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1. Introduction. Consider a polynomial regression situation on [di]].

For each x or "level" in [0,1] an experimen% can be performed whose outcome
is a random variable y(x) with mean value _Z Bixi and variance 02, independent
of x. The parameters By i=0,1,....m a;aocz are unknown. An experimental
design is a probability measure g on [0,1]. If N observations afe to be taken
and ¢ concentrates mass &5 at the points X;is i=1,2,...,Cc" and'giN = n, are
integers, the experimenter takes N uncorreleated observations, n. at each Xis
1=1,2,...,c. The covariance matrix of the least squares estimates of the
parameters B is then given by (oz/N) M'](g) where M(z) is the information
matrix of the design with elements mij = fé xifjdg(x).'-Fo;‘an arbitrary
probability measure or design some approximation would be needed in app]ications.
Let f'(x) = (1,x,x2,...,xm) and d(x,g) = f'(x) M'](g)f(x) when M(g)
in nonsingular. It is known for general regression functions, see Kiefer
and Wolfowitz (1960), that the design minimizing sgp d(x,&) and the design
maximizing the determinant |M(£)| are the same. This is referred to as the
D-optimal design. This result holds for general regression functions. In the
polynomial case the D-optimal design concentrates equal mass (m+1)_] on each
of the m+1 zeros of x(1-x) Pé(x), where Pm is the mth Legendre polynomial,
orthogonal to the uniform measure on [0,1]. The solution of the separate
problems for polynomial regression was discovered earlier by Hoel (1958) and

Guest (1958) leading Kiefer and Wolfowitz to their equivalence theorem.

It is also known (see Kiefer and Wolfowitz (1958)) that the design that

minimizes the variance of the highest coefficient concentrates mass proportional
to 1:2:2:...:2:1 on the zeros of x(]-x)Tﬁ(x) = 0 where Tn is the Chebyshev
polynomial of the first kind on [0,1]. These are orthogonal with respect to

[x(1-x)771/2,



In the paper Studden (1980), some Ds—optimal designs where'obtgined.
These are the designs which minimize the determinant of the covariance matrix
of the least squares estimates of the highest s parameters Br+]""’6m’
where r3s = m. These designs where obtained using canonical moments. The
D-optimal design and the design for estimating the highest coefficient are
the extremal cases where r = -1 and r = m-1 respectively.

Let f'(x) = (fi(x), fé(x)) where fi = (f1""’fr) and fé = (f
and let the information matrix M(¢) have a similar decomposition
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The covariance matrix of the estimates for g 5By is proportional to the

TR
inverse of

_ . -1
L= (g) = My, = My MMy,

The problem of finding Ds—optima1 designs is equivalent to finding the ¢
maximizing the determinant of )(&) which is given by
(1.1) T(e) = M(E) /1My (8)].

We should mention the analog of the equivalence theorm for D-optimal
designs mentioned in the second paragraph above. For the Ds-optima] situation
the design maximizing |)(g)| also minimizes the supremum over [0,1] of

(1.2)  d.(x,g) = (f, - A(a)f])'z ‘](fz - Alg)fy) = Fule - £ M;}

1 f

1

where A(g) = MZ]M;}. Moreover for the optimal g

(1.3) ds(x,gs) < s.



3
In the paper by Karlin and Studden (1966) ordinary D-optimal dé%igns for

certain weighted polynomial regression problems were considered. For latter
reference we restate here part of the results of Theorem 5.1 of the above

paper.

Theorem 1.1 Let f'(x) = (w(x))]/2(1,x,...,xm) where w(x) =,g“*ﬂ (]—x)B+],

x€ [0,1], o>-1 and g>-1. Then the determinant: [M(£)| is uniquely maximized by
the measure £ concentrating equal mass (m+1)'] at the m+1 zeros of the
"Jacobi" polynomial P41 (x) = 0. The sequence {Pk} is orthogonal on [ 0,1]

to x*(1-x)F. .

