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ABSTRACT
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1. Introduction. Let P = (P],...,Pm) be a family of m different
probability distributions, and let x = (x],...,xn) be a sequence of in-
dependent random variables having common distribution Pe for some 6 = 1,

...m. On the basis of the random sample x statistical inference about
the finite-valued parameter o is desired.

If ¢ = §(x) is an estimator of this parameter, then we shall use the
probability of incorrect decision, Pe(a#e), as the risk function of s.
The asymptotic behavior of this risk has been studied by Kraff and Puri

[7] who showed that if s* is an asymptotically minimax procedure then

(1.7) Tim max P;/n(s*#e) max inf EepS(X,n)p_s(X,e)
N+ 9 n#6 s>0

max inf [ p*(x,n)p' S (x,8)du(x) = o(P),
n#6 s>0

where p(x,6) is the probability density of the‘distribution Pe with re-
spect to a measure yu.

Notice that the quantity inf EepS(X,n)P-S(X,e) represents the
Chernoff's function for the 1izggihood ratio and gives the asymptotics
for the probability P;/n( % p(xj,n)> % p(xj,e)) as the sample size n tends

to infinity (see Bahadur [1], Chernoff [3], [4]).

*This work was supported by the National Science Foundation grant number

MCS 7802300.



Clearly 0 < p(P) < 1, since all members of P are distinct, and
o(P) = 0 if and only if all distributions P, are mutually singular. Thus
o(P) can be interpreted as an information divergence of elements of P.
See Vajda [10] for further properties of p(P).; Assume now that the dis-
tributions Pe involve a nuisance parameter o which also takesﬂa'finite
number of values. Thus one has families Pa = {Péa), o=1,...,m},a - 1,

.»L. If § is an estimator of the parameter 6, then we denote

(1.2) R(as6) = lim inflmax P{%) (s70)7'/M.
N 6

Then for any s

R(s8) 2 0(P) = o,

and a procedure 84 is called adaptive if R(a,aa) =0, for all a.

In other terms an adaptive estimator is asymptotically fully effi-
cient under any of the families Pa, o = 1,...,£. In this paper we obtain
a necessary and sufficient condition for the existence of an adaptive pro-
cedure. Roughly speaking, an adaptive stimator exists if and only if the

members of different families Pa and P_, o # B, are not more similar than

B
the elements of one of these families.

A result similar to (1.1) holds as well if &* is the Bayes estimator

with kespect to positive prior probabilities Ug> © 1,...,m, and

max Pe(a*#e) is replaced by the Bayes risk } uePe(a*#e). Since
6 0

Tim inf[ ¥ uePéO‘)(a# 6)1'/™ = R(ass),
Noo 0 .

the results of this paper are true if in the definition of an adaptive pro-
cedure maximum of the risk is replaced by the Bayes risk. Moreover, one

can also substitute zero-one loss by a more general loss function W(e,d)



such that W(e.e) = 0 and W(e,d) > 0 for 6 # d. (See Ghosh aﬁd SJBramanyam
[51.)

The existence of adaptive procedures is related to a more general
problem of the form of minimax estimators for the new risk function
R(a,G)/pa. It is easy to see that s_, if exists, is minimax for this
risk. We determine a minimax estimator in the general situation, i.e.,
when an adaptive procedure may not exist. We also evaluate the quantity
v = inf max R(a,é)/pa, which represents the va]ué of the corresponding
game.s ’

2. The Asymptotical Behavion of Minimax Estimatorns. In this section
we study the asymptotical behavior of minimax procedures based on likeli-

c,hn

hood function of the form max[e k I pk(xj,e)], where s k=1,...,L are
k 1

given constants and pk(x,e) is the density of Pék). We start with the fol-

lowing basic result.

