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SUMMARY

The problem of global estimation of the mean function o(.) of a

quite arbitrary Gaussian process is considered. The loss function in
estimating o by a function a(-) is assumed to be of the form

L(e,a) = [[e(t)- a(t)]zu(dt), and estimators are evaluated in terms of
their risk function (expected loss). The usual minimax estimator of ¢
is shown to be inadmissible via the Stein phenomenon; in- estimating the
function o we are trying to simultaneously estimate a large number of
normal means. Estimators improving upon the usual minimax estimator are
constructed, including an estimator which allows the incorporation of
prior information about 6. The analysis is carried out by using a ver-
sion of the Karhunen-Loéve expansion to represent the original problem
as the problem of estimating a countably infinite sequence of means

from independent normal distributions.



1. Introduction

The problem of global estimation of the mean function of a quite
arbitrary continuous Gaussian process will be considered. Before present-
ing the general setup we will outline the problem in an important special
case, that of estimating the mean function of a Wiener process..

Suppose we observe, for t€ [0,T],

X(t) = o(t) + Z(t),
where o(t) (the signal) is an unknown function and Z(t) (the noise) is

zero mean Brownian motion. It is desired to estimate the function o(-)

under the global loss

T

é [o(t) - a(t)]%dt.

L(e,a)

Of course, {Z(t),t€ [0,T]} has an underlying probability structure, and
so it is natural to evaluate an estimator §[X](:) (which for each X is
a function on [0,T]) by its risk (or expected loss)
T
R(0,6) = € [ [o(t) - s[x1(t) 1%dt.

The usual estimator of 8(-) 1is GO[X](-) = X(+), and under appropriate
conditions this is best invariant and minimax. Since we are trying to
simultaneously estimate an uncountably infinite number of means (the 6(t)
for all te [0,T]) one would suspect that the usual estimator can be im-
proved upon via the Stein phenomenon.

Stein estimation (in its simplest and original setting - see Stein
(1955) and James and Stein (1960)) deals with estimation of the mean

t
o)

g = (e],ez,...,ep)t of a p-variate normal random variable X = (X],...,X

(identity covariance matrix) under sum of squared errors loss



Here, also, the usual (best invariant and minimax) estimator of ¢ is

§0(X) = X. This estimator cannot be uniformly improved upon for p = 1

or 2, but for p > 3 the James-Stein estimator = .

30 = (1- 25 )y

has risk

R(8,6%%) < R(8,8°)

for all 8. (Here again R(8,8) = EL(8,8(X)).)
The stochastic process setting discussed earlier is the obvious in-

finite dimensional analogue of the finite dimensional situation, and so

Js could be found.

JS

one would hope that improved estimators analogous to ¢

This will be done in Section 3. Indeed obvious analogues of & ~ such as

(1.1) s[X1(+) = (1- % )X(+)
JIX(2)] "u(dt)

will be considered (along with more sophisticated estimators) and shown,

under certain conditions, to satisfy

R(6,5) < R(6,8°)
for all o(-).

The analysis will be carried out in a fairly general framework. The
"noise" Z(-) discussed above will be allowed to be a quite arbitrary path-
continuous Gaussian process, defined on an index set‘Ic:R]. (Thus the
finite dimensional problem of estimating a normal mean will be included
as a special case.) Also, the global Toss will be allowed to have a

"weighting" measure; i.e.,

L(e,a) = [ [o(t) - a(t)T2u(dt)



will be considered. The formal statement of the problem, with needed

assumptions, follows.

Let % be the complete metric space of continuous real-valued functions on a
closed set Ic:R] with the supremum norm, - Let @ be a subset of
% and let Z be a Borel-measurable %-—va1ued Gaussian process%dn some
probability space (2,3, P) with mean EZ(t) = 0 and known cohtinuous covariance func-
tion y(s,t) = EZ(s)Z(t). Here (as usual) we suppress the w-dependence of

functions YGEL1(Q,3, P) and write the integral of such a random variable

indifferently as [ YdP or EY.
Q

Let A be a subset of the Borel-measurable real-valued functions on
I. We consider the problem of estimating the unknown mean s €@ of the
Gaussian process X(t) = Z(t) + e(t) on the basis of a single observation

of X€X by an estimate a€A, under the quadratic Toss

(1.2) Lo.2) = ] [o(s)- a(s)Tu(ds)  o€@, a€A .

Here u is an arbitrary but specified nonnegative Borel measure on I sat-
isfying
Al ec L2(I,du);

A2) Ao L2(I.du);
A3) C = {Y(S,S)u(ds) < ®

(Note that y may be a singular measure.)

If several observations X(l)(-),...,X(n)(-) are-available then their
n .
average X(-) = %— ) X(1)(-) satisfies our conditions and is sufficient
i=1

for o, so the restriction to a single observation is harmless.
From A1) and (1.2) it follows that L(e,a) = » for any a QL?(I,du);

thus we may restrict our attention to estimates aGEAIWLz(I,du) = LZ(I,du).



<

Let © denote the decision space of all Borel-measurable mapbings

§: X -~ L2(I,du). As usual in decision theory we will evaluate anvestima-
tor § € 8 by considering its risk function

(1.3} R(6,6)

EL(6,5)

/ { lo(s) - GEX](S)IZu(ds)dP.