The theorem as originally stated has other parts referring to infinite
intervals. The present methods can be modified to yield these results,
however, these will not be given here. In section 3of this paper Theorem 1.1
will be obtained using canonical moments. The case ai= '8 = -} s .the D-optimal
situation. The cases o« = -1, 8 > -1 (and o > -1, B= -1) are considered in
Theorem 3.1. 1In section 4, the full set of Ds-optimal designs for w(x) = x,
(1-x) and x(1-x) are given analogous to the case w(x) = 1. The case of
estimating the highest coefficient for these special w(x) is given explicitly
in Theorem 4.3. The full set of Ds-optimal designs for general o and B seems ~
to involve some unresolved difficulties. In Section 2 the canonical moments
are introduced and a number of technical lemmas are stated. The proofs of
some of these lemmas are somewhat difficult and complete details will be

given elsewhere.

2. Canonical Moments and Technical Lemmas. The original problem of finding

the D-optimal design for polynomial regression is to maximize, over the
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design &£, the determinant of M(g) where m;y = Ci+j = fxi+jdg(x); T;E usual
proof involves showing that the optimal ¢ is supported on m+l points and that
the weights are all equal. The determinant is then differentiated with
respect to the design points which are interior to (0,1). The interior points
are shown to be the roots of a polynomial which is the so]ution=éf a certain
second order differential equation. The ‘polynomial belongs to a system of
orthogonal polynomials and is recognized in the original case w(x) =1

(and also for the "Jacobi" case) by the differential equation. Systems of
orthogonal polynomials satisfying second order differential..equations arise
only in the Jacobi type cases. The canonical moment approghh essentially uses
a parameterization of the problem in terms of the coefficients in the three
term difference equation satisfied by all systems of orthogonal polynomials.
This seems to be part of the reason for some extra flexibility of the

solution in the Ds-optimality case with w(x)=1.

gxkdg(x)., For

a given finite set of moments CrCyar 26y 7 let c: denote the maximum of the

For an arbitrary probability measure £ on [0,1] let Cy = /

ith moment fx1dg over the set of all measures u having the given set of

momentsco,c],...,c.-

i vSimjian]yﬂlet-c%-denote~the;corresponding;minimum.

The canonical moments are defined by

(2:1) p, =1 i=1,2,...
1

Note that 0 < p. < 1. The canonical moment is defined only if c; < cT .
-7 - - i i

Lemma 2.1 The canonical moments for the "Jacobi" measure d¢ « xo‘(l—x)B dx

are given by



ot k

Pok-1 = o*p+2k

k
Pok = oFp+2k+]

These are given in Skibinsky (1969) along with some of the other lemmas
presented here and other considerations.

The special cases a=p=0 and o=g= -1/2 are of special interest.

Corollary 2.1 The canonical moments corresponding to Lebesque measure (a=8=0)

are p2k+]zz,1/2 and Po =§E;T-. The case a=g= -1/2 corresponding to the

"arc-sin law" has p; = 1/2.
Many problems can be formulated very simply in terms of the canonical
moments P; and the solution found. For example we will show if m = 2 in the

ordinary regression case with w(x) = 1 we have

=1-P;

(2.3) IM(e)| = (p]q1p2)2 (a5P3d3P4) 5 a; ;

j
The maximum of this is given simply by Py=P3 = 1/2, Py = 2/3 and Py = 1.

The remainder of the solution involves converting either to the corresponding
moments c; or, more importantly, to the support points and weights in the

corresponding measure &. This is the purpose of the majority of the lemmas.

Let 1 = 49 = %5 = g and define

0
(2.4) i = G5 qP; and Y5 = P5_q19; i=1,2,...
Lemma 2.2 If Soj =1, j=0,1,2,... and
J
(2.5) Si3 7 L, Heinl Sioe P

then cm = Smm'



The first few moments are

O
—
]

py(py*ayp,) = g1 {gyte,)
¢y = cT[c](z1+c2) + ;2(a1+c2+c3)]

Skibinsky (1969) has shown that if the canonical moments are defined relative
to any interval that they are invariant under simple linear transformations.

He also shows that symmetry of the distribution is related to Poigq © 1/2.

Lemma 2.3 If £' is the measure corresponding to & by reveesing the interval
[0,1], ie. letting y = 1-x then Pos = Poj and Poi+1 = Y441 ~ 1—p21+].