Lemma. LEE-Xl’XZ”" be a sequence of i.i.d. random variables and.

let f,9,, k = 1,...,¢ be positive measurable functions such that for any.

nonnegative Vise-ssVyp and k = 1,...,2

(2.1) Pr{ lZ” v[Tog(f, (X)/9,.(X)) - c .+ c, ]>0} > 0.
Then
c,n n c,h n
1im:Pr]/n{max[e k H-fk(x.)]>1nax[e K™ 1 gk(x.)]}
N0 k 1 Ik 1 J
c.n n c,n n
='1im,Pr]/n{max[e K™ fk(x.)]> max[e S gk(x;)]}
N K 1 J k 1 J
" s (c, - ¢ )IER, T(X) 1 g, "(X)
=" max inf exp{ )} s.(c, -c.)IEf X) g X).
I<k<t s >0 P roKOT k ro "

1""’SK



Proof: " For any fixed ry r = 1,...,4

cnon chon
Prie ﬁ[ fr(xj)szXEe l]I 9, (x;) 13
_ e on ¢ n
< Pr{max[e il fk(x.)]zlmax[e I gk(x.)]}
J J
k 1 k 1 }
c;n N N
< ) Prie il fi(xj)g;max[e I gk(xj)]}
i 1 k 1
cnon ¢ n
< £ max Pr{e n f.(x;)>max[e nog,(x;)13.
k 1 3Tk 1 J
It follows that
c,n N c,n n
Pr]/n{max[e S fk(x.)]g;max[e K™ g gk(x.)]}
k 1 J k 1 J
_ c.n n c.n n
- max Pr1/Me K fk(x.)gimax[e Ton gk(x.)]}
J . ; J
k 1 i 1
c,n n c.n n
- iax pr/"te ¥ 1 fk(xj)ze Vo g; (x:)5 1=1,...,0}
k- 1 1 J

1

ma X Pr]/n{n-
k

% 1og(fk(xj)/gi(xj))z_c1- Cr» 1=T,.000L0.
The conclusion of Lemma -now results:from the multivariate version of
Chernoff's Theorem (see Bartfai [2],,Groéneb00m},OoSterhofffand
Ruymgaart [6] or Steinebach [9]).

The following quantities play a crucial and unheralded role in de-
ciding the existence of adaptive procedures. Define for real Cpsee+9Cps
1<1, k<2
S

LS -
0:0(Cys.ussC,) = max inf exp{ ) s.(c,-c )}E(k)p. ix,n)mp. "(x,e).
ikl £ r*vi v’ e M r
6#n s],...,sﬂip r r



Notice that for £ =1, Pij = o(P). As we shall see, thé'huéﬁtities

o.: in general case preserve the interpretation of information divergence

iJ
.of families Pi and Pk in the configuration {Pr’ r=1,...,2}.

In the definition of Psy We assume that all densities pr(x,e), r=1,
..., are strictly positive. This condition is supposed to hold through-
out this paper. Under this agreement Pik is a continuous function of
Cys-+-5Cp ON the set where it is finite. Al11 these functions are transla-
tion invariant:

pik(c]4-c,...,qe4-c) = pik(c],...,qe);

and

05 (C1s--5Cp) < min{l,explc;-cyll.

THEOREM 1. Let &* be an asymptotically minimax estimator of o based
c:n n
on the likelihood function max[e ' T pi(xj,e)]. Then
i 1

c,n c
. k (k) 1/n _ k
1im max[e max Pg"/ (8% # 0)] = max e pik(c],...,cz).

nse Kk 6 1<i,k<t

Proof. Let S be the maximum likelihood estimator of 6 based on
c.n n

qu[e 1 q pi(xj,e)] = we(g,c1,...,c£) = "6(5)' Thus & = 6 if for n # @
i

(x).

mo(x) > m

It is easy to see that the definition of §, when this inequality is the
equality for n # @, is immaterial in our asymptotical analysis. Also for

any n # 0

k k)/2
P{) (ry (x) < (x)) < P{K (8 7 0)

(k)
< (m- ])nTzie Py (ne(§)< ﬁn(é)).



Therefore because of our Lemma

(2.2)  1infp{K) (5 #6)7/"
Moo 0

= 1im[ max P(k)(ﬂe(§)<'n (5))]1/n
e nin#o n
£S. . -s
= max max. inf exp{ ) sr(ci—cr)}Eék)pi r(X,n)HPr "(X.8).
n:inge i 51,...,s£39 r r

Notice that the condition (2.1) of the Lemma is satisfied since for all

nonnegative ViseresVy
£3 1T vy Toa(py (Kon)/p(460)) > 0,

so that

A (1 v, Toalpy (Xon)/p (6:0)) > 0) > o,

which is equivalent to the inequality

Pék)(gvr Tog(p; (X,n)/p.(X,8)) > 0) > 0.

