q = (1-P*),

Theorem 3.15. sup E(S'[63) js increasing in j, hence
Eegk-j :

sup  E(S'[65) = sup E(S'[65) = k - a(1-q%)/P*.

Proof. Since

g

P
(3+1) - Z q' - (3-) a)-=
i=1

In Case I, Gupta (1965) showed that

x—-l

sup E(S |64) = kP*
uew

(3.30)

(3. 31)

27
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Let us define the event A, = {Z,,, > - a1y, 1= 1,000k then

we have
J J
Lemma 3.2. P( A. N A.+1) > P(y A;) P* forall j, 1 < < k-1,
- q=1 ' i=1 ! -
k> 2
Proof: P(ig] Ai N Aj+1)
e s - dMyaa)
s ER S 1 j+1
o0 G s - d) PlAL)
121 i:j 27 %k 3+l
J b
> PLUAPAG)
J
= P(uy Ai) p*
i=1

The above inequality is a result of the fact

2 (1)
'Ai(: {Zi:j > -d :

j k} for all 4 = 1,...,35 J = 1,...,k-1.

Theorem 3.16. For all k > 2, sup E(S'[8;) < sup E(s'[s3).

& %
Proof: To prove the theorem it is sufficient to show that for all
J .
given k > 2, P(U_A;) < 1- (1-P*)7 for all j and strictly inequality
i=1

holds for some j, 1 < j < k.

J
It holds for j = 1, since P(A1) = P*, Suppose P(y

is true for some j, 1 < j < k-1, then
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O ) = RO A+ PP AN AL
P(u A;) =Plu + - U . N A
i=1 | i=1 j=1 1 3
J J
<P(O A+ Pr - P(U AP

P+ (1-P*) (1-(1-P*)J)

| A

= 1 - (1-p%) 0t

Hence by induction principle, the proof is finished.

This theorem tells us that procedure 8y is better than 84 in
the sense that in 2 it tends to select smaller number of bad populations,
however, procedure 6] is not uniformly better than 8. In some cases
(see Section 5), 83 is slightly better than &,.

When the ordering prior among the unknown parameters is unknown,
we can use the selection procedure of Gupta and Sobel (1958) or use
the ordering of the sample means as the ordering of unknown parameters
and apply the selection procedure which is originally used under ordering prior.
In the normal case with the latter approach, the substitution implies that the
isotonic regression of the sample means turns to the usual ordered
sample means, and that the selection procedures 651),’1 =1, 2, 3, 4,
are of the same type as'ééi) (i = 1,2,3,4), respectively, and the selection
procedures Ggi), j=1,3,1=1,2,3,4 are of the sémé form as‘&éi), i=1,2,3,4,
respectively, which are equivalent to the procedures proposed by Naik

(1975) and Brostrom (1977), independently (see also Holm (1979)).

4. Selection Rules for the Location Parameter Under Partial

Ordering Prior Assumption

Assume that we have only a partial ordering prior of k unknown

location parameters, that is the parameter space
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Q'=s {QLQEIRk and there is a partial order relation "<" among ei's}

Our approach is to partition the set‘{e1,...,ek}into several sub-

sets, say BO,...,B

[
q? SO that Bi N Bj = ¢, ifi#3J, _9

J_1Bj ='{e1,...,ek}
and for each Bj (3 = 1,...,%) there is a simple order on it and there
is no order relation among the elements of subset BO'

Let b, = |51|= the number of elements contained in B, i = 0,...,¢,
so we have

b, = k.
01

[ B

.i
If we denote the new induced partial order by "<'", then we have
a parameter space Q" © 9. We use an example to illustrate how to find

an induced partial order.

Example. Suppose k = 8, and we have a partial ordering prior e] < 6g,
61 < 8g, 6y <0

represent this partial ordering as in Figure 1.

5 < 63 584) and 82 < 96 < 67. We use a "tree" to

Figure 1. Original partial ordering
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< 0

Then we have an induced partial ordering B S 8y < 03 < 8y, B¢ <

7
as in Figure 2.

04
3]
6 7 . 6.
3 I o* 8
0
6
)
%1

Figure 2. Induced partial ordering.

And
By = {05 g}
B ='{e1, 655 635 8,3
B, = {06, 0-}.

It is clear that the induced partial order is not unique, for

example, we can partition‘{e1,...,e8} into three other subsets

BO’ B], 82 where

oI
1

O - {659 98}
B'i = {e'I! 629 66’ 67}
For the location parameter case, a selection procedure sP can be

defined as follows:

Definition 4.1. We define a selection procedure s as follows:

Suppose BO,...,B2 are induced subsets and that for each subset

Bj’ J=1T1,...,2 there is a simple order on it. We choose a proper



selection procedure § for each subset Bj’ such that the corresponding

b3
P *

probability of a correct selection is not less than P¥*

F
3 or

by

subset B0 we may use selection procedure 8, OF 8g with P6 = P*l<.