The determinants that we use are one of the following forms. Let

- m - m
Som = 1e44515, 520 Bome1 = 15454114, 520

= _ m
Same1 = 1445 ~Ciegarli, =0

m
Bom = 10543-17C g, 51

Lemma 2.4 The above determinants are given in terms of the canonical moments by

' m . m :
_ o m+1-1 - m+1-1
(2.5) bop = I (€21_1§21) Bomt1 .0 <C21“;21'+1)
i=1 =0
m : m :
- m+1-1 — _ m+1-1
Aom ‘121(Y21-1Y21) Aom+1 1.EO(Y21Y21+1)

The canonical moments are intimately related to orthogonal polynomials

and continued fractions. As usual we use the notation
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N
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A = B Ak g Aep o
By = by B1 * 2 By-2
One can then see that the Bk can be expressed as a tridiagonal matrix
b] -1 )
3, by 0
B, = a
k 3 b3 -1
0 -1
3y by

This follows since these determinants satisfy the same recursive relations
and the same initial conditions. Further results on continued fractions can

be found in Perron (1954) or Wall (1948).

Lémma 2.5 The Stieltjes transform of measure g has a continued fraction

expansion of the form

(2.6) fo —%:§1 =

51 %2 %3
T-T-T-

1
t_

Now if the measure& has canonical moments that "stop" with either pi=0

or 1 then the measure £ has finite support and the transform

de _ v _Ci
/ t-x ) 2
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The continued fraction expansion "terminates" since gy or ck+] = 0 and
the transform can be written as a ratio of two polynomials. The zeros of the
polynomial is the denominator are the support of &. This is an indication

of the proof of
Lemma 2.6 If Py = 0 or 1 then the support of £ is on the zeros of

t -1
-z 1 -1

(2-7) D(t) = T2t -7
“t3 0 -

The tri-diagonal determinant D(t) is truncated immediately above where the
first g = 0.
Suppose, for example, that Py = 0; then the resulting set of canonical

moments (p, P, P,» 0) has support on two points, namely the zeros of
17273

-;-I 1 ‘] 0 2
(2.8) D(t) = =t '(C]+C2+C3)t + C]§3

One also has that if ¢ is supported by a finite number of points then
P = 0 or 1 for same k.

The next lemma essentially follows from Lemmas 2.6, 2.4 and 2.3.



Lemma 2.7 If & has support on XgsXqs <+ s Xy then =
m m
I X: = Cqloes-L =p A Pos 195s
=0 | 1°3 2m+1] 2m+11=] 2i-17"21
and
m ( ) Va il
n(l-x.)= 10 q.,
i=0 ! i=1

The weights on the various points can be obtained in a n&mber of ways.
Explicit formula in terms of various orthogonal polynomial are given in Karlin
and Studden (1966) or Ghizzetti and Ossicini (1970). These are not given here.
They can also be calculated directly by setting up the 11n§ar equations
involving the weights and the ordinary moments. For example in the case just

2
weights &1 and g, are given by solving the equations

considered above; if t] and t, are the roots of (2.8) then the corresponding

G176 T G T 1
E1ty*eaty = ¢

The solution for the support given in (2.7) involving D(t) gives all the
support points including the endpoints t = 0 and 1 if they appear. The
interior roots can be given in terms of various other orthogonal polynomials.
Let four sequences of polynomials {Pk},ﬁ{Qk},ﬁ{Rk},&{Sk}, k > 0, be defined
by taking them orthogonal to dgz,t(1-t)dg,tdz and (1-t)dz respectively. The
polynomials are normalized by taking the leading coefficients one and
P0 = Q0 = R0 = SO = 1.

The various moment sequences with P = 0 or 1 (for the 1st time) have
corresponding measure supported by the zeros of one of the polynomials just

defined. These are given by
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Lemma 2.8 :
(a) The measure corresponding to (p],...,ka_]’O) is supported on the
zeros of Pk(t) = D.
(b) (p],...,ka_],l) is supported by the zeros of t(1-t) Qk-](t) = 0.
(c) (p],...,ka,O) is supported by the zeros of tRk(t) = 0.