Q
The usual estimator for the mean ¢ of a Gaussian process is
s°IX] = X,

with constant risk

(1.4) R(6,5°) £ | l6(s) - X(s) [%u(ds)

{ E|Z(s)|%u(ds)

{ y(s,s)u(ds)

(]

This is the best invariant estimator and will be shown to be minimax, but
(except in some trivial cases) it is not admissible.

Indeed we will derive estimators 6* € & which satisfy

(1.5) R(68,6*) < R(8,5°)
for every g €@ .

Rather than working directly in LZ(I,dp), we will employ a generaliza-
tion of the Karhunen-Loéve expansion of a stochastic process to transform
the problem into that of estimating a countably infinite sequence of nor-
mal means, 82073005---s based on independent normal observations. This
will enable some of the theory of Stein estimation to be brought more di-
rectly to bear on the problem. This transformation of the problem (carried

out in Section 2) should be useful in other statistical analyses.-



Section 3 contains the analysis of the transformed countab1;:infinite
Stein estimation problem. Although some relatively simple estimators im-
proving upon §° will be presented, it is observed, as in Berger (1980a)
and Berger (1982) that in intelligently selecting among the many pos-
sible improved estimators, it is necessary to incorporate priﬁf-informa—
tion concerning the 0y An estimator allowing 1ncorporatidh of prior
means g, and variances Tij for the 0,5 and yet having risk better than
60, is developed. This estimator can also be viewed as a robust Bayesian
estimator of the 0, It is also indicated how the &5 and Ty7 can be ob-
tained from prior information concerning o(-). )

Section 4 discusses several examples (introduced in Section 2); name-
ly the finite dimensional situation, the original Brownian motion example
and an example-concerning the Brownian bridge with a weighted global loss.

Section 5 presents some concluding remarks.

2. The Transformed Problem

1
Denote the norm of an element u€EL2(I,du) by Ilul[u = (f [u(s)lzu(ds))z,
I
The Schwartz inequality guarantees that

E2(s)Z(t) |2
Y(SsS)Y(tat)

for every s,t € I, and hence that for each fixed s €I the continuous func-

(2.1) v (s.t) |2

| A

tion y(s,+) satisfies

v(ss+)] 12 < v(s,s)C.

It follows that, for each fe;Lz(I,du), the function
rf(s) = [ y(s,t)f(t)u(dt)
I



is bounded by

(2.2) |Tf(s)] §_||f[|u¢Cyis,si

and so has LZ(I,dp) norm

TP, < CHIFH, - -

The function rf is also continuous, since

(2.3) [rf(s) - TF(E) | < [IF]] v(ss) - v(tse)

Iu
and (by A3), (2.1), and Lebesgue's dominated convergence theorem) the map-
ping s = y(s,+) is continuous from I to L2(I,du). In fact, (2.2) and
(2.3) show that {rf: ||f||u5_1} is uniformly bounded and uniformly equi-
continuous on compact sets, so I is a compact operator from LZ(I,du) to

% . It is also nonnegative definite and Hilbert-Schmidt as an operator

on L2(I,du) since y(+,+) is nonnegative definite and satisfies (by 2.1)

[ 1v(s,t) |Zulds)u(dt) < €2 < w .
It follows that there exists an orthonormal family {eo,e1,,,_} =

{e

Yicp OF P < = continuous functions e, €x N L2(I,du) and p numbers

ili<p

Vo 2 V7 2 Vo > ... > 0 satisfying

PO) { ei(s)ej(s)u(ds) =11if i = j, 0 else;

P1) r[ei](s)

{ v(s.t)e, (t)u(dt)

= viei(s) for every scl;

P2) rt[f](s) = 0 for every s€l if and only if f-f(s)ei(s)u(ds) =0
I
for each 0 < i < p;

P3) Z Vi = [ v(s,s)u(ds) = C;
O<1<p I

PA) T V= [ Iv(s,t)[Pulds)u(dt) < c?
O<i<p I 1



Here p < » is the dimension of the range of T in L2(I,du). If an
assertion A depending on ¢ € is true for all ¢ outside of a set Ne &
with P(N) = 0, say A holds "a.s.[P]"; similarly an assertion B depending

on tel holds "a.s.[u]" if it is true for all t outside a Borel set N~

with u(N*) = 0.

The Hilbert-Schmidt property and nonnegative-definiteness of T
guarantee the existence of a family {ei}C:Lz(I,du) satisfying P0), P2),
and (a.s.[u])P1. It follows from PO) and 2.3) that we may redefine {ei}
(if necessary) to ensure that {ei}c:ﬁz and that P1) holds for every s ¢l.
It follows from A1) and A3) that

(2.4) E||x(.)||§=c+||e||§<m

and hence that X eL?(I,du) a.s.[P]. Thus we can define for 0 < i < p

(2.5) X. { ei(s)X(s)u(ds)

i

0 { ei(s)e(s)u(ds).

Lemma 1. The random variables {Xi}i<p are independent and normally dis-

tributed with means {ei}i<p and variances {v1}1<p.