If S is a minimax procedure then

c.n
(2.3) ‘max[e K max Pék)(ém # 0)] < max. f..,fwe(g)dp(g)
k 8 . {Gm%e}
c,n .
<max [...f m(x)du(x) <} e K max Pék)(a # 6)
6 {s#6} k - 6
and
c.n c,n
(2.4) Tim max[e k max Pék)(sm#e)]]/n = 1im max[e k max P(k)(ﬁ* # e)]]/n
n>e Kk 9 nre  k 8 6
c,.n .
< 1im max[e K max P(k)(é #'e)]]/n

n»e Kk 9 8



Cy ;
= Taﬁ e pik(C1,..., E)'
We prove now that (2.4) is actually the equality, i.e., that 5 is an
asymptotically minimax procedure. For a fixed k, 1 <k < £, Tet £ and ¢

be two different parametric values defined in the following way:

mgx p'ik(c.l" .- acz)

LS -S
ék)pi "(%0)1 p,. "(X,E).

= max inf exp{ } sp(cs-c ) 3E ;

i s],...,szzp
Also let Sp be the Bayes estimator for the prior distribution assigning

weights 1/2 to ¢ and ¢ and the likelihood function ne(5). Then for any &

miX[ecknPék)(dB# £)] + mﬁX[eCknPék)(éB# z)]

(572} {sp#c} ©
< ool m 0000 * [ f  (00d(x)
tste) (s#2)

Thus
c.n
1im inf max[e K ax Pék)(a# e)]”n
N k ¢]

c.n c.n

> 1im max{max[e k P(k)(6 # g)]]/n, max[e k P(k)(d # ;)]]/n}.

- g B z B
N->co k k

Again our Lemma entails that

1/n

1inlP) (57 017" = 1inlp (K (5,2 21

N> N-—>co

1l (r, () > v, (10011



= m?x pik(cl""’cﬂ)'
Hence for any asymptotically minimax procedure &*
c,n , v c
1im max[e K max Pék)(é* # e)]]/n >.max e'kpik(c1""’cz)'
N> k 0 1,k

This inequality combined with (2.4) proves Theorem 1.

Corollary 1. For k = 1,...,2

pkk(c],...,qe) <Py 5_m?x pik(c],...,qz).

The first of these inequalities féﬁ]ows from the definition of Pk and

pi s the second is direct consequence of (2.2).

3. The Existence o4 Adaptive Procedures. We prove in this section

our main results.

THEOREM 2.  If an adaptive procedure exists then for all real

Cps-sCp
Ck k

(3.1) mzx e "oy 3_?a§ e pik(c1,...,c£).

If for some c],...,cz

(3.2) P = Max pik(c1,...,c£), k=1,...,2,

.i

then an adaptive estimator exists.

Proof. Let Gm be a minimax estimator for the likelihood function

ne(g) from Theorem 1. If an adaptive estimator aa exists then one has as

in (2.3)

c,n k
naxe * nax 26 oy # 8] < | e " max pl)(s, # 0),

ckn



so that
c.n c.n
Tim max[e k max Pék)(sm# e)]]/n < max lim[e k max Pék)(s # e)]]/n
- a
Nk ) kK now )
c
= max e kpk =

This inequality and Theorem 1 imply (3.9).
If (3.2) holds then according to (2.2) the maximum likelihood estima-

tor § based on ne(g) is adaptive.

Corollary 2. If an adaptive procedure exists then (3.1) is actual-

ly an equality.

This fact follows from Corollary 1.

Corollary 3. If for some i # k and ¢ # n, Pi(x,n) = pk(x,e) for all

X,then there is no adaptive estimator.