(d) (p],...,ka,1) is supported by the zeros of (1-t) Sk(t) =0.

Lemma 2.9 The polynomials Pk, Qk’ Rk’ Sk, satisfy the recursive relations

(Py=0Qq=R;=S4=0 1v,=0)

Pre1(t) = (E=tptopan) Pr(t)-cpp q2aiPq (B)

(2.9) 1) = (Eae 2kes) QB Vaar 2pr 21 (V)
- _(t)
Ree1 (1) = (E2p017Cope2) Ri(B)-2p1 50001 R
Sk (8) = (B 7vp02) S8 var g S (V)

OQur final lemma is very useful and illustrates some useful symmetry

in certain spaces of moments.

Lemma 2.10 (i) The support of the measures corresponding to (p],...,pk,o)
and (pk,...,p],O) are the same.
(ii) The support of the measure corresponding to (p],...pk,]) and (qk,...,qf,T)

are the same (qi = 1-pi).

3. D-Optimality for Classical Weights This section contains a proof of

Theorem 1.1 and the extension to the cases o = -1, 8 > -1 and a > -1, 8 = -1.
Thus we are given c;= f x1w(x)dg(x) and are required to maximize the determinant

with elements mij = ci+j’ i,j = 0,1,...,m. The determinant is of size mtl.
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The first step of the proof is to show that the support of £ consisﬁé of
precisely m+1 points and is the same as in Karlin and Studden (1966). Given

that this is the case we then may easily see that if the support of & is

xo,...,xm then
m 2
(3.1) [M(g)]| = I WX, )EFT (XX ) =
i=0
m mo,
= I w(X:) T E.F (XpseeosX,)
i=0 14=0 1 0 m
X w(x) Mg (2|
= I w{x,)|M. (g)
i=0 ! 0
Here M0 is the matrix M when w(x) = 1 and F(xo,...,xm) is the determinant

with rows (1,x1,...,x?). Note that from (3.1) we can see that the D-optimal
design has equal weights since Ig; occurs as a factor in (3.1).
We now take the values for Mo(g) and I W(Xi) from Lemmas 2.4 and 2.7.

For completeness we repeat the case w(x) = 1. In this case

I m
M (g)]| = A, =
0 2m i=1

mt1-4
(255-1%21)

This is clearly maximized by the sequence

(3.2) Poiyy = 1/2
_ m=i+l - _
P2i “om-2i+ i=1,...om-1
Pom = 1 - -

The proof now follows from Lemmas 2.10, 2.1 and 2.8. Thus from Lemma 2.10 (ii)
we reversed the sequence (3.2) and replace p. by q;- By Lemma 2.1 this sequence

corresponds to Lebesque measure. Now use Lemma 2. 8.
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Theorem 1.1 can be handled in exactly the same manner using inz

addition Lemma 2.7. Thus the determinant |M(z)| is now given by
m

M(z)| = Mo(e) T w(x;)
i=0
m o atm+l-i gEmtl-i m mtl-i  ogtpRtmt2-i
=1 Psys G5 I Psys G5 =
j=g 2it1 2i+] j=1 21 2i
This is maximized for
_ atmtl-i SR
(3.3) Poi+1 = rpr2(m1-1) 1=0.1....m

mtl-i

pZT = Fp3r2(m=1) i=1,2,...m

To find the corresponding support for the D-optimal design we reverse the
sequence p., using Lemma 2.10 (i) and then refer to Lemma 2.1 and recognize
the support as that for the "Jacobi” case with o« and g. The support is thus
the zeros obtained from Lemma 2.8 (a).

The case where g = -1 and w(x) = x2+], a > =1 (ora=-1and 8 > -1)
can also be readily deduced. In the case 8 = -1, a > -1 the support is on
x =1 and m interior points. The canonical moments are the same as (3.3)
with 8 = -1. The highest moment considered now is Pomt1 = 1 so we use Lemma
2.10 (ii). This gives the "Jacobi" canonical moments with exponent o and g = -1.

The resulting support is on x = 1 and the m zeros of the mth polynomial

orthogonal to w(x) =x%. This proves the following theorem.