Proof.  Apply Fubini's theorem and P0), P1) to (2.5). ||

In general we cannot be sure that {ei} are complete, for there may be
f € L°(1,du) satisfying rf(s) = 0 for all s el and yet [1F1], > 0. 1n
that case f would be orthogonal to each e; by P2).

Denote by 22 the space of square-summable sequences u = {UO’U1""}

of real numbers with finite norm

2
Iy|f< ) )
O<i<p

Wi



The mapping u(-) - u from L2(I,du) to 22 determined by u = {u1}1<p,

u; = { ei(s)tj(s)u(ds), is a contraction (Bessel's inequality) and an
2% .2 .
of {e;}. _in L°(I,du). Denote by u* the orthog-

isometry on the span L iticp
2% #

onal projection of u ELZ(I,du) onto L” , and by u” the coprojection u - u*.

Then

[ lu(s)Buts) = [ 1ufs) | Puts) + 7 fugl

<T<p

In many cases of interest r is positive definite (i.e. r[f] = 0 entails
*

||f||u = 0) and hence 12 - L2(I,du) and B

(2.6) [Jull, = lul -
2* . . 2*
In any case we have (2.6) for uelL® . The paths of Z(.) 1ie in L™ a.s.
[P], so
X% = Eflox+ (% = ¢+ |fox] |2 < o

and ||X#- e#llu = 0. Also, for any a.eAlez(I,du) we have

(2.7) L(o,a) lle-allf

2 2
o - af|[Z + |[o%- a¥||

#_#,2 2
X7 -am[ ] + ) los-as]".
0<i<p

Let 6§ €8 be any measurable mapping from X to LZ(I,du), and set
(2.8) sTIx] = (s[X1)* + x¥.

Then 6+'e $ and

L(o,6%) = (1o - x¥[12 4 [Jox- (oTxD)*| |2

[1(6 - 6TK1)*| |}
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o~ X1 |2

= L(6,6)

for every 8, so we may restrict our attention to estimators

5em+= {8€8: a=a+} = {§: (a[x])#=x#}

For such an estimator, set §[X] = {ai[X]}, and
8;[X] = ,If e;(s)s[X](s)u(ds).

Then

L(a,6IX1) = [ o, - 6,[X1|%

O<i<p
We conclude this section with the introduction of the three examples

we will study in detail in Section 4.

Example 1. Multivariate Normal
Let I = {ts..aut ] be any finite set in R], and Tet X ,@, A,u,y, and
X satisfy A1) - A4). Each function u on I may be uniquely identified with

the vector i€ R™ with coordinates Gi = u(ti); under this identification

2

%, A, and 2~ are each identified with Rm,.®’w1th a subset of Rm, and X

with an m-variate normal random vector i with unknown mean 6 and known
covariance matrix iij = Y(ti’tj)'
Let Q be the mxm diagonal matrix with entries Qii = U({ti}); p<mis

the rank of $Q. There exists a pxp diagonal matrix D with Dyy 2 .- Z-Dpp

> 0 and an mxp matrix E with EtQE =1 iQE = ED' 1e£'e- € X be determined

p’
by e; (t ) = EJ s41- Then fe (s)e (s)u(ds) = éE QE)1+] L3+ =14if 1 =3, 0
else and P[e 1 t ) = (iQE i1 T (ED)J’1+] = v1e1(tJ). In this case C =

v, = tr Etomt = tr $Q.

1
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With this choice of {ei}, X = EtQiest has expectation 8 = Eﬁaé and
pxp covariance E(X-8)(X- g)t = EtoiQE =D,

Indeed any m-variate normal random variable X with covariance %
determines a continuous path Gaussian process on (e.g.) I = {1,2,...,n}
as above. The transformation described above changes the probdém of estimat-
ing the mean © cR" of the m-variate normal vector X with covariance 3 under
weighted loss '§ |§1- 51|2u({i}) into that of estimating the mean vector
ge{Rp of the p1:ldependent normal random variables {Xi} with varijances

p
{v;} under squared-error loss 2 ey ailz.

i= =

Example 2. Brownian Motion
let I = [0,T] and let u be Lebesgue measure on I. Let X(t) = o(t)+ Z(t)
where Z(-) is a Wiener process with mean EZ(t) = 0 and covariance function

v(s,t) = EZ(s)Z(t) = ozmin(s,t) for some constant 02 > 0. Then T

the eigenvalue equation

(2.9). r[f] = vf
has no solution f # 0 when v = 0, while (2.9) with v # 0 jmplies that f
is twice differentiable and satisfies

(2.10a) Vs + g2f = 0

with boundary conditions

(2.70b) f(0) = f~(T) = 0.
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The well-known complete set of normalized solutions to (2.10}§afé
ei( s) = (2/T) sin[(i + 3) ns/T]

v; = [oT/n(i + 3) 17
with

c= ] v, =T,

O<i<w .
See Wong (1971) for a detailed account.
Example 3. Brownian Bridge with Weighted Loss
suppose T = [0,T], u(dt) = t™1(1- t/T) 'dt, and X(t) = a(t) + Z(t),

where {Z(t),t €1} is the Brownian bridge, i.e. the Gaussian process with

mean zero and covariance function

y(s,t) = oz[min{s,t}— st/T].