Theorem 4.1.

Proof.

inf P, (Cs|sP)
g€Q' =

inf P (cS|sP)
QEQ i =

| v

2
n inf P(CS|sP)
i=1 Qé

i

L b,
5 %)
=0 - px

>

where Qé. is the parameter space associated with the subset Bi'
i

5. Comparisons of the Performance of Basic Rules for the Normal Means

32

The selection procedure s satisfies the P*-condition.

Problem

In this section we describe results of a Monte Carlo study to compare

the performance of selection procedures S 855 835 and 8q- Suppose we

have k independent populations, each population with distribution N(ui

with common known variance 02 and common sample size n. Assume that
the mean i of the control is known; without loss of generality we

assume that ug = 0 and o/V/n = 1.

, 02),
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In the simulation study, we used Rubin and Hinkle's RVP-Random Variable

Package, Purdue University Computing Center, to generate random
numbers. For each k, we geherated one random number (variable) for
each population, then applied each selection procedure separately

and repeated it ten thousand times; we used the relative frequencies
as an abproximation of the exact values of the associated performance
characteristics for each procedure. In Table IV we use the following
notations:

u = (u],...,uk), My is the parameter of population s

PS = P(CS)
PI = P(correctly rejecting all bad populations)
PC = P(correct classification of all population)

- where the correct classification means that we.select all good

populations and reject all bad populations.

EI = Expected number (size) of bad populations contained in
the selected subset.

EJ = Z ,,(1.1_i - uo)z p (wi is selected)
11.i<110

ES = Expected size of the selected subset.

Table IV.1 consists of four parts, namely, the four values of
k = 2,3,4,5, for each value of k we assume that we have two bad populations.
In this case based on the performance characteristics PI, PC, EI or EJ, we
found the performance ordering as follows:

where 61 . 62 means that 6] is better than 62.
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In Table IV.2 we assume that we have three bad populations for k = 3,
and that both populations are bad for k = 2, this table indicates the same
trend as Table IV.1, i.e. 6] - 62 - 63 - 64. If k is increased by adding
strictly good (parameter strictly larger than control) populations, then

~

EI(s.), i = 1,2 does not increase. This is because Xi:k > Xi:k+1 a.s.

i
1 <1 <k.

In Table IV.3 we assume that for each k, k = 2,3,4,5 that every population
is bad. Based on the quantities PI, PC, EI and EJ, we find that the perfor-

mance is as follows:
6]> 62>. 63> 64.
This is the same result as before.
Table IV.4 has the same structure as before, but for each value of k,
k = 2,3,4,5, we assume that the first population is the one and only one
bad population with parameter -1 which is less than the control ug = 0.

A glance at the table indicates that the performance, based on the charac-

teristics PI, PC, EI and ES, can roughly be ordered as follows:

835 [65, 811> 84.
i.e. procedure 84 is the best and is slightly better than 8, and 845 8y
and §, are very close and both are better than 64. As the number of
populations k increases from two to five and the three additional populations
are good populations with parameter 1, 2, and 3, respectively, we find
that EI(ai, k = 5) - EI(Gi, k=2),1i=1,2,3,4, is 0.0124, 0.0124, 0.0031,
0.121, respectively. This means that when k increases and the additional
populations are goqd, then procedure 64 is the most sensitive procedure with
k and thus not good in terms of EI. 84 seems to perform better in terms of

EI while 51 and 62 are about the same.
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In Table IV.5 we assume that the ordering prior of unknown parameter
is incorrect; i.e. the true configuration (-2, -1,0,1,2) is replaced by
(-1,-2,1,0,2). The simulation results indicate that, based on PI, PC,

EI and EJ we have performance 6] > 62 - [63,64]. Thus here again 6] is
the best. If we compare Table IV.5 with Table IV.1, we see that 64 does
not change (the small differences are because of random fluctuations),
EI(63) and EJ(63) increase quite appreciably.