Theorem 3.1 If w(x) = xa+] then the D-optimal design for mth degree poly-

nomial regression has equal weight on x=1 and the m zeros of Pm(x) =0

where {Pk} are-orthogonal with respect to w(x) = x*. If w(x) = (1 -x)8+],
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with g > -1, the analogous result is obtained by -symmetry. - :{

4, Ds-optima1 designs for w(x) = x, 1-x or x(1-x) In this section we

consider the estimation of the highest s coefficients when

£1(x) = M(x) (],x,...,xm). The problem is to maximize

(4.1) 15(8)] = M@ 7 1)

where the elements of M and M]] have the moments fx1w(x)dg(x). The matrix

M]] is of size r+1 where r = m-s.

There appears to be inherent difficulties in evaluating the determinants
[M(g)| for general "Jacobi" weight w(x) if the support of & is larger than the
size of the matrix M(g). Therefore, although the & may:be on m+l points,
when taking the:ratio to evaluate |}(£)| in (4.1) the denominator presents
some difficulty. However the cases where w(x) = x, T-x or x(1-x) can be
obtained directly from Lemma 2.4 which does not require any restriction on
the support of ¢.

The result for w(x) =x is given in Theorem 4.1, the corresponding result
for w(x) = 1-x is obtained by symmetry. The result for w(x) =x(1-x) is in

Theorem 4.2. The special case where s = 1 and we are estimating the highest

coefficient is spelled out in Theorem 4.3.

Theorem 4.1 If w(x) = x then ]Zs(g)l is maximized by

p21 = ]/2 i = 1,...,m
(4.2) Rz i=1,...,r
21+l m-i+1 i=r+l,. .. m-1
2(m-7+1)+1
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The support of £ corresponding to the above P; is given by the m+l zeros

0 < Xp < eer < Xoyq = 1 of D(t) = 0 where D(t) is given by Lemma 2.6.

+1

The corresponding weights are given by

sin 2,(r'+1.)e1. > -1

= .+
2 2(%m+2 sin 0

< T

where 2x1—1 = COS 0, 0 < 05

Theorem 4.2. If w(x) = x(1-x) then lzsl is maximized by

1
Poisr =7 10 1se.oum ‘
%— i=1, ,m+1
(4.3) Po: =
21 m+1-1 i=r+2,...,M
2(m+1-)+]1
Pomt2 = 0

The support of & corresponding to the above P; is given by the m+l1 zeros

0'< X] < e X < 1 of D(t) = 0 where D(t) is given by Lemma 2.6.

mt+1

The corresponding weights are given by

sin(2r+3)ei -1
& = 203 - —sime,

where 2x1—1 = COoS 0, 0<6;, <

1

Sketch of Proof of Theorems 4.1 and 4.2. The expression for |}(g)]| is

evaluated from Lemma 2.4 in each case. The resulting P; values given in
(4.2) and (4.3) are then seen to maximize these expressions. The zeros
are taken from Lemma 2.6. The corresponding weights are obtained by a

method similar to that used in Theorem 4.2 of Studden (1980) and is omitted.
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In the third paragraph of Section 1 the optimal design for estéhating
the highest coefficient Bm when w(x) = 1 was given. The design in this
case has weights proportional to 1:2:2:...:2:1 on the zeros of x(]-x)Té(x) =0
where the sequence of polynomials Tk is defined on [0,1] and are ortthona]
to the arc-sin law. These zeros are Xi» i=20, ...,m where 2x§-1 = CO0S i% .
The special case r = m-1 or s = 1 in Theorem 4.1 and 4.2 resuits in the follow-

ing theorem.

Theorem 4.3 (i)} If w(x) = x then the optimal design for estimating B has

weights proportional to 2:2:...2:1 on the m+1 points Xis i= 0,1,...,m where
2x.-1 = cos 6. and
i i

_ 2it]

_i-é—rﬁ_l_—-l-'n,'i=0,'|,...,m

(ii) If w(x)

x(1-x) then corresponding design has equal weight on

= 2i=]

Xss 1=,0, 1, . . . ,m -1 = = 270 i =
s . ,m where 2x1 1 cos ei, ei i Mo 0, . .. .m

i
(these are the zeros of Tm+](x) = 0).
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