As in Example 2, the e; and Vs satisfy a differential equation

2
(2.11a) vi--(s) = 5175§7T7 f(s)
(2.11b) £(0) = F(T) =

Defining h(s) = f(s)/{s(1 - s/T)}, (2.17a) becomes (after dividing through
by v)

2
s(1- h2(s) + 2(1- BIh-(s) + (& - Dn(s) = 0

The solutions to this equation are the Jacobi polynomials (on [0,T])

pi(s) = T (OG-S, 0cice,

1 0] e

k=0

providing v = oZT/[(1+-1)(i+-2)]. Multiplying by s(1 - —) and normalizing,
gives a complete set of orthonormal solutions to the-original differential

equation, namely
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1 3 . N
s 1 . . - I

e;(s) = - §‘21+%g+};2)

with corresponding eigenvalues

k=0

v; = CT/L(E+ 1) (i +2)].

Here = .

= _ 2 1 _ 2
C = Z V_i—GT Z —(m)—(—ﬁ_?)——oT.

O<i<w O<i<w

Comment. Whenever Z(-) is a Markov process (as in the above examples),
v(+,+) will be a Greens function for some differential operator L with
specified boundary conditions, and the {e;} will satisfy ViLei(') = ei(-)

for v # 0 as well as the boundary conditions.

3. Minimax and Stein Estimation

We begin by showing that 60[X] X (respectively 60[5] = 5) is a

minimax estimator of 6 € @ (respectively e €@ ), i.e.

sup R(e,ao) = C = inf sup R(e,s).

0E® §cl B8€®
Theorem 1. Let X be a Gaussian process in % (as in Section 1) with continuous co-
variance y(-,-) and Toss measure y satisfying A1) - A3). Then if @ con-
tains finite linear combinations of {ei}, §° is a minimax estimator of

8 €6 and 0 is a minimax estimator of 6 €@.

Proof.  Our original proof, based on a limiting Bayesian argument, was
more complicated than the following simple proof suggested by Larry Brown.
Suppose that s® were not minimax. Then for some ¢ > 0 and 6” € &,

R(e,67) < C - ¢ for every 6 €@ .
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By P4) there is a finite N < p satisfying

1§N Vi < e/2

1§N Vi > C - e/2.

The proof proceeds by constructing an estimator 3’ of the N-variate normal
mean 8 = (89s675---56y_1) with squared-error risk R(3,8°) < R(8,8°) - e/2,
contradicting the known minimaxity of the estimator SO[X] = X
= (XO’X1""’XN-12 in the N-variate case.
N Y u.e.(+), where
. iTi
Ji<N =

Let ¢ : R = X be the mapping ¢ [a](-) =

u = (uo,...,uN_])-E RN, and denote by y: N L2(I,dﬁ)»+ RN its Teft

inverse given by w[u]=a, where u. = [Iu(t)ei(t)é(dt). Then when

> N

6 = ¢(0), o€ R", the random variable X = v(X) has an N-variate normal

9

distribution with mean ¢ and diagonal covariance T with $1i = V.

0 < i < N. The invariant estimator 30[2] = i has constant risk

R(é,go) = 'ZN Vi > C - ¢/2 while the estimator
1<

§-[x] = E[y(6-[X1)|9(X) = x]

has risk

R(6,67)

| A

b Elo, - 55[x]]2

2
Ele. - 83X
1Zp 161 61[ 1l

R(6,8”)

| A

<C-¢
< R(é,go) -e/2. |

Note that the sufficiency of X for 6 (see Commerit 4 in Section 5) is needed
in ensuring that §' is a valid estimator of 6.]]
We now turn to the problem of improving upon §° in case p.> 2. The

following theorem provides a starting point.



Theorem 2.  For uniformly bounded constants a; > 0, bi > 0, and d > 0,

0 < i< p, define an estimator §*[§] by
3
(3.1) 5?[X] =(1 - — Xi .
) d+ } b.X%
jop 3
Then if p > 2, R(9,6%) < R(6,6°) for all o if and only if -

2
(3.2) 2 F a,v. > sup {4a.v.+a5/b;}
isp V1T 93T

. 2 .
./b. = . = b, = .
(where aJ/bJ = 0 if aJ ; 0)

Proof.  Suppose (3.2) holds and set ]|g||2 =d + Zbi“? for u egz; then

define

a(g) R(g,§°) - R(g,6*)

2
2 25X
= T UE (6. -%)% - [0, - X, +
N < ‘ Ilz<||2>‘
(X. - 6.)X 2y2
- 3 E§2a1 i e12 Y 14{
i<p [IX]] | [X]]

Integrating the first term by parts (with respect to Xi) yields

| 2

2 £ (Xi—ei)xi i Ez 28V, ) 4a;bsv.X;

i 2 2 4

[1X] ] [[X]] |IX]]
)

X§(4aib1v.+a?)