From these five tables, it appears that, in general, the overall
performance of these procedures is 81> 6y > 83> 64, if the ordering
prior is correct. If there is no information regarding the prior ordering,

then 84 Or & seem to be an appropriate procedure to use,



Table of d(]) values

1:

k

TABLE I

(satisfying

(3.5) and

(3.74)) necessary to

36

carry out the procedure 81 for the normal means problem under the simple

ordering prior.

e : i

k .99 .975 .95 .925 .90

1 1 2.3264 .9600 | 1.6449 1.4395 .2816
2 2.3337 .9775 1.6780 1.4872 .3430
3» 1 2.3339 .9787 | 1.6817 1.4942 .3538
4 2.3339 .9787 1.6823 1.4956 .3563
5 2.3339 .9787 1.6824 1.4960 .3571
6 2.3339 .9787 1.6824 1.4960 .3573
® 2.3340 .9787 | 1.6824 1.4960 .3574

TABLE 11
Table of d(izk values (satisfying = (3.:15)) necessary to carry out the
proceddré 6($) for the normal means problem under simple ordering prior.

a®) P

k .99 .975 .95 .925 .90

1 3.2886 | 2.7711 2.3258 2.0355 .8122
2 3.3449 .8494 2.4267 2.1530 .9434
3 3.3605 .8730 2.4589 2.1917 .9874
4 3.3673 .8840 2.4723 2.2105 .0091
5 3.3711 .8901 2.4832 2.2215 .0219
6 3.3734 .8941 2.4890 2.2286 .0303
8 3.3761 . 8988 2.4960 2.2375 .0406
10 3.3776 .9014 2.5000 2.2426 .0440
o 3.3787 .9032 2.5021 2.2448 .0487
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TABLE IV.1
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Simulation results for the comparative performance of various.selection
procedures for the normal means problem (notation explained in Section

5)

under simple ordering prior.

P* = 900
k = 2, B = (_23'])

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .3420 . 3252 . 3001 L1719
PC .3420 .3252 . 3001 L1719
EI .8673 .8841 .9389 1.0950
EJ 1.4952 1.5120 1.6559 2.1831
ES .8673 . 8841 .9389 1.0950
k=3, u=(-2,-1,0)

61 62 63 64
PS .9535 .9573 . 9696 .9632
PI . 3437 .3407 .3007 .1233
PC .2972 .2980 .2703 L1175
EI .8585 .8615 .9350 1.2126
EJ 1.4651 1.4681 1.6421 2.4996
ES 1.8120 1.8188 1.9046 2.1758
k = 49 B = ('25']9031)

6] 62 63 64
PS .9596 . 9606 .9715 .9747
PI .3269 .3254 .2936 .0874
PC . 2865 . 2860 . 2651 .0851
EI . 8802 .8817 L9431 1.3062
EJ 1.5015 1.5030 1.6532 2.7378
ES 2.8387 2.8412 2.9142 3.2808
k=5, u= ('2,‘13091 32)

61 62 63 64
PS .9562 . 9564 .9690 .9765
PI .3333 . 3331 .2984 .0746
PC .2895 .2895 .2674 .0725
EI .8835 .8837 . 9480 1.3712
EJ 1.5339 1.5341 1.6872 2.9450
ES 3.8386 3.8390 3.9167 4.3477
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Simulation results for the comparative performance of various selection

pr?cedures for the normal means problem (notation explained in Section
5

under simple ordering prior.
*
P = .900
k=2, u= (-3,-2)

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .7551 .7380 7342 .5912
PC .7551 .7380 7342 .5912
EI .2632 .2803 .3035 .4395
EJ 1.1443 1.2127 1.4025 2.1590
ES 2632 .2803 .3035 .4395
k=3, u=(-3,-2,-1)

: cS-I 62 63 64

PS 1.0000 1.0000 1.0000 1.0000
PI .3362 .3156 .2837 .1090
PC .3362 .3156 .2837 .1090
FI .8937 .9166 1.0275 1.3290
EJ 1.6654 1.6952 2.1746 3.5318
ES .8937 .9166 1.0275 1.3290
k = 4, iy = ('33_29_]:0)

6] 62 63 64
PS .9579 .9616 .9737 .9731
PI .3257 .3225 .2801 .0759
PC 2836 .2841 .2538 .0736
EI 9118 .9160 1.0419 1.4675
EJ 1.7093 1.7165 2.2324 4.1380
ES 1.8697 1.8776 2.0156 2. 4406
k=5, u-=(-3,-2,-1,0,1)

81 85 83 Sy
PS .9582 .9590 .9714 .9796
PI .3292 .3281 .2877 .0602
PC .2874 .2871 .2591 .0582
FI .8962 .8976 1.0172 1.5283
EJ 1.6554 1.6577 2.1429 4.3912
ES 2.8536 2.8559 2.9884 3.5078




TABLE 1IV.3

4]

Simulation results for the comparative performance of various selection

pr?cedures for the normal means problem (notation explained in Section
5

under simple ordering prior.