Indeed in this case

ISy s
0 (0s50) = infERRT T (x0) wp Tixe) = 1,

6
s],...,sﬂzp r

since every partial derivative of the latter function at the origin is

nonnegative:
Eék)1og[pk(X,e)/Pr(X,6)] >0,

and its infimum in the region S; 2 0,...,5, > 0 is attained at zero.
Therefore

max p, < max p.,(0,...,0) =1,
K K4,k ik

and adaptive procedure cannot exist.
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THEOREM 3.  An adaptive procedure exists if and only if for

k=1,...,2

o = opk(-109 pqse.s-T0g o)) > im?;k pik(-109 pqs...5-T0g p,).

Proof. Denote cﬁ = -log P> Yy = Mmax pik(C?,...,Cz), k= T1,...,L.
i )

Theorem 2 implies that if an adaptive procedure exists then

0
o
(3.4) 1 = max e kpk > max Yk/pk.
k k
Because of Corollary 1
pk _<_'Yk,

which together with (3.4) shows that P = Yo k=1,...,£. Since
o 3_pk(c?,...,cz) formula (3.3) is established.

If (3.3) holds, then an adaptive procedure exists according to (3.2),
which proves Theorem 3. ’ ’

Condition (3.3) means that for all k and some 6 # n the infimum

. N IS, S,
inf [P (xs0)py “(xon) B " (x50)du(x),
s1,...,s£39 r

where ﬁk(x,e) = pk(x,e)/pk, is attained when s = 0 for r # k, and also
for all 1 # k and all ¢ # q
%S -

inf [P, (x:0)p; "(xsn) 1 P
s],...,szzp r

S
b (x,8)du(x) < T,

Note that for all k=1,....,2

max inf [ B% (6,005 (xon)du(x) = 1.
6#n s>0

If condition (3.3) is satisfied then the maximum Tikelihood estimator

~ n -
8, based on max ? (pi(xj,e)/pi) is adaptive. It is also minimax for the
j !
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risk function R(a,s)/p : for any s

A

1= Rlas8)/p, < max R(as8)/e -
o4

It follows from the proof of Theorem 1 (see (2.3)) that one has for all

even if (3.3) is not met

Y‘ea-l C'Iao--"cz S—

c C c -
[ N _ o o
max e R(a,GO) = max e pBu(C],...,CK) < max e “R{as8),

o asB a

so that for any &

max R(a,éo)/pa 5_m§x R(a,G)/Qa.
a

We have proved the following result.

THEOREM 4. The maximum likelihood estimator 30 based on
n
max I (pi(xj,e)/pi) is adaptive if condition (3.3) is satisfied. This
i ]

estimator is always minimax for theirisk“function“R(q,d)/pd, where R(a,s).

is defined by (1.2).

Because of Theorem 1 the value v of the game defined by the risk

R(a,G)/pa has the form

v = T?ﬁ[pik('log Ps-..s-l0g pz)/pk] > 1.

It is easy to see that v = 1 if and only if an adaptive procedure exists.

It is worth noting that the estimator 30 is essentially different
from the naive overall maximum likelihood estimator, i.e., frbm the maxi-
mum 1ikelihood estimator based on max E pi(xj,e). In fact one can con-
struct examples where the latter es%imator is not adaptive but 50 is.
Thus Theorem 4 suggests a method of elimination of the nuisance parameter
as one should use prior distribution for o with probabilities proportional

to ]/pa to obtain a possibly adaptive rule.
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4. An Example. Let distributions Pék) form one-parameter exponen-

tial family, i.e., their densities are of the form

p (x:0) = [Cla, (6))1 T expia (0)v(x)},

where v(x) is a real-valued statistic. As earlier we assume that all dis-

tributions P(k), 5 = 1,...,m are different so that the common support of
G

all measures Pék) includes at Teast two points. Define

= [ expfav(x)}rdu(x);
then the function f(a) = log C(a) is strictly convex. One has for
k=1,...,2

(4.1) log py = max inf log fp (x,8)pp (x,n)du(x)
’ T 8fn s>0

max min [f(a, (6)+s(a, (n)—ak(e)))-s[f(ak(n))-f(ak(e))];f(ak(e))]

6#n 0<s<I]

Om1n][f(ak( k)+s(ak(nk) ak( k)))_S[f(ak(nk))-f(ak(ek))]-f(ak(ek))]'
<§<

A]so

10g p:p(CysenesC,) = Max inf [f(a (e)+ } s (a:(n)-a.(6)))
AL £ ot Sqaeee 5,20 K ; Py

- Z s.[f(a.(n))-f(a,(e))+c,-c;1-f(a, (6))].