(3.3)  ale) = ] E 5 | 2a.vs - .

i<p [|X]] |1X]]

2
2a.v, - .v.+as/b,
in a, v, ;55(4aJvJ4-aJ/bJ)§

14
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since } uibiX? 5_]|X|I2 sup fu;| for any bounded sequence {fu;b. It
i<p i L
follows that A(e) > 0 when (3.2) is satisfied. This proves the "if" half

of the theorem.
Now for the "only if" half. Suppose (3.2) fails, so there exists

. .2 . s
0 <Jj < p for which aj/bj thagvy > 2 igp a;v;. Consider g = {ei}1<p

where 0; = 0 for i # jJ and ej = xe;R]; then it is straightforward to show
from the first equality in (3.3) that A(g) < O for large enough x. For a

detailed similar argument, see Berger (1976). ||

Comment.  Theorem 2 is an extension of Theorem 1 of Berger (1976) and

could be generalized as in that paper.

Corollary 1. If {a;} and {bi} satisfy (3.2) and d>0, the "positive
part" estimator 6+ determined by
+
+ as
6.[X] = / - 1 X.
B \k ¢+ ¥ bx% )

L jep I
satisfies

R(858) < R(8,6%) < R(8.8°)

~ ~ -

for every o.

Proof. Just as in the p < = case described in Berger and Bock (1976).

Corollary 2. Suppose Vj < Z Vs for some j. Choose any

i>]
0<a 5_2(-vj4- ) Vi)' Then the estimator 6* determined by
isJ ~
X i<

.4 *[X] =
(3.4) s¥[X] . _a \x s
RO

[
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and its positive-part version each have smaller risk than §°.

Proof. Set d =0, a; = 0 for i < j, a; = a for 1 > j, and bi = 0 for
i<J, bi

In particular, when ¢ = -v, + } v. > 0 then s*[X] = (1 - -2 X
0 45 1 AR SR

is minimax for any 0 < a < 2c. This is the analogue (1.1) of the James-

=1 for i > j in Theorem 2. ||

~

Stein estimator; indeed the case p < «, Vg = eee SV =1, and a = ¢ is

p-1
the James-Stein estimator exactly.
In examples 2 and 3 it is not the case that Vg < ) Vi, SO that (3.4)

>0

with j = 0 does not outperform §°. In each case vy < Z‘ Vis however, so
i>]

the j = 1 case improves upon §°.
As discussed in Berger (1980a) and Berger (1982), such simple estima-
tors as those above are rarely optimal. Since §° is minimax, any better

estimator can only have significantly smaller risk in a fairly small

region of ®. It is thus important to specify the region in which signifi-
cant improvement is desired, and choose an improved estimator tailored to
this region. The problem is best phrased in Bayesian terms, since the
region in which significant improvement is desired will be the region in
which ¢ is apriori thought 1ikely to lie.

We will assume a very simple type of prior input; namely the spécifi-
cation of prior means £5 and variances Ty for the ;- In some situations
it may happen that the 6; are meaningful quantities concerning which prior
information is available. For example, the {ei} migﬁt be the possible
frequencies of a given signal and the 0, their amplitudes. Often, how-
ever, it will be the case that e(-) itself is the only real quantity for
which one has prior information. The problem then becomes that of trans-
forming prior information about e(-) into suitable means £ and variances

Ty for the ei.
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An obvious avenue to follow is to model the prior Tnformatié; about
6(-) by pretending that {e(t),t €I} is itself a stochastic process with
mean function £(t) and covariance function t(s,t). Apriori determination
of £(t) is straightforward, since £(t) can just be considered to be the
"best guess" for 6(t). Determination of <(s,t) is harder, thbugh in-
tuitively it should just reflect the covariance of the "error" in the guess
g(t). In this Tight it is reasonable to expect fairly accurate specifica-
tion of p(t) = =(t,t), sinée this could just be chosen to be the square of

the expected error in the guess £(t). Specifying covariances is harder,

but will usually not greatly affect the values Tiqe In Tater examples we

will just choose convenient covariances.
Since E; is supposed to be the mean of 05 and £(t) the mean of e(t),
we must have

g; = Eoy = E { o(t)e;(thu(dt) = { g(t)e;(t)uldt).

Likewise,

135 = E[(o5-£5)(05-¢5)1 = {

ij { T(S,t)ei(S)ej(t)u(dt)u(ds).

X
Unfortunately, working with all the i3 is much more complicated than

., SO we will ignore the prior covariances. For

working just with the i

a method of incorporating these covariances into the analysis, see Wolpert

and Berger. (1982)

. .
-3

(The method is based on a considerably more involved
Karhunen-Loéve type expansion, although some special situations in which
the expansion considered here will suffice are given.)

The estimator that is recommended, for given E4 and Ty is the gen-

;
eralization to infinite dimensions of the estimator given in Berger (1982),

~ 7

and is given as follows: define q; = v?/(vii-rii), and relabel (if neces-

sary) so that Gy 29y > ...; and let
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Mooy Y3
(3.5) 51(2() = X-i' - v'i+T'i'i (X'i - E'i)r'i (2,():
where
.ot
Y'.i(z() ='(_}T Z (qj_qj+])m1n 1, 3 2(3-1) .
b Xyg )/ (vt )
I (X-g, gt |

2=0

Theorem 3. The estimator §M(§) = (62(5),6?(5),...) has smaller risk

than §°.