*
P = .900
k=2, p=(-4,-3)

G-I 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .9613 .9560 .9585 .9130
PC .9613 .9560 .9585 .9130
EI .0392 .0445 .0448 .0876
EJ .3563 .4040 .4263 .8493
ES .0392 .0445 .0448 .0876
k=3, u=(-4,-3,-2)

6] 62 63 64-
PS 1.0000 1.0000 1.0000 1.0000
PI .7587 .7359 .7300 .4997
PC .7587 .7359 .7300 .4997
FI .2599 .2835 .3207 .5574
EJ 1.1340 1.2324 1.5547 2.9908
ES .2599 .2835 .3201 .5574
k=4, u-=(-4,-3,-2,-1)

81 85 83 Sg
PS 1.0000 1.0000 1.0000 1.0000
PI .3348 .3114 .2814 .0747
PC .3348 .3114 .2814 .0747
EI .9003 .9282 1.0440 1.4745
EJ 1.7013 1.7437 2.2947 4.3666
ES .9003 .9282 1.0440 1.4745
k=5, u=(-4,-3,-2,-1,-0.5)

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI L1117 .1045 .0615 .0036
PC 1117 .1045 .0615 .0036
EI 1.7460 1.7600 1.9734 2.4985
EJ 1.8147 1.8275 2.4965 5.0978
ES 1.7460 1.7600 1.9734 2.4985
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TABLE IV.4

Simulation results for the comparative performance of various selection
procedures for the normal means problem (notation explained in Section
5) under simple ordering prior.

*
P =.900
k=2, u=(-1,0)
PS .9453 .9490 .9579 .9470
PI . 3854 . 3854 .3937 .2676
PC .3307 .3344 .3516 .2530
EI .6146 .6146 .6063 .7324
EJ .6146 » .6146 .6063 .7324
ES 1.5599 1.5636 1.5642 1.6794
k = 39 B = (_]sos])

6-| 62 63 64
PS . 9531 .9535 .9638 .9616
PI L3741 .3741 . 3826 .2044
PC .3272 .3276 .3464 .1970
EI .6259 .6259 .6174 . 7956
Ed .6259 .6259 .6174 .7956
ES 2.5771 2.5777 2.5803 2.7574
k=4, u=(-1,0,1,2)

G-I 62 | 63 64
PS . 9580 .9582 .9640 .9765
PI .3664 . 3664 .3834 .1683
PC . 3244 . 3246 .3474 .1640
EI .6336 .6336 .6166 .8317
EJ .6336 .6336 .6166 .8317
ES 3.5902 3.5904 3.5801 3.8081
k = 5, E = (_]90’]’293)

61 62 53 64
PS .9554 . 9554 .9623 .9794
PI .3730 .3730 . 3906 . 1465
PC .3284 .3284 .3529 . 1431
EI .6270 .6270 .6094 .8535
EJ .6270 .6270 .6094 .8535

ES 4.5812 4.5812 4.5714 4.8329
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Simulation results for the comparative performance of various selection

pr?cedures for the normal means problem (notation explained in Section
5

under simple ordering prior.
*
P = .900
k=2, u=(-1,-2)

6] 62 63 64
PS 1.0000 1.0000 1.0000 1.0000
PI .5405 .5349 .2937 L1722
PC .5405 .5349 .2937 1722
EI .8331 .8387 1.3151 1.0904
EJ 2.2116 2.2340 3.4232 - 2.1578
ES .8331 . 8387 1.3151 1.0904
k=3, u=(1,-2,1)

6] 62 63 64
PS .9932 .9943 .9957 .9976
PI 5365 .5349 .2987 .1190
PC .5297 .5292 .2944 .1189
EI .8347 .8363 1.3116 1.2154
EJ 2.2252 2.2316 3.4155 2.4919
ES 1.8279 1.8306 2.3073 2.2130
k=4, pu=(1,-2,1,

6] 62 63 64
PS .9921 .9923 .9973 .9746
PI .5271 .5269 .2894 .0873
PC .5192 .5192 .2867 .0849
EI .8498 .8500 1.3235 1.3077
EJ 2.2685 2.2693 3.4553 2.7474
ES 2.8390 2.8395 3.3207 3.2822
k=5, u=(1,-2,1,0,2)

6] 62 63 64
PS . 9906 .9906 .9958 .9795
PI .5317 .5316 .2937 L0711
PC .5223 .5222 .2895 .0693
EI . 8461 .8462 1.3217 1.3593
EJ 2.2510 2.2514 3.4406 2.8830
ES 3.8341 3.8342 4.3173 4.3388
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