We prove now that

(4.2) inf [f(a, (e)+ Z sp(a;(n)-a,(6)))

s],...,sﬂzp

; s [f(a.(n))-f(a.(6))+c -c;]1-F(a (6))]

12;2£ lgg[f(ak(e)+s(ai(n)-ar(e)))

s[(a (n)-f(a (6))+c ¢, 1-F(a, (6))].

Indeed if there exists a point (s],...,sz) such that the vector of partial
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derivatives of the function in the left-hand side of (4.2) vanishés, then
forr=1,..,2

(3, (n)-2,(0))F-(ay (0)+ ] 5,(ay(n)-aglo))) = flay(m)-Flap(e))ve,ocy.

Since - is strictly monotone function, this formula entails
a (6) + Js.(a;(n)-aple)) = a,
and the left-hand side of (4.2) is equal to

fla) + inf [~ ] s.(f(a.(n)) - fla.(e))+cp-c;)]- fla,(e)).
s],...,szzp r

The latter infimum is clearly attained when Sp = 0 for some r, i.e., on
the boundary of the set S = {(s],...,sz),srz_o,r= 1,...,£}. This is also
true when the gradient of the function in (4.2) does not vanish in S. Re-
peating the previous argument one obtains (4.2). Denote

(4.3) H; (a,(e),a.(6),a;(n))

= 1ng[f(ak(e)+5(ai(n)—ar(e)))-SEf(ar(n))-f(ar(e))+1og(pi/pr)]ff(ak(e))].
Sk

Then for k = 1,...,2
(4-4) log Pk = Hkk(ak(ek)’ak(ek)’ak(”k))
and we have proved that

Tog p;\ (-109 pq5...,-T0g op) = m;x min Hir(ak(e),ar(e),ai(n))-
0Fn ¥

These facts and Thedrém 3 provide us with the following result.

THEOREM 5. Let for k = 1,...,¢

b (x,0) = [C(a, ()1 expiay (6)v(x)1.

Then p| is determined by (4.3) and (4.4). An adaptive estimator of o

exists if and only if for all i # k and all 6 # n there exists r, 1 <r<¢& )

such that

Hio(a (6),a,(0),a5(n)) < Tog oy s
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and for any k the inequality

Hkr(ak(ek)’ar(ek)’ak(”k)) < Tog p

holds for all r # k and all 0, n defined by (4.1).

The last statement of Theorem 5 easily follows since the condition
pk = pkk("]Og p]s---a']()g pz)

means that

max min H, (a,(8),a
ofn T k k

r

(0)33,(m) = Heg(a, (0,02, (8, )5, ()

max Hkk(ak(e),ak(e),ak(n))-
8#n

The estimator 80 of Theorem 4 has the form

{8,760} = {miX[ak(e)V—f(ak(e))-log ord > szEak(n)V—f(ak(n))—1og od>n#o}

where

A simple necessary condition for the existence of an adaptive procedure
is the consistency of 30 for any distribution Pék). Since under Pék)
with probability one v - f’(ak(e)),one concludes that the existence of an
adaptive estimator implies that for r = 1,...,£, 6 # n

mix[ak(e)f’(a

~(0))-f(a,(6))-109 o1 >,mﬁX[ak(n)f‘(aP(e))—f(ak(n))—log oy ]

As a specification of this example let us consider the case of normal
densities pk(x,e) with unknown mean ak(e) and known variance 2. Then
v(x) = x,

C(a) = expia?/(202)1, f(a) = a%/(25°),

and

oy = max exp(-[ay (¢) - a, (n)1%/(80%)3.
oFn
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If £ =2, 6 =1,2, then it can be deduced from Theorem 5 that an adaptive
estimator of 6 exists if and only if

a1(1) + a](z) = a2(1) + a2(2)

and differences a](Z) - a](]) and a2(2) - a2(1) are of the same sign. In
the Tatter case the estimator, which takes value 1 when 2§_<Q51(1) + a](2),

is adaptive. (cf Laderman [8], Wald[11].)
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