Proof. The proof is exactly the proof of minimaxity of the finite dimen-

sional version of the above estimator given in Berger (1982). ||

The motivation for §M is interesting. Noté that if the prior infor-

mation is correct, E*[ij =g, and

2 2
* - = * - - =
EX[X, - g, 1" = EX[(X, -0 )+ (6,- £ )] = v + < .
where E* denotes expectation over both X and e(and the prior and sample in-

formation are assumed to be independent). Hence for j > 2

x| — J-1

J 2
PRCECRIIIASIS

1

and so for i > 2 we "expect" that

() == I (ag-ag)(0) = 0.
i j=i

Thus (at least with substantial probability)

Vi
V-i+T (X'i_ g'l)’

M -
85(X) = X; - —

ii
which is the best linear estimate of 0 for the given prior information.

The actual form of ri(x) protects against prior misspecification by going
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to zero if X seems too far from g. Indeed, by Theorem 2, §M is Bétter
than §° always (but will only be significantly better if ¢ turns odt'to
be near ¢ = (go,g1,...) as expected). For smaller i (particularly i = 0
and i = 1), r; can be substantially smaller than 1 even for X near £, but
this is the price that must be paid to ensure dominance over §Q; (The
“best" linear estimator for the given prior information has_a risk func-
tion which increases quadratically in the (91' Ei)’ and can hence be in-
finitely worse than §°.) In the next section, the above‘results are
applied to -Examples 1, 2, and 3 (introduced in Section-?t) :

Since GM involves an infinite sum, it can, of course, never be
calculated exactly. The somewhat delicate point thus arises as to

whether any approximation used for GM dominates §°. The natural

approximation to use would result in the following estimator for o(s):

m m
(3.6) s'IXI(+) = 1X(+) - 1K+ ) 57 (X)e; (+),
1= i= ~
where
V. -
S (X) = X.' - +:'L'-- (X'I-E'I)r'l(x)’
- 11
19 i 2(3-1)"
ri(X) = a;-‘jé (a5-0547 )min (1, — . :
L (X-))%/ (vbry))
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and q is here defined to be zero. This estimator avoids the infinite

mt+1
sum, and furthermore (and realistically) necessitates only the calcu-
lation of the relevant quantities through the mEﬂ coefficient. Here

m could be chosen as the largest number for which the Fourier analysis

is calculationally feasible. It can be shown by arguments yirfua]]y
identical to the preceeding ones that §M is minimax (and dominates 60)

as desired.

We end this section with a lemma which is useful in indicating
the improvement in risk obtainable by using the new estimators. It
is, unfortunately, very difficult to calculate the risk of the estimator
(3.5). A related estimator, for which the risk can be explicitly

ca]cu]éted, is given componentwise by

V.
(3.7) 85(X) = X, - W (X; - £,)r5(X),

where

_G-n)t
J

Cx) =< T (q.-
ZO(XZ'Ez) /(vtt,,)
/Q:

(Recall that q; = vf/(vii-rii).) This estimator is minimax for 0 <c<2,

but is most T1ikely inferior to the estimator 6M.

Lemma 2.  If ¢ has an 7 p(E’I) prior distribution 1, where 7 is the diag-

onal matrix with diagonal elements Tije then

r(n,§c) = )L V- ZCA] + c2A2,

1

110~ 8

0
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where
A, = ) q
LT
and
.oyt 2 2
A = ‘i" 1 °2° (3-1) (qj'qjﬂ) -
2 420 Y e (3+1)
oo o q 1-1 .l
=7 q-27 —=D0-+ T 1.
22 1 g5 T Vo0 9
The optimal minimax choice of c is
(3.8) c* = min{2,A1/A2} s =
and the corresponding Bayes risk is
* [ee)
r(n,s¢) = Z Vi - 2C*A; ¥ c*2A2.

Proof. The proof is exactly analogous to the proof of Lemma 2 in Berger

(1982) and will be omitted. ||

4. Examples

Example 1. Finite Dimensional Problem: The complete analysis is carried

out in Berger (1982), to which the reader is referred.

Example 2.  Brownian Motion: In applying the minimax results-in"
Section 3 to Example 2, a slight modification of the problem seems
indicated. Our original intuition behind this modifjcation was that
Bayesian estimators discussed in Section 3 shift the Xi towards the

£ and hence might shift X(0) towards £(0), an undesirable feature in that
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X(0)=6(0) exactly. Referees pointed out that it is unclear whéthéf or

not X(0) gets shifted, and we agree. An alternate intuition for the
modification we propose is that explicitly incorporating the knowledge

that X(0)=6(0) seems to result in a problem with smaller prior variance and
hence a minimax estimator with smaller Bayes risk. We give an example

to illustrate this phenomenon after discussing the modificatiéZ;

To explicitly incorporate the information that X(0)=6(0), define

X*(-) = X(-) - x(0),
o*(-) = o(-) - ¢(0),
and, for any estimator &, -
s*[X1(-) = s[X1(+) - X(0).

It is easy to check that X* is itself a Wiener process with mean 6* and co-

variance function y*(s,t) ozmin{s,t} = y(s,t), and furthermore that

L(e,8[X]) = [ [e(t)- s[XI(t)1%dt

.
/
0
T 2
é [o*(t) - s*[X](t)1"dt

L(e*,s*[X]).
Thus the "*" problem is :formally the same as the original problem, and all
previous results apply to it. The key difference is in the fact that the
prior information transforms into

gx(-) = g(+) - £(0)

and

E{[e*(t)- e*(t)1e*(s) - e*(s) 1}
E{[(o(t)-&(t))- (6(0)-&(0))1[(e(s)-&(s))(e(0)-£(0))I}
(t,s) - t(t,0) - «(0,s) + (0,0).

Determination of ¢* and t* can thus either be done directly through sub-
jective consideration of o*, or from the prior knowledge g ang t about s.
As a specific example of the above considerations suppose.it is de-

termined that t*(t,s) = amin{t,s} . This is sensible, in that o*(t,t) = art,
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reflecting the 1ikely fact that the uncertainty in the guess g*(f) is in-
creasing in t (it being known that £*(0) = 0). The constant A would re-
flect the degree of uncertainty in £*. Then

T T

e = [ e(s)ey(s)ds = | £%(s)(2) sin[(3+1)ns/Tlds

and

. . T . o 212,201 a2

ko= [ ox(t,s)e, (t)ey (s)dtds = AT/ [n°(3 +1)°],
0

the last calculation being 1ike those in Section 2. Some algebra then

gives that the estimator T (3.5) is given coordinatewise (for the "*"

problem) by

*
6? (X*)
o . 2 . +
- xp - 20 DA ) ] U i) g, UL
5= (34254 ) (°+0) | 1X5-g*| |}

J
where |[X%- g2 = T (xx- 6)2:2 (54 212/ (6212), and
~ ~ J 2=0 ,Q/ 2/ R

T T
X¥ = [ X*(t)e;(t)dt = [ [X(t)- X(0)Je; (t)dt
0 0

T 2
H = X(0) [ (D)% sinl(3 +1)us/Tds

i T

2T)Z X(0
RRCAEET)

X(0)/[x(3+1i)], and the estimator M for the original
*

6M*[X](-) + X(0) or, equivaTent1y,_6?(§) = 6? (%#).

=

Also, g¥ = ¢, - (2T)

problem is 6M[X](-)

+ (2T)%'X(O)/[n(%-+i)].- Hence we can finally write the desired estimator

as
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. X |
2 J F : = '
where [[X-gf15 = T [0X-gp) - =3y (1(0) - £(0)) 1w (+ D)%/ (oPT2).
- 2=0 T2 -
Observing that
2 042

I
q: = vi/(v,+ %) = .
i i i 17 (02+A)ﬂ2(%+1)2

a calculation (see Lemma 2) gives that =

4.2
A, 2 -1 (Los97) ,
(c™+1)
4.2
A, = GZT (.0331) ,
(c™+a)

and

c* = mih{Z,A1/A2} = 1.503.

The minimax estimator ac* (see (3.7) and (3.8)) thus has Bayes risk

r(n,dc*) = ) V.- 2c*A] + c*2A2
- i=0 !
2.2 4.2
_CT OT (
=TH— - o .0746)
2 (o™+1)

=02T <1_ gz (.149)>,

(o"+2)
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An analysis of the original problem (i.e., without attempting: to
explicitly incorporate the information X(0) = 6(0)) can be done along
the same lines using t(t,s). We were unable to prove that the modified

analysis is always better, and so merely considered an example, namely,
t(t,s) = A(K - 3 |t-s|), where K>T/4.

For the indicated range of K this is a valid covariance function, and
when used in (4.1) gives the t*(t,s) evaluated earlier. (This t(t,s)
is also sensible intuitively, the variance function t(t,t)=AK indicating
a constant estimated variance for the guess £(-) of e(-).) A calculation

*
of the Bayes risk of §¢ gives

2.2 2
*
r(n,6%) = S (1 - —F—n(, D),
(c"™2) o

where h is a decreasing function of its arguments, going to zero as

A/cz or K/T go to infinity, and going to .149 (the answer for the modified
problem) as A/cz goes to zero. For a numerical example, when A/02=1

and K/T=2 then h=.095. For prior covariance functions of this particular
form, therefore, the modified minimax estimator appears to be better

than the unmodified minimax estimator. Again, however, there is no

theory to support this conclusion in general.
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Example 3. Brownian Bridge with Weighted Loss: As in EXamp]e-ZE the in-
jtial difficulty is encountered that X(0) = 6(0) and X(T) = o(T) exactly.
To ensure that the minimax estimators estimate 6(0) and o(T) correctly,

define, for 0 <t < T,

xx(t) = X(t) - [X(0)(1- H+x(mi7, =
o*(t) = o(t) - [0(0)(1- 2)+6(T) £,
s*IX1(t) = s[X1(t) - [X(0)(1- B+ x(m) &1,
and -
= t t
ex(t) = &(t) - [5(0)(1- )+ (T) F.

Again the "*" problem is the same as the original problem, in that
X*(t) = o*(t) + Z(t), where {Z(t),t €[0,T]} is a Brownian bridge.

Since the prior information in this transformed problem is that

6*(0) = £*(0) = 0 and o*(T) = ¢*(T) = 0 exactly, a reasonable prior co-
variance function is

Amin(s,t)- %L} .

T*(tss)

Calculation gives

tyq = AT/LG+ 1+ 2)].

We won't bother to write out the estimator (3.5) in this case, but it is
of interest that for the estimator s¢ in (3.7), the optimal choice of c*
is ¢* = 1.3269, and the Bayes risk of §¢* s

4
r(m.8%%) = ofT - —3-1- (.4423)
(67+2)

5 2
G T<1 - ‘2’ (.4423)>.
(c*2)
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Hence the estimator §C* can be up to 44% better than X in'teéhs—d? Bayes

risk . Again, GM probably performs even better.

5. Conclusions and Generalizations

Comment 1. A comment is in order concerning the relationship of the re-
sults in this paper with standard "filtering theory". The c]gssica] estima-

tor for the situation posed here is indeed 60, but more complicated situa-

tions are usually considered. In the first place, it is often assumed
that X(-) is only observed at, say, n points or that X(-) is observed
in a nonanticipative context (i.e., only X(s) for s<t is known when
o(t) is to be estimated) or both. Such models are outside the scope

of this paper. Also, it is often assumed that 6(-) belongs to some
subset of ® (say is an nth degree polynomial), or that {e(t), t€ I}
really is a random process, perhaps jointly distributed with the
"observational noise". In either case the classical problem is to
filter out the noise, arriving at an estimate of 6(:). Thus our
analysis deals with what could be called the "noninformative" situation,
in which we do not have (completely trustworthy) auxilliary information
of this type.

To more clearly see the difference between the analyses, suppose it
is felt that o is itself a Gaussian process, independent of X - o, with
mean function and covariance function -as discussed in Section 4. Then
the classical filter would be essentially the estimator determined by
(3.5) with ri(-) = 1, and this would be optimal. If, however, the beliefs
about 6 are uncertain, corresponding to vague prior information rather
than concrete knowledge, this classical filter could be dangerous, in the
sense that its risk can be very bad if 8(-) is not what was anticipated
(i.e., is not near £(+)). The estimator proposed in (3.5) "hedges the bet",
partially filtering out the suspected noise, but in a totally safe way; no

matter how far the true o(-) is from £(-), the estimator in (3.5) will
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still be better than the unfiltered §°. These considerations can-also be
phrased in "robust Bayesian" terms. See Berger (1980b) for discussion.
Of course, if one is really quite confident about the added information

about 6(-) (and usually one will know more than just that e(-) is in

LZ(I;du)), then classical filters.should be used.

Comment 2. Even in the basic situation discussed here, certain generaliza-
tions would be very desirable. First of all, it would be nice to be able

to carry out the analysis for an arbitrary complete system of functions
{ei(-)}, so that a system could be chosen which is appropriate for the ex-
pected form of o(-). Also, it would be very useful to be able to handle
more general types of prior information about e(-), particularly informa-
tion relating to smoothness of the functions, or to knowledge that e(-)

lies in some subspace of @ . Finally, it is often not e(-) itself which

is of interest, but some functional of o(-).

For instance, in Example 2 it is frequently the derivative of o which
is of interest, such as when a signal plus "white noise" is observed, in
which case the standard mathematical treatment is to integrate and consider
the integrated signal plus Brownian motion (which is the integral of white

noise, in some sense).

Comment 3. The results here easily generalize to the situation in which

o(-) (but not Z(-)) is permitted to have jumps at a discrete set of points
in I, by setting eJ(t) = Y [e(t)-1im o(s)] and estimating o = o - eJ
s<t s+t

upon observing X6 =X - XJ; the assumption that Z(-) has no jumps ensures
that XJ(-) = eJ(-). The problem of estimating o by observing X® can be

solved as before.
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Comment 4. The assumption that X and 6 have continuous paths“ﬁs,;?

convenient but not necessary; many other function spaces could be sub-
stituted for X . However, in the proof of the minimaxity of the usual
estimator §° (Theorem 3.1) we use the sufficiency of i for 5, a conse-

quence of the fact that the mapping X+X'From 2N L2(I du) t ? is

one-to-one; 5° may not be minimax if Z is rep1aced by a space for
which this map is not injective.
As an example, consider the space X of bounded measurable
functions with the supremum norm on I=[0,1], with ® the continuous
functions. Let B(-) be a Brownian motion, U a random variable independent

of B and uniformly distributed on [0,1] and set

0 if t-U is rational
B(t) else,

><
—
—*
~—
It

Z(t) + o(t).

Then it is possible to estimate 6 perfectly with a continuous estimator

§*: z-+L2(I,du) (hete u is Lesbesgue measure), while 8° has constant

risk %
The technically simple choice of 22=L2(I,du) is unappealing in

cases where the loss measure p may have support smaller than all of I.

The resfriction of X to the support of u is not (in general) a sufficient

statistic for estimating the restriction of 6 to the support of u,

so the statistical problem of estimating 6 upon obsekVing Xe€ C (1)

may differ substantially from the problem of estimating 6 upon observing

2

X€L°(I,du).
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